Browse Source

feat: Falcon 512 signature

al-gkr-basic-workflow
Al-Kindi-0 1 year ago
parent
commit
8078021aff
28 changed files with 2263 additions and 114 deletions
  1. +6
    -0
      .github/workflows/ci.yml
  2. +3
    -0
      .gitmodules
  3. +8
    -4
      Cargo.toml
  4. +1
    -0
      PQClean
  5. +24
    -0
      build.rs
  6. +1
    -0
      rustfmt.toml
  7. +1
    -0
      src/dsa/mod.rs
  8. +55
    -0
      src/dsa/rpo_falcon512/error.rs
  9. +66
    -0
      src/dsa/rpo_falcon512/falcon_c/api_rpo.h
  10. +387
    -0
      src/dsa/rpo_falcon512/falcon_c/falcon_rpo.c
  11. +582
    -0
      src/dsa/rpo_falcon512/falcon_c/rpo.c
  12. +83
    -0
      src/dsa/rpo_falcon512/falcon_c/rpo.h
  13. +189
    -0
      src/dsa/rpo_falcon512/ffi.rs
  14. +227
    -0
      src/dsa/rpo_falcon512/keys.rs
  15. +60
    -0
      src/dsa/rpo_falcon512/mod.rs
  16. +277
    -0
      src/dsa/rpo_falcon512/polynomial.rs
  17. +262
    -0
      src/dsa/rpo_falcon512/signature.rs
  18. +1
    -0
      src/lib.rs
  19. +3
    -15
      src/merkle/merkle_tree.rs
  20. +2
    -8
      src/merkle/mmr/full.rs
  21. +1
    -5
      src/merkle/mmr/tests.rs
  22. +1
    -5
      src/merkle/partial_mt/mod.rs
  23. +2
    -9
      src/merkle/path.rs
  24. +1
    -4
      src/merkle/simple_smt/mod.rs
  25. +3
    -15
      src/merkle/simple_smt/tests.rs
  26. +15
    -41
      src/merkle/store/mod.rs
  27. +1
    -4
      src/merkle/tiered_smt/values.rs
  28. +1
    -4
      src/utils/mod.rs

+ 6
- 0
.github/workflows/ci.yml

@ -19,6 +19,8 @@ jobs:
args: [--no-default-features --target wasm32-unknown-unknown] args: [--no-default-features --target wasm32-unknown-unknown]
steps: steps:
- uses: actions/checkout@main - uses: actions/checkout@main
with:
submodules: recursive
- name: Install rust - name: Install rust
uses: actions-rs/toolchain@v1 uses: actions-rs/toolchain@v1
with: with:
@ -42,6 +44,8 @@ jobs:
features: ["--features default,std,serde", --no-default-features] features: ["--features default,std,serde", --no-default-features]
steps: steps:
- uses: actions/checkout@main - uses: actions/checkout@main
with:
submodules: recursive
- name: Install rust - name: Install rust
uses: actions-rs/toolchain@v1 uses: actions-rs/toolchain@v1
with: with:
@ -62,6 +66,8 @@ jobs:
features: ["--features default,std,serde", --no-default-features] features: ["--features default,std,serde", --no-default-features]
steps: steps:
- uses: actions/checkout@main - uses: actions/checkout@main
with:
submodules: recursive
- name: Install minimal nightly with clippy - name: Install minimal nightly with clippy
uses: actions-rs/toolchain@v1 uses: actions-rs/toolchain@v1
with: with:

+ 3
- 0
.gitmodules

@ -0,0 +1,3 @@
[submodule "PQClean"]
path = PQClean
url = https://github.com/PQClean/PQClean.git

+ 8
- 4
Cargo.toml

@ -17,7 +17,7 @@ name = "miden-crypto"
path = "src/main.rs" path = "src/main.rs"
bench = false bench = false
doctest = false doctest = false
required-features = ["std"]
required-features = ["executable"]
[[bench]] [[bench]]
name = "hash" name = "hash"
@ -34,12 +34,15 @@ harness = false
[features] [features]
arch-arm64-sve = ["dep:cc"] arch-arm64-sve = ["dep:cc"]
default = ["blake3/default", "std", "winter_crypto/default", "winter_math/default", "winter_utils/default"] default = ["blake3/default", "std", "winter_crypto/default", "winter_math/default", "winter_utils/default"]
std = ["blake3/std", "winter_crypto/std", "winter_math/std", "winter_utils/std", "rand_utils"]
executable = ["dep:clap", "dep:rand_utils", "std"]
std = ["blake3/std", "dep:cc", "dep:libc", "dep:rand", "winter_crypto/std", "winter_math/std", "winter_utils/std"]
serde = ["winter_math/serde", "dep:serde", "serde/alloc"] serde = ["winter_math/serde", "dep:serde", "serde/alloc"]
[dependencies] [dependencies]
blake3 = { version = "1.4", default-features = false } blake3 = { version = "1.4", default-features = false }
clap = { version = "4.3.21", features = ["derive"] }
clap = { version = "4.3", features = ["derive"], optional = true}
libc = { version = "0.2", optional = true, default-features = false }
rand = { version = "0.8", optional = true, default-features = false }
winter_crypto = { version = "0.6", package = "winter-crypto", default-features = false } winter_crypto = { version = "0.6", package = "winter-crypto", default-features = false }
winter_math = { version = "0.6", package = "winter-math", default-features = false } winter_math = { version = "0.6", package = "winter-math", default-features = false }
winter_utils = { version = "0.6", package = "winter-utils", default-features = false } winter_utils = { version = "0.6", package = "winter-utils", default-features = false }
@ -52,4 +55,5 @@ proptest = "1.1.0"
rand_utils = { version = "0.6", package = "winter-rand-utils" } rand_utils = { version = "0.6", package = "winter-rand-utils" }
[build-dependencies] [build-dependencies]
cc = { version = "1.0.79", optional = true }
cc = { version = "1.0", features = ["parallel"], optional = true }
glob = "*"

+ 1
- 0
PQClean

@ -0,0 +1 @@
Subproject commit c3abebf4ab1ff516ffa71e6337f06d898952c299

+ 24
- 0
build.rs

@ -1,8 +1,32 @@
fn main() { fn main() {
#[cfg(feature = "std")]
compile_rpo_falcon();
#[cfg(feature = "arch-arm64-sve")] #[cfg(feature = "arch-arm64-sve")]
compile_arch_arm64_sve(); compile_arch_arm64_sve();
} }
#[cfg(feature = "std")]
fn compile_rpo_falcon() {
use std::path::PathBuf;
let target_dir: PathBuf = ["PQClean", "crypto_sign", "falcon-512", "clean"].iter().collect();
let common_dir: PathBuf = ["PQClean", "common"].iter().collect();
let rpo_dir: PathBuf = ["src", "dsa", "rpo_falcon512", "falcon_c"].iter().collect();
let scheme_files = glob::glob(target_dir.join("*.c").to_str().unwrap()).unwrap();
let common_files = glob::glob(common_dir.join("*.c").to_str().unwrap()).unwrap();
let rpo_files = glob::glob(rpo_dir.join("*.c").to_str().unwrap()).unwrap();
cc::Build::new()
.include(&common_dir)
.include(target_dir)
.files(scheme_files.into_iter().map(|p| p.unwrap().to_string_lossy().into_owned()))
.files(common_files.into_iter().map(|p| p.unwrap().to_string_lossy().into_owned()))
.files(rpo_files.into_iter().map(|p| p.unwrap().to_string_lossy().into_owned()))
.compile("falcon-512_clean");
}
#[cfg(feature = "arch-arm64-sve")] #[cfg(feature = "arch-arm64-sve")]
fn compile_arch_arm64_sve() { fn compile_arch_arm64_sve() {
println!("cargo:rerun-if-changed=arch/arm64-sve/rpo/library.c"); println!("cargo:rerun-if-changed=arch/arm64-sve/rpo/library.c");

+ 1
- 0
rustfmt.toml

@ -16,5 +16,6 @@ newline_style = "Unix"
#normalize_doc_attributes = true #normalize_doc_attributes = true
#reorder_impl_items = true #reorder_impl_items = true
single_line_if_else_max_width = 60 single_line_if_else_max_width = 60
struct_lit_width = 40
use_field_init_shorthand = true use_field_init_shorthand = true
use_try_shorthand = true use_try_shorthand = true

+ 1
- 0
src/dsa/mod.rs

@ -0,0 +1 @@
pub mod rpo_falcon512;

+ 55
- 0
src/dsa/rpo_falcon512/error.rs

@ -0,0 +1,55 @@
use super::{LOG_N, MODULUS, PK_LEN};
use core::fmt;
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum FalconError {
KeyGenerationFailed,
PubKeyDecodingExtraData,
PubKeyDecodingInvalidCoefficient(u32),
PubKeyDecodingInvalidLength(usize),
PubKeyDecodingInvalidTag(u8),
SigDecodingTooBigHighBits(u32),
SigDecodingInvalidRemainder,
SigDecodingNonZeroUnusedBitsLastByte,
SigDecodingMinusZero,
SigDecodingIncorrectEncodingAlgorithm,
SigDecodingNotSupportedDegree(u8),
SigGenerationFailed,
}
impl fmt::Display for FalconError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use FalconError::*;
match self {
KeyGenerationFailed => write!(f, "Failed to generate a private-public key pair"),
PubKeyDecodingExtraData => {
write!(f, "Failed to decode public key: input not fully consumed")
}
PubKeyDecodingInvalidCoefficient(val) => {
write!(f, "Failed to decode public key: coefficient {val} is greater than or equal to the field modulus {MODULUS}")
}
PubKeyDecodingInvalidLength(len) => {
write!(f, "Failed to decode public key: expected {PK_LEN} bytes but received {len}")
}
PubKeyDecodingInvalidTag(byte) => {
write!(f, "Failed to decode public key: expected the first byte to be {LOG_N} but was {byte}")
}
SigDecodingTooBigHighBits(m) => {
write!(f, "Failed to decode signature: high bits {m} exceed 2048")
}
SigDecodingInvalidRemainder => {
write!(f, "Failed to decode signature: incorrect remaining data")
}
SigDecodingNonZeroUnusedBitsLastByte => {
write!(f, "Failed to decode signature: Non-zero unused bits in the last byte")
}
SigDecodingMinusZero => write!(f, "Failed to decode signature: -0 is forbidden"),
SigDecodingIncorrectEncodingAlgorithm => write!(f, "Failed to decode signature: not supported encoding algorithm"),
SigDecodingNotSupportedDegree(log_n) => write!(f, "Failed to decode signature: only supported irreducible polynomial degree is 512, 2^{log_n} was provided"),
SigGenerationFailed => write!(f, "Failed to generate a signature"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for FalconError {}

+ 66
- 0
src/dsa/rpo_falcon512/falcon_c/api_rpo.h

@ -0,0 +1,66 @@
#include <stddef.h>
#include <stdint.h>
#define PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES 1281
#define PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES 897
#define PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES 666
/*
* Generate a new key pair. Public key goes into pk[], private key in sk[].
* Key sizes are exact (in bytes):
* public (pk): PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES
* private (sk): PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES
*
* Return value: 0 on success, -1 on error.
*
* Note: This implementation follows the reference implementation in PQClean
* https://github.com/PQClean/PQClean/tree/master/crypto_sign/falcon-512
* verbatim except for the sections that are marked otherwise.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_rpo(
uint8_t *pk, uint8_t *sk);
/*
* Generate a new key pair from seed. Public key goes into pk[], private key in sk[].
* Key sizes are exact (in bytes):
* public (pk): PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES
* private (sk): PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES
*
* Return value: 0 on success, -1 on error.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_from_seed_rpo(
uint8_t *pk, uint8_t *sk, unsigned char *seed);
/*
* Compute a signature on a provided message (m, mlen), with a given
* private key (sk). Signature is written in sig[], with length written
* into *siglen. Signature length is variable; maximum signature length
* (in bytes) is PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES.
*
* sig[], m[] and sk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*
* Note: This implementation follows the reference implementation in PQClean
* https://github.com/PQClean/PQClean/tree/master/crypto_sign/falcon-512
* verbatim except for the sections that are marked otherwise.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_signature_rpo(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk);
/*
* Verify a signature (sig, siglen) on a message (m, mlen) with a given
* public key (pk).
*
* sig[], m[] and pk[] may overlap each other arbitrarily.
*
* Return value: 0 on success, -1 on error.
*
* Note: This implementation follows the reference implementation in PQClean
* https://github.com/PQClean/PQClean/tree/master/crypto_sign/falcon-512
* verbatim except for the sections that are marked otherwise.
*/
int PQCLEAN_FALCON512_CLEAN_crypto_sign_verify_rpo(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk);

+ 387
- 0
src/dsa/rpo_falcon512/falcon_c/falcon_rpo.c

@ -0,0 +1,387 @@
/*
* Wrapper for implementing the PQClean API.
*/
#include <string.h>
#include "randombytes.h"
#include "api_rpo.h"
#include "inner.h"
#include "rpo.h"
#define NONCELEN 40
/*
* Encoding formats (nnnn = log of degree, 9 for Falcon-512, 10 for Falcon-1024)
*
* private key:
* header byte: 0101nnnn
* private f (6 or 5 bits by element, depending on degree)
* private g (6 or 5 bits by element, depending on degree)
* private F (8 bits by element)
*
* public key:
* header byte: 0000nnnn
* public h (14 bits by element)
*
* signature:
* header byte: 0011nnnn
* nonce 40 bytes
* value (12 bits by element)
*
* message + signature:
* signature length (2 bytes, big-endian)
* nonce 40 bytes
* message
* header byte: 0010nnnn
* value (12 bits by element)
* (signature length is 1+len(value), not counting the nonce)
*/
/* see api_rpo.h */
int PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_from_seed_rpo(
uint8_t *pk, uint8_t *sk, unsigned char *seed)
{
union
{
uint8_t b[FALCON_KEYGEN_TEMP_9];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[512], g[512], F[512];
uint16_t h[512];
inner_shake256_context rng;
size_t u, v;
/*
* Generate key pair.
*/
inner_shake256_init(&rng);
inner_shake256_inject(&rng, seed, sizeof seed);
inner_shake256_flip(&rng);
PQCLEAN_FALCON512_CLEAN_keygen(&rng, f, g, F, NULL, h, 9, tmp.b);
inner_shake256_ctx_release(&rng);
/*
* Encode private key.
*/
sk[0] = 0x50 + 9;
u = 1;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u,
f, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9]);
if (v == 0)
{
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u,
g, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9]);
if (v == 0)
{
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_encode(
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u,
F, 9, PQCLEAN_FALCON512_CLEAN_max_FG_bits[9]);
if (v == 0)
{
return -1;
}
u += v;
if (u != PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES)
{
return -1;
}
/*
* Encode public key.
*/
pk[0] = 0x00 + 9;
v = PQCLEAN_FALCON512_CLEAN_modq_encode(
pk + 1, PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1,
h, 9);
if (v != PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1)
{
return -1;
}
return 0;
}
int PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_rpo(
uint8_t *pk, uint8_t *sk)
{
unsigned char seed[48];
/*
* Generate a random seed.
*/
randombytes(seed, sizeof seed);
return PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_from_seed_rpo(pk, sk, seed);
}
/*
* Compute the signature. nonce[] receives the nonce and must have length
* NONCELEN bytes. sigbuf[] receives the signature value (without nonce
* or header byte), with *sigbuflen providing the maximum value length and
* receiving the actual value length.
*
* If a signature could be computed but not encoded because it would
* exceed the output buffer size, then a new signature is computed. If
* the provided buffer size is too low, this could loop indefinitely, so
* the caller must provide a size that can accommodate signatures with a
* large enough probability.
*
* Return value: 0 on success, -1 on error.
*/
static int
do_sign(uint8_t *nonce, uint8_t *sigbuf, size_t *sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *sk)
{
union
{
uint8_t b[72 * 512];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
int8_t f[512], g[512], F[512], G[512];
struct
{
int16_t sig[512];
uint16_t hm[512];
} r;
unsigned char seed[48];
inner_shake256_context sc;
rpo128_context rc;
size_t u, v;
/*
* Decode the private key.
*/
if (sk[0] != 0x50 + 9)
{
return -1;
}
u = 1;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_decode(
f, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9],
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0)
{
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_decode(
g, 9, PQCLEAN_FALCON512_CLEAN_max_fg_bits[9],
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0)
{
return -1;
}
u += v;
v = PQCLEAN_FALCON512_CLEAN_trim_i8_decode(
F, 9, PQCLEAN_FALCON512_CLEAN_max_FG_bits[9],
sk + u, PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES - u);
if (v == 0)
{
return -1;
}
u += v;
if (u != PQCLEAN_FALCON512_CLEAN_CRYPTO_SECRETKEYBYTES)
{
return -1;
}
if (!PQCLEAN_FALCON512_CLEAN_complete_private(G, f, g, F, 9, tmp.b))
{
return -1;
}
/*
* Create a random nonce (40 bytes).
*/
randombytes(nonce, NONCELEN);
/* ==== Start: Deviation from the reference implementation ================================= */
// Transform the nonce into 8 chunks each of size 5 bytes. We do this in order to be sure that
// the conversion to field elements succeeds
uint8_t buffer[64];
memset(buffer, 0, 64);
for (size_t i = 0; i < 8; i++)
{
buffer[8 * i] = nonce[5 * i];
buffer[8 * i + 1] = nonce[5 * i + 1];
buffer[8 * i + 2] = nonce[5 * i + 2];
buffer[8 * i + 3] = nonce[5 * i + 3];
buffer[8 * i + 4] = nonce[5 * i + 4];
}
/*
* Hash message nonce + message into a vector.
*/
rpo128_init(&rc);
rpo128_absorb(&rc, buffer, NONCELEN + 24);
rpo128_absorb(&rc, m, mlen);
rpo128_finalize(&rc);
PQCLEAN_FALCON512_CLEAN_hash_to_point_rpo(&rc, r.hm, 9);
rpo128_release(&rc);
/* ==== End: Deviation from the reference implementation =================================== */
/*
* Initialize a RNG.
*/
randombytes(seed, sizeof seed);
inner_shake256_init(&sc);
inner_shake256_inject(&sc, seed, sizeof seed);
inner_shake256_flip(&sc);
/*
* Compute and return the signature. This loops until a signature
* value is found that fits in the provided buffer.
*/
for (;;)
{
PQCLEAN_FALCON512_CLEAN_sign_dyn(r.sig, &sc, f, g, F, G, r.hm, 9, tmp.b);
v = PQCLEAN_FALCON512_CLEAN_comp_encode(sigbuf, *sigbuflen, r.sig, 9);
if (v != 0)
{
inner_shake256_ctx_release(&sc);
*sigbuflen = v;
return 0;
}
}
}
/*
* Verify a signature. The nonce has size NONCELEN bytes. sigbuf[]
* (of size sigbuflen) contains the signature value, not including the
* header byte or nonce. Return value is 0 on success, -1 on error.
*/
static int
do_verify(
const uint8_t *nonce, const uint8_t *sigbuf, size_t sigbuflen,
const uint8_t *m, size_t mlen, const uint8_t *pk)
{
union
{
uint8_t b[2 * 512];
uint64_t dummy_u64;
fpr dummy_fpr;
} tmp;
uint16_t h[512], hm[512];
int16_t sig[512];
rpo128_context rc;
/*
* Decode public key.
*/
if (pk[0] != 0x00 + 9)
{
return -1;
}
if (PQCLEAN_FALCON512_CLEAN_modq_decode(h, 9,
pk + 1, PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1)
!= PQCLEAN_FALCON512_CLEAN_CRYPTO_PUBLICKEYBYTES - 1)
{
return -1;
}
PQCLEAN_FALCON512_CLEAN_to_ntt_monty(h, 9);
/*
* Decode signature.
*/
if (sigbuflen == 0)
{
return -1;
}
if (PQCLEAN_FALCON512_CLEAN_comp_decode(sig, 9, sigbuf, sigbuflen) != sigbuflen)
{
return -1;
}
/* ==== Start: Deviation from the reference implementation ================================= */
/*
* Hash nonce + message into a vector.
*/
// Transform the nonce into 8 chunks each of size 5 bytes. We do this in order to be sure that
// the conversion to field elements succeeds
uint8_t buffer[64];
memset(buffer, 0, 64);
for (size_t i = 0; i < 8; i++)
{
buffer[8 * i] = nonce[5 * i];
buffer[8 * i + 1] = nonce[5 * i + 1];
buffer[8 * i + 2] = nonce[5 * i + 2];
buffer[8 * i + 3] = nonce[5 * i + 3];
buffer[8 * i + 4] = nonce[5 * i + 4];
}
rpo128_init(&rc);
rpo128_absorb(&rc, buffer, NONCELEN + 24);
rpo128_absorb(&rc, m, mlen);
rpo128_finalize(&rc);
PQCLEAN_FALCON512_CLEAN_hash_to_point_rpo(&rc, hm, 9);
rpo128_release(&rc);
/* === End: Deviation from the reference implementation ==================================== */
/*
* Verify signature.
*/
if (!PQCLEAN_FALCON512_CLEAN_verify_raw(hm, sig, h, 9, tmp.b))
{
return -1;
}
return 0;
}
/* see api_rpo.h */
int PQCLEAN_FALCON512_CLEAN_crypto_sign_signature_rpo(
uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk)
{
/*
* The PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES constant is used for
* the signed message object (as produced by crypto_sign())
* and includes a two-byte length value, so we take care here
* to only generate signatures that are two bytes shorter than
* the maximum. This is done to ensure that crypto_sign()
* and crypto_sign_signature() produce the exact same signature
* value, if used on the same message, with the same private key,
* and using the same output from randombytes() (this is for
* reproducibility of tests).
*/
size_t vlen;
vlen = PQCLEAN_FALCON512_CLEAN_CRYPTO_BYTES - NONCELEN - 3;
if (do_sign(sig + 1, sig + 1 + NONCELEN, &vlen, m, mlen, sk) < 0)
{
return -1;
}
sig[0] = 0x30 + 9;
*siglen = 1 + NONCELEN + vlen;
return 0;
}
/* see api_rpo.h */
int PQCLEAN_FALCON512_CLEAN_crypto_sign_verify_rpo(
const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk)
{
if (siglen < 1 + NONCELEN)
{
return -1;
}
if (sig[0] != 0x30 + 9)
{
return -1;
}
return do_verify(sig + 1,
sig + 1 + NONCELEN, siglen - 1 - NONCELEN, m, mlen, pk);
}

+ 582
- 0
src/dsa/rpo_falcon512/falcon_c/rpo.c

@ -0,0 +1,582 @@
/*
* RPO implementation.
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
/* ================================================================================================
* Modular Arithmetic
*/
#define P 0xFFFFFFFF00000001
#define M 12289
// From https://github.com/ncw/iprime/blob/master/mod_math_noasm.go
uint64_t add_mod_p(uint64_t a, uint64_t b)
{
a = P - a;
uint64_t res = b - a;
if (b < a)
res += P;
return res;
}
uint64_t sub_mod_p(uint64_t a, uint64_t b)
{
uint64_t r = a - b;
if (a < b)
r += P;
return r;
}
uint64_t reduce_mod_p(uint64_t b, uint64_t a)
{
uint32_t d = b >> 32,
c = b;
if (a >= P)
a -= P;
a = sub_mod_p(a, c);
a = sub_mod_p(a, d);
a = add_mod_p(a, ((uint64_t)c) << 32);
return a;
}
uint64_t mult_mod_p(uint64_t x, uint64_t y)
{
uint32_t a = x,
b = x >> 32,
c = y,
d = y >> 32;
/* first synthesize the product using 32*32 -> 64 bit multiplies */
x = b * (uint64_t)c; /* b*c */
y = a * (uint64_t)d; /* a*d */
uint64_t e = a * (uint64_t)c, /* a*c */
f = b * (uint64_t)d, /* b*d */
t;
x += y; /* b*c + a*d */
/* carry? */
if (x < y)
f += 1LL << 32; /* carry into upper 32 bits - can't overflow */
t = x << 32;
e += t; /* a*c + LSW(b*c + a*d) */
/* carry? */
if (e < t)
f += 1; /* carry into upper 64 bits - can't overflow*/
t = x >> 32;
f += t; /* b*d + MSW(b*c + a*d) */
/* can't overflow */
/* now reduce: (b*d + MSW(b*c + a*d), a*c + LSW(b*c + a*d)) */
return reduce_mod_p(f, e);
}
/* ================================================================================================
* RPO128 Permutation
*/
static const uint64_t STATE_WIDTH = 12;
static const uint64_t NUM_ROUNDS = 7;
/*
* MDS matrix
*/
const uint64_t MDS[12][12] = {
{ 7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8 },
{ 8, 7, 23, 8, 26, 13, 10, 9, 7, 6, 22, 21 },
{ 21, 8, 7, 23, 8, 26, 13, 10, 9, 7, 6, 22 },
{ 22, 21, 8, 7, 23, 8, 26, 13, 10, 9, 7, 6 },
{ 6, 22, 21, 8, 7, 23, 8, 26, 13, 10, 9, 7 },
{ 7, 6, 22, 21, 8, 7, 23, 8, 26, 13, 10, 9 },
{ 9, 7, 6, 22, 21, 8, 7, 23, 8, 26, 13, 10 },
{ 10, 9, 7, 6, 22, 21, 8, 7, 23, 8, 26, 13 },
{ 13, 10, 9, 7, 6, 22, 21, 8, 7, 23, 8, 26 },
{ 26, 13, 10, 9, 7, 6, 22, 21, 8, 7, 23, 8 },
{ 8, 26, 13, 10, 9, 7, 6, 22, 21, 8, 7, 23 },
{ 23, 8, 26, 13, 10, 9, 7, 6, 22, 21, 8, 7 },
};
/*
* Round constants.
*/
const uint64_t ARK1[7][12] = {
{
5789762306288267392ULL,
6522564764413701783ULL,
17809893479458208203ULL,
107145243989736508ULL,
6388978042437517382ULL,
15844067734406016715ULL,
9975000513555218239ULL,
3344984123768313364ULL,
9959189626657347191ULL,
12960773468763563665ULL,
9602914297752488475ULL,
16657542370200465908ULL,
},
{
12987190162843096997ULL,
653957632802705281ULL,
4441654670647621225ULL,
4038207883745915761ULL,
5613464648874830118ULL,
13222989726778338773ULL,
3037761201230264149ULL,
16683759727265180203ULL,
8337364536491240715ULL,
3227397518293416448ULL,
8110510111539674682ULL,
2872078294163232137ULL,
},
{
18072785500942327487ULL,
6200974112677013481ULL,
17682092219085884187ULL,
10599526828986756440ULL,
975003873302957338ULL,
8264241093196931281ULL,
10065763900435475170ULL,
2181131744534710197ULL,
6317303992309418647ULL,
1401440938888741532ULL,
8884468225181997494ULL,
13066900325715521532ULL,
},
{
5674685213610121970ULL,
5759084860419474071ULL,
13943282657648897737ULL,
1352748651966375394ULL,
17110913224029905221ULL,
1003883795902368422ULL,
4141870621881018291ULL,
8121410972417424656ULL,
14300518605864919529ULL,
13712227150607670181ULL,
17021852944633065291ULL,
6252096473787587650ULL,
},
{
4887609836208846458ULL,
3027115137917284492ULL,
9595098600469470675ULL,
10528569829048484079ULL,
7864689113198939815ULL,
17533723827845969040ULL,
5781638039037710951ULL,
17024078752430719006ULL,
109659393484013511ULL,
7158933660534805869ULL,
2955076958026921730ULL,
7433723648458773977ULL,
},
{
16308865189192447297ULL,
11977192855656444890ULL,
12532242556065780287ULL,
14594890931430968898ULL,
7291784239689209784ULL,
5514718540551361949ULL,
10025733853830934803ULL,
7293794580341021693ULL,
6728552937464861756ULL,
6332385040983343262ULL,
13277683694236792804ULL,
2600778905124452676ULL,
},
{
7123075680859040534ULL,
1034205548717903090ULL,
7717824418247931797ULL,
3019070937878604058ULL,
11403792746066867460ULL,
10280580802233112374ULL,
337153209462421218ULL,
13333398568519923717ULL,
3596153696935337464ULL,
8104208463525993784ULL,
14345062289456085693ULL,
17036731477169661256ULL,
}};
const uint64_t ARK2[7][12] = {
{
6077062762357204287ULL,
15277620170502011191ULL,
5358738125714196705ULL,
14233283787297595718ULL,
13792579614346651365ULL,
11614812331536767105ULL,
14871063686742261166ULL,
10148237148793043499ULL,
4457428952329675767ULL,
15590786458219172475ULL,
10063319113072092615ULL,
14200078843431360086ULL,
},
{
6202948458916099932ULL,
17690140365333231091ULL,
3595001575307484651ULL,
373995945117666487ULL,
1235734395091296013ULL,
14172757457833931602ULL,
707573103686350224ULL,
15453217512188187135ULL,
219777875004506018ULL,
17876696346199469008ULL,
17731621626449383378ULL,
2897136237748376248ULL,
},
{
8023374565629191455ULL,
15013690343205953430ULL,
4485500052507912973ULL,
12489737547229155153ULL,
9500452585969030576ULL,
2054001340201038870ULL,
12420704059284934186ULL,
355990932618543755ULL,
9071225051243523860ULL,
12766199826003448536ULL,
9045979173463556963ULL,
12934431667190679898ULL,
},
{
18389244934624494276ULL,
16731736864863925227ULL,
4440209734760478192ULL,
17208448209698888938ULL,
8739495587021565984ULL,
17000774922218161967ULL,
13533282547195532087ULL,
525402848358706231ULL,
16987541523062161972ULL,
5466806524462797102ULL,
14512769585918244983ULL,
10973956031244051118ULL,
},
{
6982293561042362913ULL,
14065426295947720331ULL,
16451845770444974180ULL,
7139138592091306727ULL,
9012006439959783127ULL,
14619614108529063361ULL,
1394813199588124371ULL,
4635111139507788575ULL,
16217473952264203365ULL,
10782018226466330683ULL,
6844229992533662050ULL,
7446486531695178711ULL,
},
{
3736792340494631448ULL,
577852220195055341ULL,
6689998335515779805ULL,
13886063479078013492ULL,
14358505101923202168ULL,
7744142531772274164ULL,
16135070735728404443ULL,
12290902521256031137ULL,
12059913662657709804ULL,
16456018495793751911ULL,
4571485474751953524ULL,
17200392109565783176ULL,
},
{
17130398059294018733ULL,
519782857322261988ULL,
9625384390925085478ULL,
1664893052631119222ULL,
7629576092524553570ULL,
3485239601103661425ULL,
9755891797164033838ULL,
15218148195153269027ULL,
16460604813734957368ULL,
9643968136937729763ULL,
3611348709641382851ULL,
18256379591337759196ULL,
},
};
void apply_sbox(uint64_t *const state)
{
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
uint64_t t2 = mult_mod_p(*(state + i), *(state + i));
uint64_t t4 = mult_mod_p(t2, t2);
*(state + i) = mult_mod_p(*(state + i), mult_mod_p(t2, t4));
}
}
void apply_mds(uint64_t *state)
{
uint64_t res[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
res[i] = 0;
}
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
for (uint64_t j = 0; j < STATE_WIDTH; j++)
{
res[i] = add_mod_p(res[i], mult_mod_p(MDS[i][j], *(state + j)));
}
}
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
*(state + i) = res[i];
}
}
void apply_constants(uint64_t *const state, const uint64_t *ark)
{
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
*(state + i) = add_mod_p(*(state + i), *(ark + i));
}
}
void exp_acc(const uint64_t m, const uint64_t *base, const uint64_t *tail, uint64_t *const res)
{
for (uint64_t i = 0; i < m; i++)
{
for (uint64_t j = 0; j < STATE_WIDTH; j++)
{
if (i == 0)
{
*(res + j) = mult_mod_p(*(base + j), *(base + j));
}
else
{
*(res + j) = mult_mod_p(*(res + j), *(res + j));
}
}
}
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
*(res + i) = mult_mod_p(*(res + i), *(tail + i));
}
}
void apply_inv_sbox(uint64_t *const state)
{
uint64_t t1[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t1[i] = 0;
}
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t1[i] = mult_mod_p(*(state + i), *(state + i));
}
uint64_t t2[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t2[i] = 0;
}
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t2[i] = mult_mod_p(t1[i], t1[i]);
}
uint64_t t3[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t3[i] = 0;
}
exp_acc(3, t2, t2, t3);
uint64_t t4[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t4[i] = 0;
}
exp_acc(6, t3, t3, t4);
uint64_t tmp[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
tmp[i] = 0;
}
exp_acc(12, t4, t4, tmp);
uint64_t t5[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t5[i] = 0;
}
exp_acc(6, tmp, t3, t5);
uint64_t t6[STATE_WIDTH];
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
t6[i] = 0;
}
exp_acc(31, t5, t5, t6);
for (uint64_t i = 0; i < STATE_WIDTH; i++)
{
uint64_t a = mult_mod_p(mult_mod_p(t6[i], t6[i]), t5[i]);
a = mult_mod_p(a, a);
a = mult_mod_p(a, a);
uint64_t b = mult_mod_p(mult_mod_p(t1[i], t2[i]), *(state + i));
*(state + i) = mult_mod_p(a, b);
}
}
void apply_round(uint64_t *const state, const uint64_t round)
{
apply_mds(state);
apply_constants(state, ARK1[round]);
apply_sbox(state);
apply_mds(state);
apply_constants(state, ARK2[round]);
apply_inv_sbox(state);
}
static void apply_permutation(uint64_t *state)
{
for (uint64_t i = 0; i < NUM_ROUNDS; i++)
{
apply_round(state, i);
}
}
/* ================================================================================================
* RPO128 implementation. This is supposed to substitute SHAKE256 in the hash-to-point algorithm.
*/
#include "rpo.h"
void rpo128_init(rpo128_context *rc)
{
rc->dptr = 32;
memset(rc->st.A, 0, sizeof rc->st.A);
}
void rpo128_absorb(rpo128_context *rc, const uint8_t *in, size_t len)
{
size_t dptr;
dptr = (size_t)rc->dptr;
while (len > 0)
{
size_t clen, u;
/* 136 * 8 = 1088 bit for the rate portion in the case of SHAKE256
* For RPO, this is 64 * 8 = 512 bits
* The capacity for SHAKE256 is at the end while for RPO128 it is at the beginning
*/
clen = 96 - dptr;
if (clen > len)
{
clen = len;
}
for (u = 0; u < clen; u++)
{
rc->st.dbuf[dptr + u] = in[u];
}
dptr += clen;
in += clen;
len -= clen;
if (dptr == 96)
{
apply_permutation(rc->st.A);
dptr = 32;
}
}
rc->dptr = dptr;
}
void rpo128_finalize(rpo128_context *rc)
{
// Set dptr to the end of the buffer, so that first call to extract will call the permutation.
rc->dptr = 96;
}
void rpo128_squeeze(rpo128_context *rc, uint8_t *out, size_t len)
{
size_t dptr;
dptr = (size_t)rc->dptr;
while (len > 0)
{
size_t clen;
if (dptr == 96)
{
apply_permutation(rc->st.A);
dptr = 32;
}
clen = 96 - dptr;
if (clen > len)
{
clen = len;
}
len -= clen;
memcpy(out, rc->st.dbuf + dptr, clen);
dptr += clen;
out += clen;
}
rc->dptr = dptr;
}
void rpo128_release(rpo128_context *rc)
{
memset(rc->st.A, 0, sizeof rc->st.A);
rc->dptr = 32;
}
/* ================================================================================================
* Hash-to-Point algorithm implementation based on RPO128
*/
void PQCLEAN_FALCON512_CLEAN_hash_to_point_rpo(rpo128_context *rc, uint16_t *x, unsigned logn)
{
/*
* This implementation avoids the rejection sampling step needed in the
* per-the-spec implementation. It uses a remark in https://falcon-sign.info/falcon.pdf
* page 31, which argues that the current variant is secure for the parameters set by NIST.
* Avoiding the rejection-sampling step leads to an implementation that is constant-time.
* TODO: Check that the current implementation is indeed constant-time.
*/
size_t n;
n = (size_t)1 << logn;
while (n > 0)
{
uint8_t buf[8];
uint64_t w;
rpo128_squeeze(rc, (void *)buf, sizeof buf);
w = ((uint64_t)(buf[7]) << 56) |
((uint64_t)(buf[6]) << 48) |
((uint64_t)(buf[5]) << 40) |
((uint64_t)(buf[4]) << 32) |
((uint64_t)(buf[3]) << 24) |
((uint64_t)(buf[2]) << 16) |
((uint64_t)(buf[1]) << 8) |
((uint64_t)(buf[0]));
w %= M;
*x++ = (uint16_t)w;
n--;
}
}

+ 83
- 0
src/dsa/rpo_falcon512/falcon_c/rpo.h

@ -0,0 +1,83 @@
#include <stdint.h>
#include <string.h>
/* ================================================================================================
* RPO hashing algorithm related structs and methods.
*/
/*
* RPO128 context.
*
* This structure is used by the hashing API. It is composed of an internal state that can be
* viewed as either:
* 1. 12 field elements in the Miden VM.
* 2. 96 bytes.
*
* The first view is used for the internal state in the context of the RPO hashing algorithm. The
* second view is used for the buffer used to absorb the data to be hashed.
*
* The pointer to the buffer is updated as the data is absorbed.
*
* 'rpo128_context' must be initialized with rpo128_init() before first use.
*/
typedef struct
{
union
{
uint64_t A[12];
uint8_t dbuf[96];
} st;
uint64_t dptr;
} rpo128_context;
/*
* Initializes an RPO state
*/
void rpo128_init(rpo128_context *rc);
/*
* Absorbs an array of bytes of length 'len' into the state.
*/
void rpo128_absorb(rpo128_context *rc, const uint8_t *in, size_t len);
/*
* Squeezes an array of bytes of length 'len' from the state.
*/
void rpo128_squeeze(rpo128_context *rc, uint8_t *out, size_t len);
/*
* Finalizes the state in preparation for squeezing.
*
* This function should be called after all the data has been absorbed.
*
* Note that the current implementation does not perform any sort of padding for domain separation
* purposes. The reason being that, for our purposes, we always perform the following sequence:
* 1. Absorb a Nonce (which is always 40 bytes packed as 8 field elements).
* 2. Absorb the message (which is always 4 field elements).
* 3. Call finalize.
* 4. Squeeze the output.
* 5. Call release.
*/
void rpo128_finalize(rpo128_context *rc);
/*
* Releases the state.
*
* This function should be called after the squeeze operation is finished.
*/
void rpo128_release(rpo128_context *rc);
/* ================================================================================================
* Hash-to-Point algorithm for signature generation and signature verification.
*/
/*
* Hash-to-Point algorithm.
*
* This function generates a point in Z_q[x]/(phi) from a given message.
*
* It takes a finalized rpo128_context as input and it generates the coefficients of the polynomial
* representing the point. The coefficients are stored in the array 'x'. The number of coefficients
* is given by 'logn', which must in our case is 512.
*/
void PQCLEAN_FALCON512_CLEAN_hash_to_point_rpo(rpo128_context *rc, uint16_t *x, unsigned logn);

+ 189
- 0
src/dsa/rpo_falcon512/ffi.rs

@ -0,0 +1,189 @@
use libc::c_int;
// C IMPLEMENTATION INTERFACE
// ================================================================================================
extern "C" {
/// Generate a new key pair. Public key goes into pk[], private key in sk[].
/// Key sizes are exact (in bytes):
/// - public (pk): 897
/// - private (sk): 1281
///
/// Return value: 0 on success, -1 on error.
pub fn PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_rpo(pk: *mut u8, sk: *mut u8) -> c_int;
/// Generate a new key pair from seed. Public key goes into pk[], private key in sk[].
/// Key sizes are exact (in bytes):
/// - public (pk): 897
/// - private (sk): 1281
///
/// Return value: 0 on success, -1 on error.
pub fn PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_from_seed_rpo(
pk: *mut u8,
sk: *mut u8,
seed: *const u8,
) -> c_int;
/// Compute a signature on a provided message (m, mlen), with a given private key (sk).
/// Signature is written in sig[], with length written into *siglen. Signature length is
/// variable; maximum signature length (in bytes) is 666.
///
/// sig[], m[] and sk[] may overlap each other arbitrarily.
///
/// Return value: 0 on success, -1 on error.
pub fn PQCLEAN_FALCON512_CLEAN_crypto_sign_signature_rpo(
sig: *mut u8,
siglen: *mut usize,
m: *const u8,
mlen: usize,
sk: *const u8,
) -> c_int;
// TEST HELPERS
// --------------------------------------------------------------------------------------------
/// Verify a signature (sig, siglen) on a message (m, mlen) with a given public key (pk).
///
/// sig[], m[] and pk[] may overlap each other arbitrarily.
///
/// Return value: 0 on success, -1 on error.
#[cfg(test)]
pub fn PQCLEAN_FALCON512_CLEAN_crypto_sign_verify_rpo(
sig: *const u8,
siglen: usize,
m: *const u8,
mlen: usize,
pk: *const u8,
) -> c_int;
/// Hash-to-Point algorithm.
///
/// This function generates a point in Z_q[x]/(phi) from a given message.
///
/// It takes a finalized rpo128_context as input and it generates the coefficients of the polynomial
/// representing the point. The coefficients are stored in the array 'x'. The number of coefficients
/// is given by 'logn', which must in our case is 512.
#[cfg(test)]
pub fn PQCLEAN_FALCON512_CLEAN_hash_to_point_rpo(
rc: *mut Rpo128Context,
x: *mut u16,
logn: usize,
);
#[cfg(test)]
pub fn rpo128_init(sc: *mut Rpo128Context);
#[cfg(test)]
pub fn rpo128_absorb(
sc: *mut Rpo128Context,
data: *const ::std::os::raw::c_void,
len: libc::size_t,
);
#[cfg(test)]
pub fn rpo128_finalize(sc: *mut Rpo128Context);
}
#[repr(C)]
#[cfg(test)]
pub struct Rpo128Context {
pub content: [u64; 13usize],
}
// TESTS
// ================================================================================================
#[cfg(all(test, feature = "std"))]
mod tests {
use super::*;
use crate::dsa::rpo_falcon512::{NONCE_LEN, PK_LEN, SIG_LEN, SK_LEN};
use rand::Rng;
#[test]
fn falcon_ffi() {
unsafe {
let mut rng = rand::thread_rng();
// --- generate a key pair from a seed ----------------------------
let mut pk = [0u8; PK_LEN];
let mut sk = [0u8; SK_LEN];
let seed: [u8; NONCE_LEN] =
(0..NONCE_LEN).map(|_| rng.gen()).collect::<Vec<u8>>().try_into().unwrap();
assert_eq!(
0,
PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_from_seed_rpo(
pk.as_mut_ptr(),
sk.as_mut_ptr(),
seed.as_ptr()
)
);
// --- sign a message and make sure it verifies -------------------
let mlen: usize = rng.gen::<u16>() as usize;
let msg: Vec<u8> = (0..mlen).map(|_| rng.gen()).collect();
let mut detached_sig = [0u8; NONCE_LEN + SIG_LEN];
let mut siglen = 0;
assert_eq!(
0,
PQCLEAN_FALCON512_CLEAN_crypto_sign_signature_rpo(
detached_sig.as_mut_ptr(),
&mut siglen as *mut usize,
msg.as_ptr(),
msg.len(),
sk.as_ptr()
)
);
assert_eq!(
0,
PQCLEAN_FALCON512_CLEAN_crypto_sign_verify_rpo(
detached_sig.as_ptr(),
siglen,
msg.as_ptr(),
msg.len(),
pk.as_ptr()
)
);
// --- check verification of different signature ------------------
assert_eq!(
-1,
PQCLEAN_FALCON512_CLEAN_crypto_sign_verify_rpo(
detached_sig.as_ptr(),
siglen,
msg.as_ptr(),
msg.len() - 1,
pk.as_ptr()
)
);
// --- check verification against a different pub key -------------
let mut pk_alt = [0u8; PK_LEN];
let mut sk_alt = [0u8; SK_LEN];
assert_eq!(
0,
PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_rpo(
pk_alt.as_mut_ptr(),
sk_alt.as_mut_ptr()
)
);
assert_eq!(
-1,
PQCLEAN_FALCON512_CLEAN_crypto_sign_verify_rpo(
detached_sig.as_ptr(),
siglen,
msg.as_ptr(),
msg.len(),
pk_alt.as_ptr()
)
);
}
}
}

+ 227
- 0
src/dsa/rpo_falcon512/keys.rs

@ -0,0 +1,227 @@
use super::{
ByteReader, ByteWriter, Deserializable, DeserializationError, FalconError, Polynomial,
PublicKeyBytes, Rpo256, SecretKeyBytes, Serializable, Signature, Word,
};
#[cfg(feature = "std")]
use super::{ffi, NonceBytes, StarkField, NONCE_LEN, PK_LEN, SIG_LEN, SK_LEN};
// PUBLIC KEY
// ================================================================================================
/// A public key for verifying signatures.
///
/// The public key is a [Word] (i.e., 4 field elements) that is the hash of the coefficients of
/// the polynomial representing the raw bytes of the expanded public key.
///
/// For Falcon-512, the first byte of the expanded public key is always equal to log2(512) i.e., 9.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct PublicKey(Word);
impl PublicKey {
/// Returns a new [PublicKey] which is a commitment to the provided expanded public key.
///
/// # Errors
/// Returns an error if the decoding of the public key fails.
pub fn new(pk: PublicKeyBytes) -> Result<Self, FalconError> {
let h = Polynomial::from_pub_key(&pk)?;
let pk_felts = h.to_elements();
let pk_digest = Rpo256::hash_elements(&pk_felts).into();
Ok(Self(pk_digest))
}
/// Verifies the provided signature against provided message and this public key.
pub fn verify(&self, message: Word, signature: &Signature) -> bool {
signature.verify(message, self.0)
}
}
impl From<PublicKey> for Word {
fn from(key: PublicKey) -> Self {
key.0
}
}
// KEY PAIR
// ================================================================================================
/// A key pair (public and secret keys) for signing messages.
///
/// The secret key is a byte array of length [PK_LEN].
/// The public key is a byte array of length [SK_LEN].
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct KeyPair {
public_key: PublicKeyBytes,
secret_key: SecretKeyBytes,
}
#[allow(clippy::new_without_default)]
impl KeyPair {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Generates a (public_key, secret_key) key pair from OS-provided randomness.
///
/// # Errors
/// Returns an error if key generation fails.
#[cfg(feature = "std")]
pub fn new() -> Result<Self, FalconError> {
let mut public_key = [0u8; PK_LEN];
let mut secret_key = [0u8; SK_LEN];
let res = unsafe {
ffi::PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_rpo(
public_key.as_mut_ptr(),
secret_key.as_mut_ptr(),
)
};
if res == 0 {
Ok(Self { public_key, secret_key })
} else {
Err(FalconError::KeyGenerationFailed)
}
}
/// Generates a (public_key, secret_key) key pair from the provided seed.
///
/// # Errors
/// Returns an error if key generation fails.
#[cfg(feature = "std")]
pub fn from_seed(seed: &NonceBytes) -> Result<Self, FalconError> {
let mut public_key = [0u8; PK_LEN];
let mut secret_key = [0u8; SK_LEN];
let res = unsafe {
ffi::PQCLEAN_FALCON512_CLEAN_crypto_sign_keypair_from_seed_rpo(
public_key.as_mut_ptr(),
secret_key.as_mut_ptr(),
seed.as_ptr(),
)
};
if res == 0 {
Ok(Self { public_key, secret_key })
} else {
Err(FalconError::KeyGenerationFailed)
}
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the public key corresponding to this key pair.
pub fn public_key(&self) -> PublicKey {
// TODO: memoize public key commitment as computing it requires quite a bit of hashing.
// expect() is fine here because we assume that the key pair was constructed correctly.
PublicKey::new(self.public_key).expect("invalid key pair")
}
/// Returns the expanded public key corresponding to this key pair.
pub fn expanded_public_key(&self) -> PublicKeyBytes {
self.public_key
}
// SIGNATURE GENERATION
// --------------------------------------------------------------------------------------------
/// Signs a message with a secret key and a seed.
///
/// # Errors
/// Returns an error of signature generation fails.
#[cfg(feature = "std")]
pub fn sign(&self, message: Word) -> Result<Signature, FalconError> {
let msg = message.iter().flat_map(|e| e.as_int().to_le_bytes()).collect::<Vec<_>>();
let msg_len = msg.len();
let mut sig = [0_u8; SIG_LEN + NONCE_LEN];
let mut sig_len: usize = 0;
let res = unsafe {
ffi::PQCLEAN_FALCON512_CLEAN_crypto_sign_signature_rpo(
sig.as_mut_ptr(),
&mut sig_len as *mut usize,
msg.as_ptr(),
msg_len,
self.secret_key.as_ptr(),
)
};
if res == 0 {
Ok(Signature { sig, pk: self.public_key })
} else {
Err(FalconError::SigGenerationFailed)
}
}
}
// SERIALIZATION / DESERIALIZATION
// ================================================================================================
impl Serializable for KeyPair {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_bytes(&self.public_key);
target.write_bytes(&self.secret_key);
}
}
impl Deserializable for KeyPair {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let public_key: PublicKeyBytes = source.read_array()?;
let secret_key: SecretKeyBytes = source.read_array()?;
Ok(Self { public_key, secret_key })
}
}
// TESTS
// ================================================================================================
#[cfg(all(test, feature = "std"))]
mod tests {
use super::{super::Felt, KeyPair, NonceBytes, Word};
use rand_utils::{rand_array, rand_vector};
#[test]
fn test_falcon_verification() {
// generate random keys
let keys = KeyPair::new().unwrap();
let pk = keys.public_key();
// sign a random message
let message: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
let signature = keys.sign(message);
// make sure the signature verifies correctly
assert!(pk.verify(message, signature.as_ref().unwrap()));
// a signature should not verify against a wrong message
let message2: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
assert!(!pk.verify(message2, signature.as_ref().unwrap()));
// a signature should not verify against a wrong public key
let keys2 = KeyPair::new().unwrap();
assert!(!keys2.public_key().verify(message, signature.as_ref().unwrap()))
}
#[test]
fn test_falcon_verification_from_seed() {
// generate keys from a random seed
let seed: NonceBytes = rand_array();
let keys = KeyPair::from_seed(&seed).unwrap();
let pk = keys.public_key();
// sign a random message
let message: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
let signature = keys.sign(message);
// make sure the signature verifies correctly
assert!(pk.verify(message, signature.as_ref().unwrap()));
// a signature should not verify against a wrong message
let message2: Word = rand_vector::<Felt>(4).try_into().expect("Should not fail.");
assert!(!pk.verify(message2, signature.as_ref().unwrap()));
// a signature should not verify against a wrong public key
let keys2 = KeyPair::new().unwrap();
assert!(!keys2.public_key().verify(message, signature.as_ref().unwrap()))
}
}

+ 60
- 0
src/dsa/rpo_falcon512/mod.rs

@ -0,0 +1,60 @@
use crate::{
hash::rpo::Rpo256,
utils::{
collections::Vec, ByteReader, ByteWriter, Deserializable, DeserializationError,
Serializable,
},
Felt, StarkField, Word, ZERO,
};
#[cfg(feature = "std")]
mod ffi;
mod error;
mod keys;
mod polynomial;
mod signature;
pub use error::FalconError;
pub use keys::{KeyPair, PublicKey};
pub use polynomial::Polynomial;
pub use signature::Signature;
// CONSTANTS
// ================================================================================================
// The Falcon modulus.
const MODULUS: u16 = 12289;
const MODULUS_MINUS_1_OVER_TWO: u16 = 6144;
// The Falcon parameters for Falcon-512. This is the degree of the polynomial `phi := x^N + 1`
// defining the ring Z_p[x]/(phi).
const N: usize = 512;
const LOG_N: usize = 9;
/// Length of nonce used for key-pair generation.
const NONCE_LEN: usize = 40;
/// Number of filed elements used to encode a nonce.
const NONCE_ELEMENTS: usize = 8;
/// Public key length as a u8 vector.
const PK_LEN: usize = 897;
/// Secret key length as a u8 vector.
const SK_LEN: usize = 1281;
/// Signature length as a u8 vector.
const SIG_LEN: usize = 626;
/// Bound on the squared-norm of the signature.
const SIG_L2_BOUND: u64 = 34034726;
// TYPE ALIASES
// ================================================================================================
type SignatureBytes = [u8; NONCE_LEN + SIG_LEN];
type PublicKeyBytes = [u8; PK_LEN];
type SecretKeyBytes = [u8; SK_LEN];
type NonceBytes = [u8; NONCE_LEN];
type NonceElements = [Felt; NONCE_ELEMENTS];

+ 277
- 0
src/dsa/rpo_falcon512/polynomial.rs

@ -0,0 +1,277 @@
use super::{FalconError, Felt, Vec, LOG_N, MODULUS, MODULUS_MINUS_1_OVER_TWO, N, PK_LEN};
use core::ops::{Add, Mul, Sub};
// FALCON POLYNOMIAL
// ================================================================================================
/// A polynomial over Z_p[x]/(phi) where phi := x^512 + 1
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Polynomial([u16; N]);
impl Polynomial {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Constructs a new polynomial from a list of coefficients.
///
/// # Safety
/// This constructor validates that the coefficients are in the valid range only in debug mode.
pub unsafe fn new(data: [u16; N]) -> Self {
for value in data {
debug_assert!(value < MODULUS);
}
Self(data)
}
/// Decodes raw bytes representing a public key into a polynomial in Z_p[x]/(phi).
///
/// # Errors
/// Returns an error if:
/// - The provided input is not exactly 897 bytes long.
/// - The first byte of the input is not equal to log2(512) i.e., 9.
/// - Any of the coefficients encoded in the provided input is greater than or equal to the
/// Falcon field modulus.
pub fn from_pub_key(input: &[u8]) -> Result<Self, FalconError> {
if input.len() != PK_LEN {
return Err(FalconError::PubKeyDecodingInvalidLength(input.len()));
}
if input[0] != LOG_N as u8 {
return Err(FalconError::PubKeyDecodingInvalidTag(input[0]));
}
let mut acc = 0_u32;
let mut acc_len = 0;
let mut output = [0_u16; N];
let mut output_idx = 0;
for &byte in input.iter().skip(1) {
acc = (acc << 8) | (byte as u32);
acc_len += 8;
if acc_len >= 14 {
acc_len -= 14;
let w = (acc >> acc_len) & 0x3FFF;
if w >= MODULUS as u32 {
return Err(FalconError::PubKeyDecodingInvalidCoefficient(w));
}
output[output_idx] = w as u16;
output_idx += 1;
}
}
if (acc & ((1u32 << acc_len) - 1)) == 0 {
Ok(Self(output))
} else {
Err(FalconError::PubKeyDecodingExtraData)
}
}
/// Decodes the signature into the coefficients of a polynomial in Z_p[x]/(phi). It assumes
/// that the signature has been encoded using the uncompressed format.
///
/// # Errors
/// Returns an error if:
/// - The signature has been encoded using a different algorithm than the reference compressed
/// encoding algorithm.
/// - The encoded signature polynomial is in Z_p[x]/(phi') where phi' = x^N' + 1 and N' != 512.
/// - While decoding the high bits of a coefficient, the current accumulated value of its
/// high bits is larger than 2048.
/// - The decoded coefficient is -0.
/// - The remaining unused bits in the last byte of `input` are non-zero.
pub fn from_signature(input: &[u8]) -> Result<Self, FalconError> {
let (encoding, log_n) = (input[0] >> 4, input[0] & 0b00001111);
if encoding != 0b0011 {
return Err(FalconError::SigDecodingIncorrectEncodingAlgorithm);
}
if log_n != 0b1001 {
return Err(FalconError::SigDecodingNotSupportedDegree(log_n));
}
let input = &input[41..];
let mut input_idx = 0;
let mut acc = 0u32;
let mut acc_len = 0;
let mut output = [0_u16; N];
for e in output.iter_mut() {
acc = (acc << 8) | (input[input_idx] as u32);
input_idx += 1;
let b = acc >> acc_len;
let s = b & 128;
let mut m = b & 127;
loop {
if acc_len == 0 {
acc = (acc << 8) | (input[input_idx] as u32);
input_idx += 1;
acc_len = 8;
}
acc_len -= 1;
if ((acc >> acc_len) & 1) != 0 {
break;
}
m += 128;
if m >= 2048 {
return Err(FalconError::SigDecodingTooBigHighBits(m));
}
}
if s != 0 && m == 0 {
return Err(FalconError::SigDecodingMinusZero);
}
*e = if s != 0 { (MODULUS as u32 - m) as u16 } else { m as u16 };
}
if (acc & ((1 << acc_len) - 1)) != 0 {
return Err(FalconError::SigDecodingNonZeroUnusedBitsLastByte);
}
Ok(Self(output))
}
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the coefficients of this polynomial as integers.
pub fn inner(&self) -> [u16; N] {
self.0
}
/// Returns the coefficients of this polynomial as field elements.
pub fn to_elements(&self) -> Vec<Felt> {
self.0.iter().map(|&a| Felt::from(a)).collect()
}
// POLYNOMIAL OPERATIONS
// --------------------------------------------------------------------------------------------
/// Multiplies two polynomials over Z_p[x] without reducing modulo p. Given that the degrees
/// of the input polynomials are less than 512 and their coefficients are less than the modulus
/// q equal to 12289, the resulting product polynomial is guaranteed to have coefficients less
/// than the Miden prime.
///
/// Note that this multiplication is not over Z_p[x]/(phi).
pub fn mul_modulo_p(a: &Self, b: &Self) -> [u64; 1024] {
let mut c = [0; 2 * N];
for i in 0..N {
for j in 0..N {
c[i + j] += a.0[i] as u64 * b.0[j] as u64;
}
}
c
}
/// Reduces a polynomial, that is the product of two polynomials over Z_p[x], modulo
/// the irreducible polynomial phi. This results in an element in Z_p[x]/(phi).
pub fn reduce_negacyclic(a: &[u64; 1024]) -> Self {
let mut c = [0; N];
for i in 0..N {
let ai = a[N + i] % MODULUS as u64;
let neg_ai = (MODULUS - ai as u16) % MODULUS;
let bi = (a[i] % MODULUS as u64) as u16;
c[i] = (neg_ai + bi) % MODULUS;
}
Self(c)
}
/// Computes the norm squared of a polynomial in Z_p[x]/(phi) after normalizing its
/// coefficients to be in the interval (-p/2, p/2].
pub fn sq_norm(&self) -> u64 {
let mut res = 0;
for e in self.0 {
if e > MODULUS_MINUS_1_OVER_TWO {
res += (MODULUS - e) as u64 * (MODULUS - e) as u64
} else {
res += e as u64 * e as u64
}
}
res
}
}
// Returns a polynomial representing the zero polynomial i.e. default element.
impl Default for Polynomial {
fn default() -> Self {
Self([0_u16; N])
}
}
/// Multiplication over Z_p[x]/(phi)
impl Mul for Polynomial {
type Output = Self;
fn mul(self, other: Self) -> <Self as Mul<Self>>::Output {
let mut result = [0_u16; N];
for j in 0..N {
for k in 0..N {
let i = (j + k) % N;
let a = self.0[j] as usize;
let b = other.0[k] as usize;
let q = MODULUS as usize;
let mut prod = a * b % q;
if (N - 1) < (j + k) {
prod = (q - prod) % q;
}
result[i] = ((result[i] as usize + prod) % q) as u16;
}
}
Polynomial(result)
}
}
/// Addition over Z_p[x]/(phi)
impl Add for Polynomial {
type Output = Self;
fn add(self, other: Self) -> <Self as Add<Self>>::Output {
let mut res = self;
res.0.iter_mut().zip(other.0.iter()).for_each(|(x, y)| *x = (*x + *y) % MODULUS);
res
}
}
/// Subtraction over Z_p[x]/(phi)
impl Sub for Polynomial {
type Output = Self;
fn sub(self, other: Self) -> <Self as Add<Self>>::Output {
let mut res = self;
res.0
.iter_mut()
.zip(other.0.iter())
.for_each(|(x, y)| *x = (*x + MODULUS - *y) % MODULUS);
res
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod tests {
use super::{Polynomial, N};
#[test]
fn test_negacyclic_reduction() {
let coef1: [u16; N] = rand_utils::rand_array();
let coef2: [u16; N] = rand_utils::rand_array();
let poly1 = Polynomial(coef1);
let poly2 = Polynomial(coef2);
assert_eq!(
poly1 * poly2,
Polynomial::reduce_negacyclic(&Polynomial::mul_modulo_p(&poly1, &poly2))
);
}
}

+ 262
- 0
src/dsa/rpo_falcon512/signature.rs

@ -0,0 +1,262 @@
use super::{
ByteReader, ByteWriter, Deserializable, DeserializationError, NonceBytes, NonceElements,
Polynomial, PublicKeyBytes, Rpo256, Serializable, SignatureBytes, StarkField, Word, MODULUS, N,
SIG_L2_BOUND, ZERO,
};
use crate::utils::string::ToString;
// FALCON SIGNATURE
// ================================================================================================
/// An RPO Falcon512 signature over a message.
///
/// The signature is a pair of polynomials (s1, s2) in (Z_p[x]/(phi))^2, where:
/// - p := 12289
/// - phi := x^512 + 1
/// - s1 = c - s2 * h
/// - h is a polynomial representing the public key and c is a polynomial that is the hash-to-point
/// of the message being signed.
///
/// The signature verifies if and only if:
/// 1. s1 = c - s2 * h
/// 2. |s1|^2 + |s2|^2 <= SIG_L2_BOUND
///
/// where |.| is the norm.
///
/// [Signature] also includes the extended public key which is serialized as:
/// 1. 1 byte representing the log2(512) i.e., 9.
/// 2. 896 bytes for the public key. This is decoded into the `h` polynomial above.
///
/// The actual signature is serialized as:
/// 1. A header byte specifying the algorithm used to encode the coefficients of the `s2` polynomial
/// together with the degree of the irreducible polynomial phi.
/// The general format of this byte is 0b0cc1nnnn where:
/// a. cc is either 01 when the compressed encoding algorithm is used and 10 when the
/// uncompressed algorithm is used.
/// b. nnnn is log2(N) where N is the degree of the irreducible polynomial phi.
/// The current implementation works always with cc equal to 0b01 and nnnn equal to 0b1001 and
/// thus the header byte is always equal to 0b00111001.
/// 2. 40 bytes for the nonce.
/// 3. 625 bytes encoding the `s2` polynomial above.
///
/// The total size of the signature (including the extended public key) is 1563 bytes.
pub struct Signature {
pub(super) pk: PublicKeyBytes,
pub(super) sig: SignatureBytes,
}
impl Signature {
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns the public key polynomial h.
pub fn pub_key_poly(&self) -> Polynomial {
// TODO: memoize
// we assume that the signature was constructed with a valid public key, and thus
// expect() is OK here.
Polynomial::from_pub_key(&self.pk).expect("invalid public key")
}
/// Returns the nonce component of the signature represented as field elements.
///
/// Nonce bytes are converted to field elements by taking consecutive 5 byte chunks
/// of the nonce and interpreting them as field elements.
pub fn nonce(&self) -> NonceElements {
// we assume that the signature was constructed with a valid signature, and thus
// expect() is OK here.
let nonce = self.sig[1..41].try_into().expect("invalid signature");
decode_nonce(nonce)
}
// Returns the polynomial representation of the signature in Z_p[x]/(phi).
pub fn sig_poly(&self) -> Polynomial {
// TODO: memoize
// we assume that the signature was constructed with a valid signature, and thus
// expect() is OK here.
Polynomial::from_signature(&self.sig).expect("invalid signature")
}
// HASH-TO-POINT
// --------------------------------------------------------------------------------------------
/// Returns a polynomial in Z_p[x]/(phi) representing the hash of the provided message.
pub fn hash_to_point(&self, message: Word) -> Polynomial {
hash_to_point(message, &self.nonce())
}
// SIGNATURE VERIFICATION
// --------------------------------------------------------------------------------------------
/// Returns true if this signature is a valid signature for the specified message generated
/// against key pair matching the specified public key commitment.
pub fn verify(&self, message: Word, pubkey_com: Word) -> bool {
// Make sure the expanded public key matches the provided public key commitment
let h = self.pub_key_poly();
let h_digest: Word = Rpo256::hash_elements(&h.to_elements()).into();
if h_digest != pubkey_com {
return false;
}
// Make sure the signature is valid
let s2 = self.sig_poly();
let c = self.hash_to_point(message);
let s1 = c - s2 * h;
let sq_norm = s1.sq_norm() + s2.sq_norm();
sq_norm <= SIG_L2_BOUND
}
}
// SERIALIZATION / DESERIALIZATION
// ================================================================================================
impl Serializable for Signature {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_bytes(&self.pk);
target.write_bytes(&self.sig);
}
}
impl Deserializable for Signature {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let pk: PublicKeyBytes = source.read_array()?;
let sig: SignatureBytes = source.read_array()?;
// make sure public key and signature can be decoded correctly
Polynomial::from_pub_key(&pk)
.map_err(|err| DeserializationError::InvalidValue(err.to_string()))?;
Polynomial::from_signature(&sig[41..])
.map_err(|err| DeserializationError::InvalidValue(err.to_string()))?;
Ok(Self { pk, sig })
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Returns a polynomial in Z_p[x]/(phi) representing the hash of the provided message and
/// nonce.
fn hash_to_point(message: Word, nonce: &NonceElements) -> Polynomial {
let mut state = [ZERO; Rpo256::STATE_WIDTH];
// absorb the nonce into the state
for (&n, s) in nonce.iter().zip(state[Rpo256::RATE_RANGE].iter_mut()) {
*s = n;
}
Rpo256::apply_permutation(&mut state);
// absorb message into the state
for (&m, s) in message.iter().zip(state[Rpo256::RATE_RANGE].iter_mut()) {
*s = m;
}
// squeeze the coefficients of the polynomial
let mut i = 0;
let mut res = [0_u16; N];
for _ in 0..64 {
Rpo256::apply_permutation(&mut state);
for a in &state[Rpo256::RATE_RANGE] {
res[i] = (a.as_int() % MODULUS as u64) as u16;
i += 1;
}
}
// using the raw constructor is OK here because we reduce all coefficients by the modulus above
unsafe { Polynomial::new(res) }
}
/// Converts byte representation of the nonce into field element representation.
fn decode_nonce(nonce: &NonceBytes) -> NonceElements {
let mut buffer = [0_u8; 8];
let mut result = [ZERO; 8];
for (i, bytes) in nonce.chunks(5).enumerate() {
buffer[..5].copy_from_slice(bytes);
result[i] = u64::from_le_bytes(buffer).into();
}
result
}
// TESTS
// ================================================================================================
#[cfg(all(test, feature = "std"))]
mod tests {
use super::{
super::{ffi::*, Felt},
*,
};
use libc::c_void;
use rand_utils::rand_vector;
// Wrappers for unsafe functions
impl Rpo128Context {
/// Initializes the RPO state.
pub fn init() -> Self {
let mut ctx = Rpo128Context { content: [0u64; 13] };
unsafe {
rpo128_init(&mut ctx as *mut Rpo128Context);
}
ctx
}
/// Absorbs data into the RPO state.
pub fn absorb(&mut self, data: &[u8]) {
unsafe {
rpo128_absorb(
self as *mut Rpo128Context,
data.as_ptr() as *const c_void,
data.len(),
)
}
}
/// Finalizes the RPO state to prepare for squeezing.
pub fn finalize(&mut self) {
unsafe { rpo128_finalize(self as *mut Rpo128Context) }
}
}
#[test]
fn test_hash_to_point() {
// Create a random message and transform it into a u8 vector
let msg_felts: Word = rand_vector::<Felt>(4).try_into().unwrap();
let msg_bytes = msg_felts.iter().flat_map(|e| e.as_int().to_le_bytes()).collect::<Vec<_>>();
// Create a nonce i.e. a [u8; 40] array and pack into a [Felt; 8] array.
let nonce: [u8; 40] = rand_vector::<u8>(40).try_into().unwrap();
let mut buffer = [0_u8; 64];
for i in 0..8 {
buffer[8 * i] = nonce[5 * i];
buffer[8 * i + 1] = nonce[5 * i + 1];
buffer[8 * i + 2] = nonce[5 * i + 2];
buffer[8 * i + 3] = nonce[5 * i + 3];
buffer[8 * i + 4] = nonce[5 * i + 4];
}
// Initialize the RPO state
let mut rng = Rpo128Context::init();
// Absorb the nonce and message into the RPO state
rng.absorb(&buffer);
rng.absorb(&msg_bytes);
rng.finalize();
// Generate the coefficients of the hash-to-point polynomial.
let mut res: [u16; N] = [0; N];
unsafe {
PQCLEAN_FALCON512_CLEAN_hash_to_point_rpo(
&mut rng as *mut Rpo128Context,
res.as_mut_ptr(),
9,
);
}
// Check that the coefficients are correct
let nonce = decode_nonce(&nonce);
assert_eq!(res, hash_to_point(msg_felts, &nonce).inner());
}
}

+ 1
- 0
src/lib.rs

@ -4,6 +4,7 @@
#[cfg_attr(test, macro_use)] #[cfg_attr(test, macro_use)]
extern crate alloc; extern crate alloc;
pub mod dsa;
pub mod hash; pub mod hash;
pub mod merkle; pub mod merkle;
pub mod utils; pub mod utils;

+ 3
- 15
src/merkle/merkle_tree.rs

@ -371,21 +371,9 @@ mod tests {
let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect(); let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect();
let expected = vec![ let expected = vec![
InnerNodeInfo {
value: root,
left: l1n0,
right: l1n1,
},
InnerNodeInfo {
value: l1n0,
left: l2n0,
right: l2n1,
},
InnerNodeInfo {
value: l1n1,
left: l2n2,
right: l2n3,
},
InnerNodeInfo { value: root, left: l1n0, right: l1n1 },
InnerNodeInfo { value: l1n0, left: l2n0, right: l2n1 },
InnerNodeInfo { value: l1n1, left: l2n2, right: l2n3 },
]; ];
assert_eq!(nodes, expected); assert_eq!(nodes, expected);

+ 2
- 8
src/merkle/mmr/full.rs

@ -71,10 +71,7 @@ impl Mmr {
/// Constructor for an empty `Mmr`. /// Constructor for an empty `Mmr`.
pub fn new() -> Mmr { pub fn new() -> Mmr {
Mmr {
forest: 0,
nodes: Vec::new(),
}
Mmr { forest: 0, nodes: Vec::new() }
} }
// ACCESSORS // ACCESSORS
@ -188,10 +185,7 @@ impl Mmr {
.map(|offset| self.nodes[offset - 1]) .map(|offset| self.nodes[offset - 1])
.collect(); .collect();
MmrPeaks {
num_leaves: self.forest,
peaks,
}
MmrPeaks { num_leaves: self.forest, peaks }
} }
/// An iterator over inner nodes in the MMR. The order of iteration is unspecified. /// An iterator over inner nodes in the MMR. The order of iteration is unspecified.

+ 1
- 5
src/merkle/mmr/tests.rs

@ -380,11 +380,7 @@ fn test_mmr_inner_nodes() {
left: LEAVES[2], left: LEAVES[2],
right: LEAVES[3], right: LEAVES[3],
}, },
InnerNodeInfo {
value: h0123,
left: h01,
right: h23,
},
InnerNodeInfo { value: h0123, left: h01, right: h23 },
InnerNodeInfo { InnerNodeInfo {
value: h45, value: h45,
left: LEAVES[4], left: LEAVES[4],

+ 1
- 5
src/merkle/partial_mt/mod.rs

@ -158,11 +158,7 @@ impl PartialMerkleTree {
} }
} }
Ok(PartialMerkleTree {
max_depth,
nodes,
leaves,
})
Ok(PartialMerkleTree { max_depth, nodes, leaves })
} }
// PUBLIC ACCESSORS // PUBLIC ACCESSORS

+ 2
- 9
src/merkle/path.rs

@ -137,11 +137,7 @@ impl<'a> Iterator for InnerNodeIterator<'a> {
self.value = Rpo256::merge(&[left, right]); self.value = Rpo256::merge(&[left, right]);
self.index.move_up(); self.index.move_up();
Some(InnerNodeInfo {
value: self.value,
left,
right,
})
Some(InnerNodeInfo { value: self.value, left, right })
} else { } else {
None None
} }
@ -163,10 +159,7 @@ pub struct ValuePath {
impl ValuePath { impl ValuePath {
/// Returns a new [ValuePath] instantiated from the specified value and path. /// Returns a new [ValuePath] instantiated from the specified value and path.
pub fn new(value: RpoDigest, path: Vec<RpoDigest>) -> Self { pub fn new(value: RpoDigest, path: Vec<RpoDigest>) -> Self {
Self {
value,
path: MerklePath::new(path),
}
Self { value, path: MerklePath::new(path) }
} }
} }

+ 1
- 4
src/merkle/simple_smt/mod.rs

@ -249,10 +249,7 @@ impl SimpleSmt {
fn get_branch_node(&self, index: &NodeIndex) -> BranchNode { fn get_branch_node(&self, index: &NodeIndex) -> BranchNode {
self.branches.get(index).cloned().unwrap_or_else(|| { self.branches.get(index).cloned().unwrap_or_else(|| {
let node = self.empty_hashes[index.depth() as usize + 1]; let node = self.empty_hashes[index.depth() as usize + 1];
BranchNode {
left: node,
right: node,
}
BranchNode { left: node, right: node }
}) })
} }

+ 3
- 15
src/merkle/simple_smt/tests.rs

@ -123,21 +123,9 @@ fn test_inner_node_iterator() -> Result<(), MerkleError> {
let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect(); let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect();
let expected = vec![ let expected = vec![
InnerNodeInfo {
value: root,
left: l1n0,
right: l1n1,
},
InnerNodeInfo {
value: l1n0,
left: l2n0,
right: l2n1,
},
InnerNodeInfo {
value: l1n1,
left: l2n2,
right: l2n3,
},
InnerNodeInfo { value: root, left: l1n0, right: l1n1 },
InnerNodeInfo { value: l1n0, left: l2n0, right: l2n1 },
InnerNodeInfo { value: l1n1, left: l2n2, right: l2n3 },
]; ];
assert_eq!(nodes, expected); assert_eq!(nodes, expected);

+ 15
- 41
src/merkle/store/mod.rs

@ -326,11 +326,9 @@ impl> MerkleStore {
/// Iterator over the inner nodes of the [MerkleStore]. /// Iterator over the inner nodes of the [MerkleStore].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ { pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.nodes.iter().map(|(r, n)| InnerNodeInfo {
value: *r,
left: n.left,
right: n.right,
})
self.nodes
.iter()
.map(|(r, n)| InnerNodeInfo { value: *r, left: n.left, right: n.right })
} }
/// Iterator over the non-empty leaves of the Merkle tree associated with the specified `root` /// Iterator over the non-empty leaves of the Merkle tree associated with the specified `root`
@ -450,13 +448,7 @@ impl> MerkleStore {
right_root: RpoDigest, right_root: RpoDigest,
) -> Result<RpoDigest, MerkleError> { ) -> Result<RpoDigest, MerkleError> {
let parent = Rpo256::merge(&[left_root, right_root]); let parent = Rpo256::merge(&[left_root, right_root]);
self.nodes.insert(
parent,
StoreNode {
left: left_root,
right: right_root,
},
);
self.nodes.insert(parent, StoreNode { left: left_root, right: right_root });
Ok(parent) Ok(parent)
} }
@ -551,15 +543,10 @@ impl> FromIterator<(RpoDigest, StoreNode)> for Me
// ================================================================================================ // ================================================================================================
impl<T: KvMap<RpoDigest, StoreNode>> Extend<InnerNodeInfo> for MerkleStore<T> { impl<T: KvMap<RpoDigest, StoreNode>> Extend<InnerNodeInfo> for MerkleStore<T> {
fn extend<I: IntoIterator<Item = InnerNodeInfo>>(&mut self, iter: I) { fn extend<I: IntoIterator<Item = InnerNodeInfo>>(&mut self, iter: I) {
self.nodes.extend(iter.into_iter().map(|info| {
(
info.value,
StoreNode {
left: info.left,
right: info.right,
},
)
}));
self.nodes.extend(
iter.into_iter()
.map(|info| (info.value, StoreNode { left: info.left, right: info.right })),
);
} }
} }
@ -646,17 +633,12 @@ impl> Deserializable for MerkleStore {
/// Creates empty hashes for all the subtrees of a tree with a max depth of 255. /// Creates empty hashes for all the subtrees of a tree with a max depth of 255.
fn empty_hashes() -> impl IntoIterator<Item = (RpoDigest, StoreNode)> { fn empty_hashes() -> impl IntoIterator<Item = (RpoDigest, StoreNode)> {
let subtrees = EmptySubtreeRoots::empty_hashes(255); let subtrees = EmptySubtreeRoots::empty_hashes(255);
subtrees.iter().rev().copied().zip(subtrees.iter().rev().skip(1).copied()).map(
|(child, parent)| {
(
parent,
StoreNode {
left: child,
right: child,
},
)
},
)
subtrees
.iter()
.rev()
.copied()
.zip(subtrees.iter().rev().skip(1).copied())
.map(|(child, parent)| (parent, StoreNode { left: child, right: child }))
} }
/// Consumes an iterator of [InnerNodeInfo] and returns an iterator of `(value, node)` tuples /// Consumes an iterator of [InnerNodeInfo] and returns an iterator of `(value, node)` tuples
@ -666,14 +648,6 @@ fn combine_nodes_with_empty_hashes(
) -> impl Iterator<Item = (RpoDigest, StoreNode)> { ) -> impl Iterator<Item = (RpoDigest, StoreNode)> {
nodes nodes
.into_iter() .into_iter()
.map(|info| {
(
info.value,
StoreNode {
left: info.left,
right: info.right,
},
)
})
.map(|info| (info.value, StoreNode { left: info.left, right: info.right }))
.chain(empty_hashes()) .chain(empty_hashes())
} }

+ 1
- 4
src/merkle/tiered_smt/values.rs

@ -213,10 +213,7 @@ impl StoreEntry {
/// Returns an iterator over all key-value pairs in this entry. /// Returns an iterator over all key-value pairs in this entry.
pub fn iter(&self) -> impl Iterator<Item = &(RpoDigest, Word)> { pub fn iter(&self) -> impl Iterator<Item = &(RpoDigest, Word)> {
EntryIterator {
entry: self,
pos: 0,
}
EntryIterator { entry: self, pos: 0 }
} }
// STATE MUTATORS // STATE MUTATORS

+ 1
- 4
src/utils/mod.rs

@ -83,10 +83,7 @@ impl std::error::Error for HexParseError {}
pub fn hex_to_bytes<const N: usize>(value: &str) -> Result<[u8; N], HexParseError> { pub fn hex_to_bytes<const N: usize>(value: &str) -> Result<[u8; N], HexParseError> {
let expected: usize = (N * 2) + 2; let expected: usize = (N * 2) + 2;
if value.len() != expected { if value.len() != expected {
return Err(HexParseError::InvalidLength {
expected,
got: value.len(),
});
return Err(HexParseError::InvalidLength { expected, got: value.len() });
} }
if !value.starts_with("0x") { if !value.starts_with("0x") {

Loading…
Cancel
Save