Browse Source

refactor: simplify recording MerkleStore structure

al-gkr-basic-workflow
Bobbin Threadbare 1 year ago
parent
commit
f08644e4df
8 changed files with 256 additions and 272 deletions
  1. +1
    -1
      benches/store.rs
  2. +0
    -1
      src/lib.rs
  3. +2
    -6
      src/merkle/mod.rs
  4. +4
    -1
      src/merkle/partial_mt/tests.rs
  5. +96
    -138
      src/merkle/store/mod.rs
  6. +6
    -4
      src/merkle/store/tests.rs
  7. +134
    -117
      src/utils/kv_map.rs
  8. +13
    -4
      src/utils/mod.rs

+ 1
- 1
benches/store.rs

@ -1,5 +1,5 @@
use criterion::{black_box, criterion_group, criterion_main, BatchSize, BenchmarkId, Criterion};
use miden_crypto::merkle::{MerkleStore, MerkleTree, NodeIndex, SimpleSmt};
use miden_crypto::merkle::{DefaultMerkleStore as MerkleStore, MerkleTree, NodeIndex, SimpleSmt};
use miden_crypto::Word;
use miden_crypto::{hash::rpo::RpoDigest, Felt};
use rand_utils::{rand_array, rand_value};

+ 0
- 1
src/lib.rs

@ -4,7 +4,6 @@
#[cfg_attr(test, macro_use)]
extern crate alloc;
pub mod data;
pub mod hash;
pub mod merkle;
pub mod utils;

+ 2
- 6
src/merkle/mod.rs

@ -1,7 +1,6 @@
use super::{
data::{KvMap, RecordingMap},
hash::rpo::{Rpo256, RpoDigest},
utils::collections::{vec, BTreeMap, BTreeSet, Vec},
utils::collections::{vec, BTreeMap, BTreeSet, KvMap, RecordingMap, Vec},
Felt, StarkField, Word, WORD_SIZE, ZERO,
};
use core::fmt;
@ -34,10 +33,7 @@ mod mmr;
pub use mmr::{Mmr, MmrPeaks, MmrProof};
mod store;
pub use store::{
GenericMerkleStore, MerkleMap, MerkleMapT, MerkleStore, RecordingMerkleMap,
RecordingMerkleStore,
};
pub use store::{DefaultMerkleStore, MerkleStore, RecordingMerkleStore};
mod node;
pub use node::InnerNodeInfo;

+ 4
- 1
src/merkle/partial_mt/tests.rs

@ -1,5 +1,8 @@
use super::{
super::{digests_to_words, int_to_node, MerkleStore, MerkleTree, NodeIndex, PartialMerkleTree},
super::{
digests_to_words, int_to_node, DefaultMerkleStore as MerkleStore, MerkleTree, NodeIndex,
PartialMerkleTree,
},
RpoDigest, ValuePath, Vec,
};

+ 96
- 138
src/merkle/store/mod.rs

@ -9,46 +9,14 @@ use core::borrow::Borrow;
#[cfg(test)]
mod tests;
// TRAIT / TYPE DECLARATIONS
// ================================================================================================
/// A supertrait that defines the required traits for a type to be used as a data map backend for
/// the [GenericMerkleStore]
pub trait MerkleMapT:
KvMap<RpoDigest, Node>
+ Extend<(RpoDigest, Node)>
+ FromIterator<(RpoDigest, Node)>
+ IntoIterator<Item = (RpoDigest, Node)>
{
}
// MERKLE STORE
// ------------------------------------------------------------------------------------------------
/// Type that represents a standard MerkleStore.
pub type MerkleStore = GenericMerkleStore<MerkleMap>;
/// Declaration of a BTreeMap that uses a [RpoDigest] as a key and a [Node] as the value. This type
/// is used as a data backend for the standard [GenericMerkleStore].
pub type MerkleMap = BTreeMap<RpoDigest, Node>;
/// Implementation of [MerkleMapT] trait on [MerkleMap].
impl MerkleMapT for MerkleMap {}
// RECORDING MERKLE STORE
// ------------------------------------------------------------------------------------------------
/// Type that represents a MerkleStore with recording capabilities.
pub type RecordingMerkleStore = GenericMerkleStore<RecordingMerkleMap>;
/// Declaration of a [RecordingMap] that uses a [RpoDigest] as a key and a [Node] as the value.
/// This type is used as a data backend for the recording [GenericMerkleStore].
pub type RecordingMerkleMap = RecordingMap<RpoDigest, Node>;
// ================================================================================================
/// Implementation of [MerkleMapT] on [RecordingMerkleMap].
impl MerkleMapT for RecordingMerkleMap {}
/// A default [MerkleStore] which uses a simple [BTreeMap] as the backing storage.
pub type DefaultMerkleStore = MerkleStore<BTreeMap<RpoDigest, Node>>;
// NODE DEFINITION
// ================================================================================================
/// A [MerkleStore] with recording capabilities which uses [RecordingMap] as the backing storage.
pub type RecordingMerkleStore = MerkleStore<RecordingMap<RpoDigest, Node>>;
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
pub struct Node {
@ -56,9 +24,6 @@ pub struct Node {
right: RpoDigest,
}
// MERKLE STORE IMPLEMENTATION
// ================================================================================================
/// An in-memory data store for Merkelized data.
///
/// This is a in memory data store for Merkle trees, this store allows all the nodes of multiple
@ -87,7 +52,7 @@ pub struct Node {
/// # let T1 = MerkleTree::new([A, B, C, D, E, F, G, H1].to_vec()).expect("even number of leaves provided");
/// # let ROOT0 = T0.root();
/// # let ROOT1 = T1.root();
/// let mut store = MerkleStore::new();
/// let mut store: MerkleStore = MerkleStore::new();
///
/// // the store is initialized with the SMT empty nodes
/// assert_eq!(store.num_internal_nodes(), 255);
@ -122,25 +87,25 @@ pub struct Node {
/// assert_eq!(store.num_internal_nodes() - 255, 10);
/// ```
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct GenericMerkleStore<T: MerkleMapT> {
pub struct MerkleStore<T: KvMap<RpoDigest, Node> = BTreeMap<RpoDigest, Node>> {
nodes: T,
}
impl<T: MerkleMapT> Default for GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> Default for MerkleStore<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: MerkleMapT> GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> MerkleStore<T> {
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates an empty `GenericMerkleStore` instance.
pub fn new() -> GenericMerkleStore<T> {
/// Creates an empty `MerkleStore` instance.
pub fn new() -> MerkleStore<T> {
// pre-populate the store with the empty hashes
let nodes = empty_hashes().into_iter().collect();
GenericMerkleStore { nodes }
MerkleStore { nodes }
}
// PUBLIC ACCESSORS
@ -154,10 +119,10 @@ impl GenericMerkleStore {
/// Returns the node at `index` rooted on the tree `root`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in
/// the store.
pub fn get_node(&self, root: RpoDigest, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
let mut hash = root;
@ -181,7 +146,8 @@ impl GenericMerkleStore {
/// # Errors
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in
/// the store.
pub fn get_path(&self, root: RpoDigest, index: NodeIndex) -> Result<ValuePath, MerkleError> {
let mut hash = root;
let mut path = Vec::with_capacity(index.depth().into());
@ -225,7 +191,7 @@ impl GenericMerkleStore {
/// - The path from the root continues to a depth greater than `tree_depth`.
/// - The provided `tree_depth` is greater than `64.
/// - The provided `index` is not valid for a depth equivalent to `tree_depth`. For more
/// information, check [NodeIndex::new].
/// information, check [NodeIndex::new].
pub fn get_leaf_depth(
&self,
root: RpoDigest,
@ -289,12 +255,12 @@ impl GenericMerkleStore {
/// nodes which are descendants of the specified roots.
///
/// The roots for which no descendants exist in this Merkle store are ignored.
pub fn subset<I, R>(&self, roots: I) -> GenericMerkleStore<T>
pub fn subset<I, R>(&self, roots: I) -> MerkleStore<T>
where
I: Iterator<Item = R>,
R: Borrow<RpoDigest>,
{
let mut store = GenericMerkleStore::new();
let mut store = MerkleStore::new();
for root in roots {
let root = *root.borrow();
store.clone_tree_from(root, self);
@ -302,7 +268,7 @@ impl GenericMerkleStore {
store
}
/// Iterator over the inner nodes of the [GenericMerkleStore].
/// Iterator over the inner nodes of the [MerkleStore].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.nodes.iter().map(|(r, n)| InnerNodeInfo {
value: *r,
@ -343,7 +309,7 @@ impl GenericMerkleStore {
/// This will compute the sibling elements for each Merkle `path` and include all the nodes
/// into the store.
///
/// For further reference, check [GenericMerkleStore::add_merkle_path].
/// For further reference, check [MerkleStore::add_merkle_path].
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<(), MerkleError>
where
I: IntoIterator<Item = (u64, RpoDigest, MerklePath)>,
@ -356,7 +322,7 @@ impl GenericMerkleStore {
/// Appends the provided [MerklePathSet] into the store.
///
/// For further reference, check [GenericMerkleStore::add_merkle_path].
/// For further reference, check [MerkleStore::add_merkle_path].
pub fn add_merkle_path_set(
&mut self,
path_set: &MerklePathSet,
@ -371,10 +337,10 @@ impl GenericMerkleStore {
/// Sets a node to `value`.
///
/// # Errors
///
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in
/// the store.
pub fn set_node(
&mut self,
mut root: RpoDigest,
@ -412,6 +378,14 @@ impl GenericMerkleStore {
Ok(parent)
}
// DESTRUCTURING
// --------------------------------------------------------------------------------------------
/// Returns the inner storage of this MerkleStore while consuming `self`.
pub fn into_inner(self) -> T {
self.nodes
}
// HELPER METHODS
// --------------------------------------------------------------------------------------------
@ -431,116 +405,62 @@ impl GenericMerkleStore {
}
}
// RECORDING MERKLE STORE FINALIZER
// ===============================================================================================
impl RecordingMerkleStore {
/// Consumes the [DataRecorder] and returns a [BTreeMap] containing the key-value pairs from
/// the initial data set that were read during recording.
pub fn into_proof(self) -> MerkleMap {
self.nodes.into_proof()
}
}
// EMPTY HASHES
// ================================================================================================
/// Creates empty hashes for all the subtrees of a tree with a max depth of 255.
fn empty_hashes() -> impl IntoIterator<Item = (RpoDigest, Node)> {
let subtrees = EmptySubtreeRoots::empty_hashes(255);
subtrees.iter().rev().copied().zip(subtrees.iter().rev().skip(1).copied()).map(
|(child, parent)| {
(
parent,
Node {
left: child,
right: child,
},
)
},
)
}
/// Consumes an iterator of [InnerNodeInfo] and returns an iterator of `(value, node)` tuples
/// which includes the nodes associate with roots of empty subtrees up to a depth of 255.
fn combine_nodes_with_empty_hashes(
nodes: impl IntoIterator<Item = InnerNodeInfo>,
) -> impl Iterator<Item = (RpoDigest, Node)> {
nodes
.into_iter()
.map(|info| {
(
info.value,
Node {
left: info.left,
right: info.right,
},
)
})
.chain(empty_hashes().into_iter())
}
// CONVERSIONS
// ================================================================================================
impl<T: MerkleMapT> From<&MerkleTree> for GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> From<&MerkleTree> for MerkleStore<T> {
fn from(value: &MerkleTree) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
GenericMerkleStore { nodes }
Self { nodes }
}
}
impl<T: MerkleMapT> From<&SimpleSmt> for GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> From<&SimpleSmt> for MerkleStore<T> {
fn from(value: &SimpleSmt) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
GenericMerkleStore { nodes }
Self { nodes }
}
}
impl<T: MerkleMapT> From<&Mmr> for GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> From<&Mmr> for MerkleStore<T> {
fn from(value: &Mmr) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
GenericMerkleStore { nodes }
Self { nodes }
}
}
impl<T: MerkleMapT> From<&TieredSmt> for GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> From<&TieredSmt> for MerkleStore<T> {
fn from(value: &TieredSmt) -> Self {
let nodes = combine_nodes_with_empty_hashes(value.inner_nodes()).collect();
GenericMerkleStore { nodes }
}
}
impl<T: MerkleMapT> FromIterator<InnerNodeInfo> for GenericMerkleStore<T> {
fn from_iter<I: IntoIterator<Item = InnerNodeInfo>>(iter: I) -> Self {
let nodes = combine_nodes_with_empty_hashes(iter).collect();
GenericMerkleStore { nodes }
Self { nodes }
}
}
impl From<MerkleStore> for RecordingMerkleStore {
fn from(value: MerkleStore) -> Self {
GenericMerkleStore {
nodes: RecordingMerkleMap::new(value.nodes.into_iter()),
}
impl<T: KvMap<RpoDigest, Node>> From<T> for MerkleStore<T> {
fn from(values: T) -> Self {
let nodes = values.into_iter().chain(empty_hashes().into_iter()).collect();
Self { nodes }
}
}
impl FromIterator<(RpoDigest, Node)> for RecordingMerkleMap {
fn from_iter<T: IntoIterator<Item = (RpoDigest, Node)>>(iter: T) -> Self {
RecordingMerkleMap::new(iter)
impl<T: KvMap<RpoDigest, Node>> FromIterator<InnerNodeInfo> for MerkleStore<T> {
fn from_iter<I: IntoIterator<Item = InnerNodeInfo>>(iter: I) -> Self {
let nodes = combine_nodes_with_empty_hashes(iter.into_iter()).collect();
Self { nodes }
}
}
impl From<MerkleMap> for MerkleStore {
fn from(value: MerkleMap) -> Self {
GenericMerkleStore { nodes: value }
impl<T: KvMap<RpoDigest, Node>> FromIterator<(RpoDigest, Node)> for MerkleStore<T> {
fn from_iter<I: IntoIterator<Item = (RpoDigest, Node)>>(iter: I) -> Self {
let nodes = iter.into_iter().chain(empty_hashes().into_iter()).collect();
Self { nodes }
}
}
// ITERATORS
// ================================================================================================
impl<T: MerkleMapT> Extend<InnerNodeInfo> for GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> Extend<InnerNodeInfo> for MerkleStore<T> {
fn extend<I: IntoIterator<Item = InnerNodeInfo>>(&mut self, iter: I) {
self.nodes.extend(iter.into_iter().map(|info| {
(
@ -572,7 +492,7 @@ impl Deserializable for Node {
}
}
impl<T: MerkleMapT> Serializable for GenericMerkleStore<T> {
impl<T: KvMap<RpoDigest, Node>> Serializable for MerkleStore<T> {
fn write_into<W: ByteWriter>(&self, target: &mut W) {
target.write_u64(self.nodes.len() as u64);
@ -583,17 +503,55 @@ impl Serializable for GenericMerkleStore {
}
}
impl Deserializable for GenericMerkleStore<MerkleMap> {
impl<T: KvMap<RpoDigest, Node>> Deserializable for MerkleStore<T> {
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
let len = source.read_u64()?;
let mut nodes: MerkleMap = BTreeMap::new();
let mut nodes: Vec<(RpoDigest, Node)> = Vec::with_capacity(len as usize);
for _ in 0..len {
let key = RpoDigest::read_from(source)?;
let value = Node::read_from(source)?;
nodes.insert(key, value);
nodes.push((key, value));
}
Ok(GenericMerkleStore { nodes })
Ok(nodes.into_iter().collect())
}
}
// HELPER FUNCTIONS
// ================================================================================================
/// Creates empty hashes for all the subtrees of a tree with a max depth of 255.
fn empty_hashes() -> impl IntoIterator<Item = (RpoDigest, Node)> {
let subtrees = EmptySubtreeRoots::empty_hashes(255);
subtrees.iter().rev().copied().zip(subtrees.iter().rev().skip(1).copied()).map(
|(child, parent)| {
(
parent,
Node {
left: child,
right: child,
},
)
},
)
}
/// Consumes an iterator of [InnerNodeInfo] and returns an iterator of `(value, node)` tuples
/// which includes the nodes associate with roots of empty subtrees up to a depth of 255.
fn combine_nodes_with_empty_hashes(
nodes: impl IntoIterator<Item = InnerNodeInfo>,
) -> impl Iterator<Item = (RpoDigest, Node)> {
nodes
.into_iter()
.map(|info| {
(
info.value,
Node {
left: info.left,
right: info.right,
},
)
})
.chain(empty_hashes().into_iter())
}

+ 6
- 4
src/merkle/store/tests.rs

@ -1,6 +1,6 @@
use super::{
EmptySubtreeRoots, MerkleError, MerklePath, MerkleStore, NodeIndex, RecordingMerkleStore,
RpoDigest,
DefaultMerkleStore as MerkleStore, EmptySubtreeRoots, MerkleError, MerklePath, NodeIndex,
RecordingMerkleStore, RpoDigest,
};
use crate::{
hash::rpo::Rpo256,
@ -38,7 +38,7 @@ const VALUES8: [RpoDigest; 8] = [
#[test]
fn test_root_not_in_store() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(digests_to_words(&VALUES4))?;
let store = MerkleStore::default();
let store = MerkleStore::from(&mtree);
assert_eq!(
store.get_node(VALUES4[0], NodeIndex::make(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(VALUES4[0])),
@ -826,6 +826,7 @@ fn test_recorder() {
KEYS8.into_iter().zip(VALUES8.into_iter().map(|x| x.into()).rev()),
)
.unwrap();
let mut recorder: RecordingMerkleStore =
mtree.inner_nodes().chain(smtree.inner_nodes()).collect();
@ -845,7 +846,8 @@ fn test_recorder() {
assert_eq!(recorder.get_node(root, index_2).unwrap(), new_value);
// construct the proof
let proof = recorder.into_proof();
let rec_map = recorder.into_inner();
let proof = rec_map.into_proof();
let merkle_store: MerkleStore = proof.into();
// make sure the proof contains all nodes from both trees

src/data.rs → src/utils/kv_map.rs

@ -1,43 +1,70 @@
use super::utils::{
use core::cell::RefCell;
use winter_utils::{
collections::{btree_map::IntoIter, BTreeMap, BTreeSet},
Box,
};
use core::{
cell::RefCell,
iter::{Chain, Filter},
};
// KEY-VALUE MAP TRAIT
// ================================================================================================
/// A trait that defines the interface for a key-value map.
pub trait KvMap<K, V> {
pub trait KvMap<K: Ord + Clone, V: Clone>:
Extend<(K, V)> + FromIterator<(K, V)> + IntoIterator<Item = (K, V)>
{
fn get(&self, key: &K) -> Option<&V>;
fn contains_key(&self, key: &K) -> bool;
fn len(&self) -> usize;
fn is_empty(&self) -> bool {
self.len() == 0
}
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_>;
fn insert(&mut self, key: K, value: V) -> Option<V>;
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_>;
}
// BTREE MAP `KvMap` IMPLEMENTATION
// ================================================================================================
impl<K: Ord + Clone, V: Clone> KvMap<K, V> for BTreeMap<K, V> {
fn get(&self, key: &K) -> Option<&V> {
self.get(key)
}
fn contains_key(&self, key: &K) -> bool {
self.contains_key(key)
}
fn len(&self) -> usize {
self.len()
}
fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert(key, value)
}
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
Box::new(self.iter())
}
}
// RECORDING MAP
// ================================================================================================
/// A [RecordingMap] that records read requests to the underlying key-value map.
///
/// The data recorder is used to generate a proof for read requests.
///
/// The [RecordingMap] is composed of three parts:
/// - `data`: which contains the initial key-value pairs from the underlying data set.
/// - `delta`: which contains key-value pairs which have been created after instantiation.
/// - `updated_keys`: which tracks keys from `data` which have been updated in `delta`.
/// - `trace`: which contains the keys from the initial data set (`data`) that are read.
#[derive(Debug, Clone, Eq, PartialEq)]
/// - `data`: which contains the current set of key-value pairs in the map.
/// - `updates`: which tracks keys for which values have been since the map was instantiated.
/// updates include both insertions and updates of values under existing keys.
/// - `trace`: which contains the key-value pairs from the original data which have been accesses
/// since the map was instantiated.
#[derive(Debug, Default, Clone, Eq, PartialEq)]
pub struct RecordingMap<K, V> {
data: BTreeMap<K, V>,
delta: BTreeMap<K, V>,
updated_keys: BTreeSet<K>,
trace: RefCell<BTreeSet<K>>,
updates: BTreeSet<K>,
trace: RefCell<BTreeMap<K, V>>,
}
impl<K: Ord + Clone, V: Clone> RecordingMap<K, V> {
@ -48,97 +75,87 @@ impl RecordingMap {
pub fn new(init: impl IntoIterator<Item = (K, V)>) -> Self {
RecordingMap {
data: init.into_iter().collect(),
delta: BTreeMap::new(),
updated_keys: BTreeSet::new(),
trace: RefCell::new(BTreeSet::new()),
updates: BTreeSet::new(),
trace: RefCell::new(BTreeMap::new()),
}
}
// FINALIZER
// --------------------------------------------------------------------------------------------
/// Consumes the [DataRecorder] and returns a [BTreeMap] containing the key-value pairs from
/// Consumes the [RecordingMap] and returns a [BTreeMap] containing the key-value pairs from
/// the initial data set that were read during recording.
pub fn into_proof(self) -> BTreeMap<K, V> {
self.data
.into_iter()
.filter(|(k, _)| self.trace.borrow().contains(k))
.collect::<BTreeMap<_, _>>()
self.trace.take()
}
// TEST HELPERS
// --------------------------------------------------------------------------------------------
#[cfg(test)]
pub fn trace_len(&self) -> usize {
self.trace.borrow().len()
}
#[cfg(test)]
pub fn updates_len(&self) -> usize {
self.updates.len()
}
}
impl<K: Ord + Clone, V: Clone> KvMap<K, V> for RecordingMap<K, V> {
// ACCESSORS
// PUBLIC ACCESSORS
// --------------------------------------------------------------------------------------------
/// Returns a reference to the value associated with the given key if the value exists. If the
/// key is part of the initial data set, the key access is recorded.
fn get(&self, key: &K) -> Option<&V> {
if let Some(value) = self.delta.get(key) {
return Some(value);
}
match self.data.get(key) {
None => None,
Some(value) => {
self.trace.borrow_mut().insert(key.clone());
Some(value)
/// Returns a reference to the value associated with the given key if the value exists.
///
/// If the key is part of the initial data set, the key access is recorded.
fn get(&self, key: &K) -> Option<&V> {
self.data.get(key).map(|value| {
if !self.updates.contains(key) {
self.trace.borrow_mut().insert(key.clone(), value.clone());
}
}
value
})
}
/// Returns a boolean to indicate whether the given key exists in the data set. If the key is
/// part of the initial data set, the key access is recorded.
/// Returns a boolean to indicate whether the given key exists in the data set.
///
/// If the key is part of the initial data set, the key access is recorded.
fn contains_key(&self, key: &K) -> bool {
if self.delta.contains_key(key) {
return true;
}
match self.data.contains_key(key) {
true => {
self.trace.borrow_mut().insert(key.clone());
true
}
false => false,
}
self.get(key).is_some()
}
/// Returns the number of key-value pairs in the data set.
fn len(&self) -> usize {
self.data.len() + self.delta.len() - self.updated_keys.len()
}
/// Returns an iterator over the key-value pairs in the data set.
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
Box::new(
self.data
.iter()
.filter(|(k, _)| !self.updated_keys.contains(k))
.chain(self.delta.iter()),
)
self.data.len()
}
// MUTATORS
// --------------------------------------------------------------------------------------------
/// Inserts a key-value pair into the data set. If the key already exists in the data set, the
/// value is updated and the old value is returned.
/// Inserts a key-value pair into the data set.
///
/// If the key already exists in the data set, the value is updated and the old value is
/// returned.
fn insert(&mut self, key: K, value: V) -> Option<V> {
if let Some(value) = self.delta.insert(key.clone(), value) {
return Some(value);
}
match self.data.get(&key) {
None => None,
Some(value) => {
self.trace.borrow_mut().insert(key.clone());
self.updated_keys.insert(key);
Some(value.clone())
let new_update = self.updates.insert(key.clone());
self.data.insert(key.clone(), value).map(|old_value| {
if new_update {
self.trace.borrow_mut().insert(key, old_value.clone());
}
}
old_value
})
}
}
// RECORDING MAP TRAIT IMPLS
// ================================================================================================
// ITERATION
// --------------------------------------------------------------------------------------------
/// Returns an iterator over the key-value pairs in the data set.
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
Box::new(self.data.iter())
}
}
impl<K: Clone + Ord, V: Clone> Extend<(K, V)> for RecordingMap<K, V> {
fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
@ -148,56 +165,26 @@ impl Extend<(K, V)> for RecordingMap {
}
}
impl<K: Ord + Clone, V: Clone> Default for RecordingMap<K, V> {
fn default() -> Self {
RecordingMap::new(BTreeMap::new())
impl<K: Clone + Ord, V: Clone> FromIterator<(K, V)> for RecordingMap<K, V> {
fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
Self::new(iter)
}
}
impl<K: Ord + 'static, V> IntoIterator for RecordingMap<K, V> {
impl<K: Clone + Ord, V: Clone> IntoIterator for RecordingMap<K, V> {
type Item = (K, V);
type IntoIter =
Chain<Filter<IntoIter<K, V>, Box<dyn FnMut(&Self::Item) -> bool>>, IntoIter<K, V>>;
type IntoIter = IntoIter<K, V>;
fn into_iter(self) -> Self::IntoIter {
#[allow(clippy::type_complexity)]
let filter_updated: Box<dyn FnMut(&Self::Item) -> bool> =
Box::new(move |(k, _)| !self.updated_keys.contains(k));
let data_iter = self.data.into_iter().filter(filter_updated);
let updates_iter = self.delta.into_iter();
data_iter.chain(updates_iter)
}
}
// BTREE MAP `KvMap` IMPLEMENTATION
// ================================================================================================
impl<K: Ord, V> KvMap<K, V> for BTreeMap<K, V> {
fn get(&self, key: &K) -> Option<&V> {
self.get(key)
}
fn contains_key(&self, key: &K) -> bool {
self.contains_key(key)
}
fn len(&self) -> usize {
self.len()
}
fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
Box::new(self.iter())
}
fn insert(&mut self, key: K, value: V) -> Option<V> {
self.insert(key, value)
self.data.into_iter()
}
}
// TESTS
// ================================================================================================
#[cfg(test)]
mod test_recorder {
mod tests {
use super::*;
const ITEMS: [(u64, u64); 5] = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)];
@ -255,19 +242,49 @@ mod test_recorder {
// length of the map should be equal to the number of items
assert_eq!(map.len(), ITEMS.len());
// inserting entry with key that already exists should not change the length
// inserting entry with key that already exists should not change the length, but it does
// add entries to the trace and update sets
map.insert(4, 5);
assert_eq!(map.len(), ITEMS.len());
assert_eq!(map.trace_len(), 1);
assert_eq!(map.updates_len(), 1);
// inserting entry with new key should increase the length
// inserting entry with new key should increase the length; it should also record the key
// as an updated key, but the trace length does not change since old values were not touched
map.insert(5, 5);
assert_eq!(map.len(), ITEMS.len() + 1);
assert_eq!(map.trace_len(), 1);
assert_eq!(map.updates_len(), 2);
// get some items so that they are saved in the trace; this should record original items
// in the trace, but should not affect the set of updates
let get_items = [0, 1, 2];
for key in get_items.iter() {
map.contains_key(key);
}
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// get some items so that they are saved in the trace
// read the same items again, this should not have any effect on either length, trace, or
// the set of updates
let get_items = [0, 1, 2];
for key in get_items.iter() {
map.contains_key(key);
}
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// read a newly inserted item; this should not affect either length, trace, or the set of
// updates
let _val = map.get(&5).unwrap();
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// update a newly inserted item; this should not affect either length, trace, or the set
// of updates
map.insert(5, 11);
assert_eq!(map.trace_len(), 4);
assert_eq!(map.updates_len(), 2);
// Note: The length reported by the proof will be different to the length originally
// reported by the map.

src/utils.rs → src/utils/mod.rs

@ -1,5 +1,4 @@
use super::Word;
use crate::utils::string::String;
use super::{utils::string::String, Word};
use core::fmt::{self, Write};
#[cfg(not(feature = "std"))]
@ -8,13 +7,23 @@ pub use alloc::format;
#[cfg(feature = "std")]
pub use std::format;
mod kv_map;
// RE-EXPORTS
// ================================================================================================
pub use winter_utils::{
collections, string, uninit_vector, Box, ByteReader, ByteWriter, Deserializable,
DeserializationError, Serializable, SliceReader,
string, uninit_vector, Box, ByteReader, ByteWriter, Deserializable, DeserializationError,
Serializable, SliceReader,
};
pub mod collections {
pub use super::kv_map::*;
pub use winter_utils::collections::*;
}
// UTILITY FUNCTIONS
// ================================================================================================
/// Converts a [Word] into hex.
pub fn word_to_hex(w: &Word) -> Result<String, fmt::Error> {
let mut s = String::new();

Loading…
Cancel
Save