Browse Source

refactor: refactor crypto APIs to use RpoDigest instead of Word

al-gkr-basic-workflow
tohrnii 1 year ago
parent
commit
fe9aa8c28c
16 changed files with 591 additions and 377 deletions
  1. +2
    -2
      benches/store.rs
  2. +5
    -2
      src/hash/rpo/tests.rs
  3. +57
    -42
      src/merkle/merkle_tree.rs
  4. +15
    -4
      src/merkle/mmr/accumulator.rs
  5. +10
    -10
      src/merkle/mmr/full.rs
  6. +133
    -27
      src/merkle/mmr/tests.rs
  7. +9
    -5
      src/merkle/mod.rs
  8. +4
    -4
      src/merkle/node.rs
  9. +24
    -20
      src/merkle/path.rs
  10. +41
    -36
      src/merkle/path_set.rs
  11. +18
    -17
      src/merkle/simple_smt/mod.rs
  12. +69
    -53
      src/merkle/simple_smt/tests.rs
  13. +53
    -45
      src/merkle/store/mod.rs
  14. +85
    -80
      src/merkle/store/tests.rs
  15. +7
    -7
      src/merkle/tiered_smt/mod.rs
  16. +59
    -23
      src/merkle/tiered_smt/tests.rs

+ 2
- 2
benches/store.rs

@ -409,7 +409,7 @@ fn update_leaf_merkletree(c: &mut Criterion) {
// The MerkleTree automatically updates its internal root, the Store maintains
// the old root and adds the new one. Here we update the root to have a fair
// comparison
store_root = store.set_node(root, index, value).unwrap().root;
store_root = store.set_node(root, index, value.into()).unwrap().root;
black_box(store_root)
},
BatchSize::SmallInput,
@ -455,7 +455,7 @@ fn update_leaf_simplesmt(c: &mut Criterion) {
// The MerkleTree automatically updates its internal root, the Store maintains
// the old root and adds the new one. Here we update the root to have a fair
// comparison
store_root = store.set_node(root, index, value).unwrap().root;
store_root = store.set_node(root, index, value.into()).unwrap().root;
black_box(store_root)
},
BatchSize::SmallInput,

+ 5
- 2
src/hash/rpo/tests.rs

@ -2,7 +2,10 @@ use super::{
Felt, FieldElement, Hasher, Rpo256, RpoDigest, StarkField, ALPHA, INV_ALPHA, ONE, STATE_WIDTH,
ZERO,
};
use crate::utils::collections::{BTreeSet, Vec};
use crate::{
utils::collections::{BTreeSet, Vec},
Word,
};
use core::convert::TryInto;
use proptest::prelude::*;
use rand_utils::rand_value;
@ -232,7 +235,7 @@ proptest! {
}
}
const EXPECTED: [[Felt; 4]; 19] = [
const EXPECTED: [Word; 19] = [
[
Felt::new(1502364727743950833),
Felt::new(5880949717274681448),

+ 57
- 42
src/merkle/merkle_tree.rs

@ -1,10 +1,5 @@
use super::{
Felt, InnerNodeInfo, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word,
};
use crate::{
utils::{string::String, uninit_vector, word_to_hex},
FieldElement,
};
use super::{InnerNodeInfo, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word};
use crate::utils::{string::String, uninit_vector, word_to_hex};
use core::{fmt, slice};
use winter_math::log2;
@ -14,7 +9,7 @@ use winter_math::log2;
/// A fully-balanced binary Merkle tree (i.e., a tree where the number of leaves is a power of two).
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MerkleTree {
nodes: Vec<Word>,
nodes: Vec<RpoDigest>,
}
impl MerkleTree {
@ -34,10 +29,12 @@ impl MerkleTree {
// create un-initialized vector to hold all tree nodes
let mut nodes = unsafe { uninit_vector(2 * n) };
nodes[0] = [Felt::ZERO; 4];
nodes[0] = RpoDigest::default();
// copy leaves into the second part of the nodes vector
nodes[n..].copy_from_slice(&leaves);
nodes[n..].iter_mut().zip(leaves).for_each(|(node, leaf)| {
*node = RpoDigest::from(leaf);
});
// re-interpret nodes as an array of two nodes fused together
// Safety: `nodes` will never move here as it is not bound to an external lifetime (i.e.
@ -47,7 +44,7 @@ impl MerkleTree {
// calculate all internal tree nodes
for i in (1..n).rev() {
nodes[i] = Rpo256::merge(&pairs[i]).into();
nodes[i] = Rpo256::merge(&pairs[i]);
}
Ok(Self { nodes })
@ -57,7 +54,7 @@ impl MerkleTree {
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub fn root(&self) -> Word {
pub fn root(&self) -> RpoDigest {
self.nodes[1]
}
@ -74,7 +71,7 @@ impl MerkleTree {
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
/// * The specified index is not valid for the specified depth.
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > self.depth() {
@ -120,7 +117,7 @@ impl MerkleTree {
/// Returns an iterator over the leaves of this [MerkleTree].
pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
let leaves_start = self.nodes.len() / 2;
self.nodes.iter().skip(leaves_start).enumerate().map(|(i, v)| (i as u64, v))
self.nodes.iter().skip(leaves_start).enumerate().map(|(i, v)| (i as u64, &**v))
}
/// Returns n iterator over every inner node of this [MerkleTree].
@ -159,13 +156,13 @@ impl MerkleTree {
// update the current node
let pos = index.to_scalar_index() as usize;
self.nodes[pos] = value;
self.nodes[pos] = value.into();
// traverse to the root, updating each node with the merged values of its parents
for _ in 0..index.depth() {
index.move_up();
let pos = index.to_scalar_index() as usize;
let value = Rpo256::merge(&pairs[pos]).into();
let value = Rpo256::merge(&pairs[pos]);
self.nodes[pos] = value;
}
@ -180,7 +177,7 @@ impl MerkleTree {
///
/// Use this to extract the data of the tree, there is no guarantee on the order of the elements.
pub struct InnerNodeIterator<'a> {
nodes: &'a Vec<Word>,
nodes: &'a Vec<RpoDigest>,
index: usize,
}
@ -258,21 +255,25 @@ pub fn path_to_text(path: &MerklePath) -> Result {
#[cfg(test)]
mod tests {
use super::*;
use crate::merkle::{int_to_node, InnerNodeInfo};
use crate::{
merkle::{int_to_leaf, InnerNodeInfo},
Felt, Word, WORD_SIZE,
};
use core::mem::size_of;
use proptest::prelude::*;
const LEAVES4: [Word; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
const LEAVES4: [Word; WORD_SIZE] =
[int_to_leaf(1), int_to_leaf(2), int_to_leaf(3), int_to_leaf(4)];
const LEAVES8: [Word; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
int_to_leaf(1),
int_to_leaf(2),
int_to_leaf(3),
int_to_leaf(4),
int_to_leaf(5),
int_to_leaf(6),
int_to_leaf(7),
int_to_leaf(8),
];
#[test]
@ -282,7 +283,7 @@ mod tests {
// leaves were copied correctly
for (a, b) in tree.nodes.iter().skip(4).zip(LEAVES4.iter()) {
assert_eq!(a, b);
assert_eq!(*a, RpoDigest::from(*b));
}
let (root, node2, node3) = compute_internal_nodes();
@ -299,10 +300,10 @@ mod tests {
let tree = super::MerkleTree::new(LEAVES4.to_vec()).unwrap();
// check depth 2
assert_eq!(LEAVES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(LEAVES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(LEAVES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(LEAVES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
assert_eq!(RpoDigest::from(LEAVES4[0]), tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(RpoDigest::from(LEAVES4[1]), tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(RpoDigest::from(LEAVES4[2]), tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(RpoDigest::from(LEAVES4[3]), tree.get_node(NodeIndex::make(2, 3)).unwrap());
// check depth 1
let (_, node2, node3) = compute_internal_nodes();
@ -318,10 +319,22 @@ mod tests {
let (_, node2, node3) = compute_internal_nodes();
// check depth 2
assert_eq!(vec![LEAVES4[1], node3], *tree.get_path(NodeIndex::make(2, 0)).unwrap());
assert_eq!(vec![LEAVES4[0], node3], *tree.get_path(NodeIndex::make(2, 1)).unwrap());
assert_eq!(vec![LEAVES4[3], node2], *tree.get_path(NodeIndex::make(2, 2)).unwrap());
assert_eq!(vec![LEAVES4[2], node2], *tree.get_path(NodeIndex::make(2, 3)).unwrap());
assert_eq!(
vec![RpoDigest::from(LEAVES4[1]), node3],
*tree.get_path(NodeIndex::make(2, 0)).unwrap()
);
assert_eq!(
vec![RpoDigest::from(LEAVES4[0]), node3],
*tree.get_path(NodeIndex::make(2, 1)).unwrap()
);
assert_eq!(
vec![RpoDigest::from(LEAVES4[3]), node2],
*tree.get_path(NodeIndex::make(2, 2)).unwrap()
);
assert_eq!(
vec![RpoDigest::from(LEAVES4[2]), node2],
*tree.get_path(NodeIndex::make(2, 3)).unwrap()
);
// check depth 1
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
@ -334,7 +347,7 @@ mod tests {
// update one leaf
let value = 3;
let new_node = int_to_node(9);
let new_node = int_to_leaf(9);
let mut expected_leaves = LEAVES8.to_vec();
expected_leaves[value as usize] = new_node;
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
@ -344,7 +357,7 @@ mod tests {
// update another leaf
let value = 6;
let new_node = int_to_node(10);
let new_node = int_to_leaf(10);
expected_leaves[value as usize] = new_node;
let expected_tree = super::MerkleTree::new(expected_leaves.clone()).unwrap();
@ -417,11 +430,13 @@ mod tests {
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn compute_internal_nodes() -> (Word, Word, Word) {
let node2 = Rpo256::hash_elements(&[LEAVES4[0], LEAVES4[1]].concat());
let node3 = Rpo256::hash_elements(&[LEAVES4[2], LEAVES4[3]].concat());
fn compute_internal_nodes() -> (RpoDigest, RpoDigest, RpoDigest) {
let node2 =
Rpo256::hash_elements(&[Word::from(LEAVES4[0]), Word::from(LEAVES4[1])].concat());
let node3 =
Rpo256::hash_elements(&[Word::from(LEAVES4[2]), Word::from(LEAVES4[3])].concat());
let root = Rpo256::merge(&[node2, node3]);
(root.into(), node2.into(), node3.into())
(root, node2, node3)
}
}

+ 15
- 4
src/merkle/mmr/accumulator.rs

@ -1,4 +1,7 @@
use super::{super::Vec, super::ZERO, Felt, MmrProof, Rpo256, Word};
use super::{
super::{RpoDigest, Vec, ZERO},
Felt, MmrProof, Rpo256, Word,
};
#[derive(Debug, Clone, PartialEq)]
pub struct MmrPeaks {
@ -25,7 +28,7 @@ pub struct MmrPeaks {
/// leaves, starting from the peak with most children, to the one with least.
///
/// Invariant: The length of `peaks` must be equal to the number of true bits in `num_leaves`.
pub peaks: Vec<Word>,
pub peaks: Vec<RpoDigest>,
}
impl MmrPeaks {
@ -38,7 +41,7 @@ impl MmrPeaks {
Rpo256::hash_elements(&self.flatten_and_pad_peaks()).into()
}
pub fn verify(&self, value: Word, opening: MmrProof) -> bool {
pub fn verify(&self, value: RpoDigest, opening: MmrProof) -> bool {
let root = &self.peaks[opening.peak_index()];
opening.merkle_path.verify(opening.relative_pos() as u64, value, root)
}
@ -72,7 +75,15 @@ impl MmrPeaks {
};
let mut elements = Vec::with_capacity(len);
elements.extend_from_slice(&self.peaks.as_slice().concat());
elements.extend_from_slice(
&self
.peaks
.as_slice()
.iter()
.map(|digest| digest.into())
.collect::<Vec<Word>>()
.concat(),
);
elements.resize(len, ZERO);
elements
}

+ 10
- 10
src/merkle/mmr/full.rs

@ -10,10 +10,10 @@
//! depths, i.e. as part of adding adding a new element to the forest the trees with same depth are
//! merged, creating a new tree with depth d+1, this process is continued until the property is
//! restabilished.
use super::bit::TrueBitPositionIterator;
use super::{
super::{InnerNodeInfo, MerklePath, Vec},
MmrPeaks, MmrProof, Rpo256, Word,
super::{InnerNodeInfo, MerklePath, RpoDigest, Vec},
bit::TrueBitPositionIterator,
MmrPeaks, MmrProof, Rpo256,
};
use core::fmt::{Display, Formatter};
@ -38,7 +38,7 @@ pub struct Mmr {
/// the elements of every tree in the forest to be stored in the same sequential buffer. It
/// also means new elements can be added to the forest, and merging of trees is very cheap with
/// no need to copy elements.
pub(super) nodes: Vec<Word>,
pub(super) nodes: Vec<RpoDigest>,
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
@ -129,7 +129,7 @@ impl Mmr {
/// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
/// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
/// has position 0, the second position 1, and so on.
pub fn get(&self, pos: usize) -> Result<Word, MmrError> {
pub fn get(&self, pos: usize) -> Result<RpoDigest, MmrError> {
// find the target tree responsible for the MMR position
let tree_bit =
leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;
@ -153,7 +153,7 @@ impl Mmr {
}
/// Adds a new element to the MMR.
pub fn add(&mut self, el: Word) {
pub fn add(&mut self, el: RpoDigest) {
// Note: every node is also a tree of size 1, adding an element to the forest creates a new
// rooted-tree of size 1. This may temporarily break the invariant that every tree in the
// forest has different sizes, the loop below will eagerly merge trees of same size and
@ -164,7 +164,7 @@ impl Mmr {
let mut right = el;
let mut left_tree = 1;
while self.forest & left_tree != 0 {
right = *Rpo256::merge(&[self.nodes[left_offset].into(), right.into()]);
right = Rpo256::merge(&[self.nodes[left_offset], right]);
self.nodes.push(right);
left_offset = left_offset.saturating_sub(nodes_in_forest(left_tree));
@ -176,7 +176,7 @@ impl Mmr {
/// Returns an accumulator representing the current state of the MMR.
pub fn accumulator(&self) -> MmrPeaks {
let peaks: Vec<Word> = TrueBitPositionIterator::new(self.forest)
let peaks: Vec<RpoDigest> = TrueBitPositionIterator::new(self.forest)
.rev()
.map(|bit| nodes_in_forest(1 << bit))
.scan(0, |offset, el| {
@ -212,7 +212,7 @@ impl Mmr {
relative_pos: usize,
index_offset: usize,
mut index: usize,
) -> (Word, Vec<Word>) {
) -> (RpoDigest, Vec<RpoDigest>) {
// collect the Merkle path
let mut tree_depth = tree_bit as usize;
let mut path = Vec::with_capacity(tree_depth + 1);
@ -247,7 +247,7 @@ impl Mmr {
impl<T> From<T> for Mmr
where
T: IntoIterator<Item = Word>,
T: IntoIterator<Item = RpoDigest>,
{
fn from(values: T) -> Self {
let mut mmr = Mmr::new();

+ 133
- 27
src/merkle/mmr/tests.rs

@ -1,10 +1,14 @@
use super::bit::TrueBitPositionIterator;
use super::full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest};
use super::{
super::{InnerNodeInfo, Vec, WORD_SIZE, ZERO},
Mmr, MmrPeaks, Rpo256, Word,
super::{InnerNodeInfo, Vec, WORD_SIZE},
bit::TrueBitPositionIterator,
full::{high_bitmask, leaf_to_corresponding_tree, nodes_in_forest},
Mmr, MmrPeaks, Rpo256,
};
use crate::{
hash::rpo::RpoDigest,
merkle::{int_to_node, MerklePath},
Felt, Word,
};
use crate::merkle::{int_to_node, MerklePath};
#[test]
fn test_position_equal_or_higher_than_leafs_is_never_contained() {
@ -99,7 +103,7 @@ fn test_nodes_in_forest_single_bit() {
}
}
const LEAVES: [Word; 7] = [
const LEAVES: [RpoDigest; 7] = [
int_to_node(0),
int_to_node(1),
int_to_node(2),
@ -114,14 +118,38 @@ fn test_mmr_simple() {
let mut postorder = Vec::new();
postorder.push(LEAVES[0]);
postorder.push(LEAVES[1]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat()));
postorder.push(Rpo256::hash_elements(
&[LEAVES[0], LEAVES[1]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
));
postorder.push(LEAVES[2]);
postorder.push(LEAVES[3]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat()));
postorder.push(*Rpo256::hash_elements(&[postorder[2], postorder[5]].concat()));
postorder.push(Rpo256::hash_elements(
&[LEAVES[2], LEAVES[3]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
));
postorder.push(Rpo256::hash_elements(
&[postorder[2], postorder[5]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
));
postorder.push(LEAVES[4]);
postorder.push(LEAVES[5]);
postorder.push(*Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat()));
postorder.push(Rpo256::hash_elements(
&[LEAVES[4], LEAVES[5]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
));
postorder.push(LEAVES[6]);
let mut mmr = Mmr::new();
@ -195,8 +223,20 @@ fn test_mmr_simple() {
#[test]
fn test_mmr_open() {
let mmr: Mmr = LEAVES.into();
let h01: Word = Rpo256::hash_elements(&LEAVES[0..2].concat()).into();
let h23: Word = Rpo256::hash_elements(&LEAVES[2..4].concat()).into();
let h01: RpoDigest = Rpo256::hash_elements(
&LEAVES[0..2]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
);
let h23: RpoDigest = Rpo256::hash_elements(
&LEAVES[2..4]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
);
// node at pos 7 is the root
assert!(mmr.open(7).is_err(), "Element 7 is not in the tree, result should be None");
@ -214,7 +254,7 @@ fn test_mmr_open() {
"MmrProof should be valid for the current accumulator."
);
// nodes 4,5 are detph 1
// nodes 4,5 are depth 1
let root_to_path = MerklePath::new(vec![LEAVES[4]]);
let opening = mmr
.open(5)
@ -361,10 +401,34 @@ fn test_mmr_inner_nodes() {
let mmr: Mmr = LEAVES.into();
let nodes: Vec<InnerNodeInfo> = mmr.inner_nodes().collect();
let h01 = *Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat());
let h23 = *Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat());
let h0123 = *Rpo256::hash_elements(&[h01, h23].concat());
let h45 = *Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat());
let h01 = Rpo256::hash_elements(
&[LEAVES[0], LEAVES[1]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
);
let h23 = Rpo256::hash_elements(
&[LEAVES[2], LEAVES[3]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
);
let h0123 = Rpo256::hash_elements(
&[h01, h23]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
);
let h45 = Rpo256::hash_elements(
&[LEAVES[4], LEAVES[5]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
);
let postorder = vec![
InnerNodeInfo {
value: h01,
@ -396,17 +460,45 @@ fn test_mmr_hash_peaks() {
let mmr: Mmr = LEAVES.into();
let peaks = mmr.accumulator();
let first_peak = *Rpo256::merge(&[
Rpo256::hash_elements(&[LEAVES[0], LEAVES[1]].concat()),
Rpo256::hash_elements(&[LEAVES[2], LEAVES[3]].concat()),
let first_peak = Rpo256::merge(&[
Rpo256::hash_elements(
&[LEAVES[0], LEAVES[1]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<Word>>()
.concat(),
),
Rpo256::hash_elements(
&[LEAVES[2], LEAVES[3]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<Word>>()
.concat(),
),
]);
let second_peak = *Rpo256::hash_elements(&[LEAVES[4], LEAVES[5]].concat());
let second_peak = Rpo256::hash_elements(
&[LEAVES[4], LEAVES[5]]
.iter()
.map(|digest| digest.into())
.collect::<Vec<[Felt; WORD_SIZE]>>()
.concat(),
);
let third_peak = LEAVES[6];
// minimum length is 16
let mut expected_peaks = [first_peak, second_peak, third_peak].to_vec();
expected_peaks.resize(16, [ZERO; WORD_SIZE]);
assert_eq!(peaks.hash_peaks(), *Rpo256::hash_elements(&expected_peaks.as_slice().concat()));
expected_peaks.resize(16, RpoDigest::default());
assert_eq!(
peaks.hash_peaks(),
*Rpo256::hash_elements(
&expected_peaks
.as_slice()
.iter()
.map(|digest| digest.into())
.collect::<Vec<Word>>()
.concat()
)
);
}
#[test]
@ -422,10 +514,17 @@ fn test_mmr_peaks_hash_less_than_16() {
// minimum length is 16
let mut expected_peaks = peaks.clone();
expected_peaks.resize(16, [ZERO; WORD_SIZE]);
expected_peaks.resize(16, RpoDigest::default());
assert_eq!(
accumulator.hash_peaks(),
*Rpo256::hash_elements(&expected_peaks.as_slice().concat())
*Rpo256::hash_elements(
&expected_peaks
.as_slice()
.iter()
.map(|digest| digest.into())
.collect::<Vec<Word>>()
.concat()
)
);
}
}
@ -441,10 +540,17 @@ fn test_mmr_peaks_hash_odd() {
// odd length bigger than 16 is padded to the next even nubmer
let mut expected_peaks = peaks.clone();
expected_peaks.resize(18, [ZERO; WORD_SIZE]);
expected_peaks.resize(18, RpoDigest::default());
assert_eq!(
accumulator.hash_peaks(),
*Rpo256::hash_elements(&expected_peaks.as_slice().concat())
*Rpo256::hash_elements(
&expected_peaks
.as_slice()
.iter()
.map(|digest| digest.into())
.collect::<Vec<Word>>()
.concat()
)
);
}

+ 9
- 5
src/merkle/mod.rs

@ -10,7 +10,6 @@ use core::fmt;
mod empty_roots;
pub use empty_roots::EmptySubtreeRoots;
use empty_roots::EMPTY_WORD;
mod index;
pub use index::NodeIndex;
@ -44,7 +43,7 @@ pub use node::InnerNodeInfo;
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum MerkleError {
ConflictingRoots(Vec<Word>),
ConflictingRoots(Vec<RpoDigest>),
DepthTooSmall(u8),
DepthTooBig(u64),
DuplicateValuesForIndex(u64),
@ -54,9 +53,9 @@ pub enum MerkleError {
InvalidPath(MerklePath),
InvalidNumEntries(usize, usize),
NodeNotInSet(NodeIndex),
NodeNotInStore(Word, NodeIndex),
NodeNotInStore(RpoDigest, NodeIndex),
NumLeavesNotPowerOfTwo(usize),
RootNotInStore(Word),
RootNotInStore(RpoDigest),
}
impl fmt::Display for MerkleError {
@ -95,6 +94,11 @@ impl std::error::Error for MerkleError {}
// ================================================================================================
#[cfg(test)]
const fn int_to_node(value: u64) -> Word {
const fn int_to_node(value: u64) -> RpoDigest {
RpoDigest::new([Felt::new(value), ZERO, ZERO, ZERO])
}
#[cfg(test)]
const fn int_to_leaf(value: u64) -> Word {
[Felt::new(value), ZERO, ZERO, ZERO]
}

+ 4
- 4
src/merkle/node.rs

@ -1,9 +1,9 @@
use super::Word;
use crate::hash::rpo::RpoDigest;
/// Representation of a node with two children used for iterating over containers.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InnerNodeInfo {
pub value: Word,
pub left: Word,
pub right: Word,
pub value: RpoDigest,
pub left: RpoDigest,
pub right: RpoDigest,
}

+ 24
- 20
src/merkle/path.rs

@ -1,4 +1,4 @@
use super::{vec, InnerNodeInfo, MerkleError, NodeIndex, Rpo256, Vec, Word};
use super::{vec, InnerNodeInfo, MerkleError, NodeIndex, Rpo256, RpoDigest, Vec};
use core::ops::{Deref, DerefMut};
// MERKLE PATH
@ -7,7 +7,7 @@ use core::ops::{Deref, DerefMut};
/// A merkle path container, composed of a sequence of nodes of a Merkle tree.
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct MerklePath {
nodes: Vec<Word>,
nodes: Vec<RpoDigest>,
}
impl MerklePath {
@ -15,7 +15,7 @@ impl MerklePath {
// --------------------------------------------------------------------------------------------
/// Creates a new Merkle path from a list of nodes.
pub fn new(nodes: Vec<Word>) -> Self {
pub fn new(nodes: Vec<RpoDigest>) -> Self {
Self { nodes }
}
@ -28,13 +28,13 @@ impl MerklePath {
}
/// Computes the merkle root for this opening.
pub fn compute_root(&self, index: u64, node: Word) -> Result<Word, MerkleError> {
pub fn compute_root(&self, index: u64, node: RpoDigest) -> Result<RpoDigest, MerkleError> {
let mut index = NodeIndex::new(self.depth(), index)?;
let root = self.nodes.iter().copied().fold(node, |node, sibling| {
// compute the node and move to the next iteration.
let input = index.build_node(node.into(), sibling.into());
let input = index.build_node(node, sibling);
index.move_up();
Rpo256::merge(&input).into()
Rpo256::merge(&input)
});
Ok(root)
}
@ -42,7 +42,7 @@ impl MerklePath {
/// Verifies the Merkle opening proof towards the provided root.
///
/// Returns `true` if `node` exists at `index` in a Merkle tree with `root`.
pub fn verify(&self, index: u64, node: Word, root: &Word) -> bool {
pub fn verify(&self, index: u64, node: RpoDigest, root: &RpoDigest) -> bool {
match self.compute_root(index, node) {
Ok(computed_root) => root == &computed_root,
Err(_) => false,
@ -55,7 +55,11 @@ impl MerklePath {
///
/// # Errors
/// Returns an error if the specified index is not valid for this path.
pub fn inner_nodes(&self, index: u64, node: Word) -> Result<InnerNodeIterator, MerkleError> {
pub fn inner_nodes(
&self,
index: u64,
node: RpoDigest,
) -> Result<InnerNodeIterator, MerkleError> {
Ok(InnerNodeIterator {
nodes: &self.nodes,
index: NodeIndex::new(self.depth(), index)?,
@ -64,8 +68,8 @@ impl MerklePath {
}
}
impl From<Vec<Word>> for MerklePath {
fn from(path: Vec<Word>) -> Self {
impl From<Vec<RpoDigest>> for MerklePath {
fn from(path: Vec<RpoDigest>) -> Self {
Self::new(path)
}
}
@ -73,7 +77,7 @@ impl From> for MerklePath {
impl Deref for MerklePath {
// we use `Vec` here instead of slice so we can call vector mutation methods directly from the
// merkle path (example: `Vec::remove`).
type Target = Vec<Word>;
type Target = Vec<RpoDigest>;
fn deref(&self) -> &Self::Target {
&self.nodes
@ -89,15 +93,15 @@ impl DerefMut for MerklePath {
// ITERATORS
// ================================================================================================
impl FromIterator<Word> for MerklePath {
fn from_iter<T: IntoIterator<Item = Word>>(iter: T) -> Self {
impl FromIterator<RpoDigest> for MerklePath {
fn from_iter<T: IntoIterator<Item = RpoDigest>>(iter: T) -> Self {
Self::new(iter.into_iter().collect())
}
}
impl IntoIterator for MerklePath {
type Item = Word;
type IntoIter = vec::IntoIter<Word>;
type Item = RpoDigest;
type IntoIter = vec::IntoIter<RpoDigest>;
fn into_iter(self) -> Self::IntoIter {
self.nodes.into_iter()
@ -106,9 +110,9 @@ impl IntoIterator for MerklePath {
/// An iterator over internal nodes of a [MerklePath].
pub struct InnerNodeIterator<'a> {
nodes: &'a Vec<Word>,
nodes: &'a Vec<RpoDigest>,
index: NodeIndex,
value: Word,
value: RpoDigest,
}
impl<'a> Iterator for InnerNodeIterator<'a> {
@ -123,7 +127,7 @@ impl<'a> Iterator for InnerNodeIterator<'a> {
(self.value, self.nodes[sibling_pos])
};
self.value = Rpo256::merge(&[left.into(), right.into()]).into();
self.value = Rpo256::merge(&[left, right]);
self.index.move_up();
Some(InnerNodeInfo {
@ -144,7 +148,7 @@ impl<'a> Iterator for InnerNodeIterator<'a> {
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct ValuePath {
/// The node value opening for `path`.
pub value: Word,
pub value: RpoDigest,
/// The path from `value` to `root` (exclusive).
pub path: MerklePath,
}
@ -156,7 +160,7 @@ pub struct ValuePath {
#[derive(Clone, Debug, Default, PartialEq, Eq)]
pub struct RootPath {
/// The node value opening for `path`.
pub root: Word,
pub root: RpoDigest,
/// The path from `value` to `root` (exclusive).
pub path: MerklePath,
}

+ 41
- 36
src/merkle/path_set.rs

@ -1,4 +1,5 @@
use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, ValuePath, Vec, Word, ZERO};
use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, ValuePath, Vec};
use crate::{hash::rpo::RpoDigest, Word};
// MERKLE PATH SET
// ================================================================================================
@ -6,7 +7,7 @@ use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, ValuePath, Vec
/// A set of Merkle paths.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MerklePathSet {
root: Word,
root: RpoDigest,
total_depth: u8,
paths: BTreeMap<u64, MerklePath>,
}
@ -17,7 +18,7 @@ impl MerklePathSet {
/// Returns an empty MerklePathSet.
pub fn new(depth: u8) -> Self {
let root = [ZERO; 4];
let root = RpoDigest::default();
let paths = BTreeMap::new();
Self {
@ -32,7 +33,7 @@ impl MerklePathSet {
/// Analogous to `[Self::add_path]`.
pub fn with_paths<I>(self, paths: I) -> Result<Self, MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
I: IntoIterator<Item = (u64, RpoDigest, MerklePath)>,
{
paths.into_iter().try_fold(self, |mut set, (index, value, path)| {
set.add_path(index, value, path)?;
@ -44,7 +45,7 @@ impl MerklePathSet {
// --------------------------------------------------------------------------------------------
/// Returns the root to which all paths in this set resolve.
pub const fn root(&self) -> Word {
pub const fn root(&self) -> RpoDigest {
self.root
}
@ -61,7 +62,7 @@ impl MerklePathSet {
/// Returns an error if:
/// * The specified index is not valid for the depth of structure.
/// * Requested node does not exist in the set.
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.depth() != self.total_depth {
return Err(MerkleError::InvalidDepth {
expected: self.total_depth,
@ -84,7 +85,7 @@ impl MerklePathSet {
/// * Leaf with the requested path does not exist in the set.
pub fn get_leaf(&self, index: u64) -> Result<Word, MerkleError> {
let index = NodeIndex::new(self.depth(), index)?;
self.get_node(index)
Ok(self.get_node(index)?.into())
}
/// Returns a Merkle path to the node at the specified index. The node itself is
@ -150,7 +151,7 @@ impl MerklePathSet {
pub fn add_path(
&mut self,
index_value: u64,
value: Word,
value: RpoDigest,
mut path: MerklePath,
) -> Result<(), MerkleError> {
let mut index = NodeIndex::new(path.len() as u8, index_value)?;
@ -166,15 +167,15 @@ impl MerklePathSet {
path.insert(parity as usize, value);
// traverse to the root, updating the nodes
let root: Word = Rpo256::merge(&[path[0].into(), path[1].into()]).into();
let root: RpoDigest = Rpo256::merge(&[path[0], path[1]]);
let root = path.iter().skip(2).copied().fold(root, |root, hash| {
index.move_up();
Rpo256::merge(&index.build_node(root.into(), hash.into())).into()
Rpo256::merge(&index.build_node(root, hash))
});
// if the path set is empty (the root is all ZEROs), set the root to the root of the added
// path; otherwise, the root of the added path must be identical to the current root
if self.root == [ZERO; 4] {
if self.root == RpoDigest::default() {
self.root = root;
} else if self.root != root {
return Err(MerkleError::ConflictingRoots([self.root, root].to_vec()));
@ -191,7 +192,11 @@ impl MerklePathSet {
/// # Errors
/// Returns an error if:
/// * Requested node does not exist in the set.
pub fn update_leaf(&mut self, base_index_value: u64, value: Word) -> Result<(), MerkleError> {
pub fn update_leaf(
&mut self,
base_index_value: u64,
value: RpoDigest,
) -> Result<(), MerkleError> {
let mut index = NodeIndex::new(self.depth(), base_index_value)?;
let parity = index.value() & 1;
let path_key = index.value() - parity;
@ -203,24 +208,24 @@ impl MerklePathSet {
// Fill old_hashes vector -----------------------------------------------------------------
let mut current_index = index;
let mut old_hashes = Vec::with_capacity(path.len().saturating_sub(2));
let mut root: Word = Rpo256::merge(&[path[0].into(), path[1].into()]).into();
let mut root: RpoDigest = Rpo256::merge(&[path[0], path[1]]);
for hash in path.iter().skip(2).copied() {
old_hashes.push(root);
current_index.move_up();
let input = current_index.build_node(hash.into(), root.into());
root = Rpo256::merge(&input).into();
let input = current_index.build_node(hash, root);
root = Rpo256::merge(&input);
}
// Fill new_hashes vector -----------------------------------------------------------------
path[index.is_value_odd() as usize] = value;
let mut new_hashes = Vec::with_capacity(path.len().saturating_sub(2));
let mut new_root: Word = Rpo256::merge(&[path[0].into(), path[1].into()]).into();
let mut new_root: RpoDigest = Rpo256::merge(&[path[0], path[1]]);
for path_hash in path.iter().skip(2).copied() {
new_hashes.push(new_root);
index.move_up();
let input = current_index.build_node(path_hash.into(), new_root.into());
new_root = Rpo256::merge(&input).into();
let input = current_index.build_node(path_hash, new_root);
new_root = Rpo256::merge(&input);
}
self.root = new_root;
@ -345,13 +350,13 @@ mod tests {
let g = int_to_node(7);
let h = int_to_node(8);
let i = Rpo256::merge(&[a.into(), b.into()]);
let j = Rpo256::merge(&[c.into(), d.into()]);
let k = Rpo256::merge(&[e.into(), f.into()]);
let l = Rpo256::merge(&[g.into(), h.into()]);
let i = Rpo256::merge(&[a, b]);
let j = Rpo256::merge(&[c, d]);
let k = Rpo256::merge(&[e, f]);
let l = Rpo256::merge(&[g, h]);
let m = Rpo256::merge(&[i.into(), j.into()]);
let n = Rpo256::merge(&[k.into(), l.into()]);
let m = Rpo256::merge(&[i, j]);
let n = Rpo256::merge(&[k, l]);
let root = Rpo256::merge(&[m.into(), n.into()]);
@ -359,31 +364,31 @@ mod tests {
let value = b;
let index = 1;
let path = MerklePath::new([a.into(), j.into(), n.into()].to_vec());
let path = MerklePath::new([a, j, n].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(RpoDigest::from(root), set.root());
let value = e;
let index = 4;
let path = MerklePath::new([f.into(), l.into(), m.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(RpoDigest::from(root), set.root());
let value = a;
let index = 0;
let path = MerklePath::new([b.into(), j.into(), n.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(RpoDigest::from(root), set.root());
let value = h;
let index = 7;
let path = MerklePath::new([g.into(), k.into(), m.into()].to_vec());
set.add_path(index, value, path.clone()).unwrap();
assert_eq!(value, set.get_leaf(index).unwrap());
assert_eq!(Word::from(root), set.root());
assert_eq!(*value, set.get_leaf(index).unwrap());
assert_eq!(RpoDigest::from(root), set.root());
}
// HELPER FUNCTIONS
@ -397,11 +402,11 @@ mod tests {
/// - node — current node
/// - node_pos — position of the current node
/// - sibling — neighboring vertex in the tree
fn calculate_parent_hash(node: Word, node_pos: u64, sibling: Word) -> Word {
fn calculate_parent_hash(node: RpoDigest, node_pos: u64, sibling: RpoDigest) -> RpoDigest {
if is_even(node_pos) {
Rpo256::merge(&[node.into(), sibling.into()]).into()
Rpo256::merge(&[node, sibling])
} else {
Rpo256::merge(&[sibling.into(), node.into()]).into()
Rpo256::merge(&[sibling, node])
}
}
}

+ 18
- 17
src/merkle/simple_smt/mod.rs

@ -1,6 +1,6 @@
use super::{
BTreeMap, BTreeSet, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex,
Rpo256, RpoDigest, Vec, Word, EMPTY_WORD,
empty_roots::EMPTY_WORD, BTreeMap, BTreeSet, EmptySubtreeRoots, InnerNodeInfo, MerkleError,
MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word,
};
#[cfg(test)]
@ -15,7 +15,7 @@ mod tests;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SimpleSmt {
depth: u8,
root: Word,
root: RpoDigest,
leaves: BTreeMap<u64, Word>,
branches: BTreeMap<NodeIndex, BranchNode>,
empty_hashes: Vec<RpoDigest>,
@ -49,7 +49,7 @@ impl SimpleSmt {
}
let empty_hashes = EmptySubtreeRoots::empty_hashes(depth).to_vec();
let root = empty_hashes[0].into();
let root = empty_hashes[0];
Ok(Self {
root,
@ -107,7 +107,7 @@ impl SimpleSmt {
// --------------------------------------------------------------------------------------------
/// Returns the root of this Merkle tree.
pub const fn root(&self) -> Word {
pub const fn root(&self) -> RpoDigest {
self.root
}
@ -121,7 +121,7 @@ impl SimpleSmt {
/// # Errors
/// Returns an error if the specified index has depth set to 0 or the depth is greater than
/// the depth of this Merkle tree.
pub fn get_node(&self, index: NodeIndex) -> Result<Word, MerkleError> {
pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
if index.is_root() {
Err(MerkleError::DepthTooSmall(index.depth()))
} else if index.depth() > self.depth() {
@ -129,11 +129,12 @@ impl SimpleSmt {
} else if index.depth() == self.depth() {
// the lookup in empty_hashes could fail only if empty_hashes were not built correctly
// by the constructor as we check the depth of the lookup above.
Ok(self
.get_leaf_node(index.value())
.unwrap_or_else(|| self.empty_hashes[index.depth() as usize].into()))
Ok(RpoDigest::from(
self.get_leaf_node(index.value())
.unwrap_or_else(|| *self.empty_hashes[index.depth() as usize]),
))
} else {
Ok(self.get_branch_node(&index).parent().into())
Ok(self.get_branch_node(&index).parent())
}
}
@ -143,7 +144,7 @@ impl SimpleSmt {
/// Returns an error if the index is greater than the maximum tree capacity, that is 2^{depth}.
pub fn get_leaf(&self, index: u64) -> Result<Word, MerkleError> {
let index = NodeIndex::new(self.depth, index)?;
self.get_node(index)
Ok(self.get_node(index)?.into())
}
/// Returns a Merkle path from the node at the specified index to the root.
@ -166,9 +167,9 @@ impl SimpleSmt {
index.move_up();
let BranchNode { left, right } = self.get_branch_node(&index);
let value = if is_right { left } else { right };
path.push(*value);
path.push(value);
}
Ok(path.into())
Ok(MerklePath::new(path))
}
/// Return a Merkle path from the leaf at the specified index to the root.
@ -193,9 +194,9 @@ impl SimpleSmt {
/// Returns an iterator over the inner nodes of this Merkle tree.
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.branches.values().map(|e| InnerNodeInfo {
value: e.parent().into(),
left: e.left.into(),
right: e.right.into(),
value: e.parent(),
left: e.left,
right: e.right,
})
}
@ -226,7 +227,7 @@ impl SimpleSmt {
self.insert_branch_node(index, left, right);
value = Rpo256::merge(&[left, right]);
}
self.root = value.into();
self.root = value;
Ok(old_value)
}

+ 69
- 53
src/merkle/simple_smt/tests.rs

@ -1,6 +1,10 @@
use super::{
super::{int_to_node, InnerNodeInfo, MerkleError, MerkleTree, RpoDigest, SimpleSmt},
NodeIndex, Rpo256, Vec, Word, EMPTY_WORD,
super::{InnerNodeInfo, MerkleError, MerkleTree, RpoDigest, SimpleSmt},
NodeIndex, Rpo256, Vec,
};
use crate::{
merkle::{empty_roots::EMPTY_WORD, int_to_leaf},
Word,
};
// TEST DATA
@ -9,20 +13,20 @@ use super::{
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const KEYS8: [u64; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
const VALUES4: [Word; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
const VALUES4: [Word; 4] = [int_to_leaf(1), int_to_leaf(2), int_to_leaf(3), int_to_leaf(4)];
const VALUES8: [Word; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
int_to_leaf(1),
int_to_leaf(2),
int_to_leaf(3),
int_to_leaf(4),
int_to_leaf(5),
int_to_leaf(6),
int_to_leaf(7),
int_to_leaf(8),
];
const ZERO_VALUES8: [Word; 8] = [int_to_node(0); 8];
const ZERO_VALUES8: [Word; 8] = [int_to_leaf(0); 8];
// TESTS
// ================================================================================================
@ -32,7 +36,7 @@ fn build_empty_tree() {
// tree of depth 3
let smt = SimpleSmt::new(3).unwrap();
let mt = MerkleTree::new(ZERO_VALUES8.to_vec()).unwrap();
assert_eq!(mt.root(), smt.root());
assert_eq!(mt.root(), smt.root().into());
}
#[test]
@ -42,11 +46,11 @@ fn build_sparse_tree() {
// insert single value
let key = 6;
let new_node = int_to_node(7);
let new_node = int_to_leaf(7);
values[key as usize] = new_node;
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
let mt2 = MerkleTree::new(values.clone()).unwrap();
assert_eq!(mt2.root(), smt.root());
assert_eq!(mt2.root(), smt.root().into());
assert_eq!(
mt2.get_path(NodeIndex::make(3, 6)).unwrap(),
smt.get_path(NodeIndex::make(3, 6)).unwrap()
@ -55,11 +59,11 @@ fn build_sparse_tree() {
// insert second value at distinct leaf branch
let key = 2;
let new_node = int_to_node(3);
let new_node = int_to_leaf(3);
values[key as usize] = new_node;
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
let mt3 = MerkleTree::new(values).unwrap();
assert_eq!(mt3.root(), smt.root());
assert_eq!(mt3.root(), smt.root().into());
assert_eq!(
mt3.get_path(NodeIndex::make(3, 2)).unwrap(),
smt.get_path(NodeIndex::make(3, 2)).unwrap()
@ -78,16 +82,16 @@ fn test_depth2_tree() {
assert_eq!(node3, tree.get_node(NodeIndex::make(1, 1)).unwrap());
// check get_node()
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
assert_eq!(VALUES4[0], *tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], *tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], *tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], *tree.get_node(NodeIndex::make(2, 3)).unwrap());
// check get_path(): depth 2
assert_eq!(vec![VALUES4[1], node3], *tree.get_path(NodeIndex::make(2, 0)).unwrap());
assert_eq!(vec![VALUES4[0], node3], *tree.get_path(NodeIndex::make(2, 1)).unwrap());
assert_eq!(vec![VALUES4[3], node2], *tree.get_path(NodeIndex::make(2, 2)).unwrap());
assert_eq!(vec![VALUES4[2], node2], *tree.get_path(NodeIndex::make(2, 3)).unwrap());
assert_eq!(vec![VALUES4[1].into(), node3], *tree.get_path(NodeIndex::make(2, 0)).unwrap());
assert_eq!(vec![VALUES4[0].into(), node3], *tree.get_path(NodeIndex::make(2, 1)).unwrap());
assert_eq!(vec![VALUES4[3].into(), node2], *tree.get_path(NodeIndex::make(2, 2)).unwrap());
assert_eq!(vec![VALUES4[2].into(), node2], *tree.get_path(NodeIndex::make(2, 3)).unwrap());
// check get_path(): depth 1
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
@ -99,10 +103,10 @@ fn test_inner_node_iterator() -> Result<(), MerkleError> {
let tree = SimpleSmt::with_leaves(2, KEYS4.into_iter().zip(VALUES4.into_iter())).unwrap();
// check depth 2
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
assert_eq!(VALUES4[0], *tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], *tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], *tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], *tree.get_node(NodeIndex::make(2, 3)).unwrap());
// get parent nodes
let root = tree.root();
@ -142,7 +146,7 @@ fn update_leaf() {
// update one value
let key = 3;
let new_node = int_to_node(9);
let new_node = int_to_leaf(9);
let mut expected_values = VALUES8.to_vec();
expected_values[key] = new_node;
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
@ -153,7 +157,7 @@ fn update_leaf() {
// update another value
let key = 6;
let new_node = int_to_node(10);
let new_node = int_to_leaf(10);
expected_values[key] = new_node;
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
@ -172,34 +176,34 @@ fn small_tree_opening_is_consistent() {
// / \ / \ / \ / \
// a b 0 0 c 0 0 d
let z = Word::from(RpoDigest::default());
let z = EMPTY_WORD;
let a = Word::from(Rpo256::merge(&[z.into(); 2]));
let b = Word::from(Rpo256::merge(&[a.into(); 2]));
let c = Word::from(Rpo256::merge(&[b.into(); 2]));
let d = Word::from(Rpo256::merge(&[c.into(); 2]));
let e = Word::from(Rpo256::merge(&[a.into(), b.into()]));
let f = Word::from(Rpo256::merge(&[z.into(), z.into()]));
let g = Word::from(Rpo256::merge(&[c.into(), z.into()]));
let h = Word::from(Rpo256::merge(&[z.into(), d.into()]));
let e = RpoDigest::from(Rpo256::merge(&[a.into(), b.into()]));
let f = RpoDigest::from(Rpo256::merge(&[z.into(), z.into()]));
let g = RpoDigest::from(Rpo256::merge(&[c.into(), z.into()]));
let h = RpoDigest::from(Rpo256::merge(&[z.into(), d.into()]));
let i = Word::from(Rpo256::merge(&[e.into(), f.into()]));
let j = Word::from(Rpo256::merge(&[g.into(), h.into()]));
let i = RpoDigest::from(Rpo256::merge(&[e.into(), f.into()]));
let j = RpoDigest::from(Rpo256::merge(&[g.into(), h.into()]));
let k = Word::from(Rpo256::merge(&[i.into(), j.into()]));
let k = RpoDigest::from(Rpo256::merge(&[i.into(), j.into()]));
let depth = 3;
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
assert_eq!(tree.root(), Word::from(k));
assert_eq!(tree.root(), RpoDigest::from(k));
let cases: Vec<(u8, u64, Vec<Word>)> = vec![
(3, 0, vec![b, f, j]),
(3, 1, vec![a, f, j]),
(3, 4, vec![z, h, i]),
(3, 7, vec![z, g, i]),
let cases: Vec<(u8, u64, Vec<RpoDigest>)> = vec![
(3, 0, vec![b.into(), f, j]),
(3, 1, vec![a.into(), f, j]),
(3, 4, vec![z.into(), h, i]),
(3, 7, vec![z.into(), g, i]),
(2, 0, vec![f, j]),
(2, 1, vec![e, j]),
(2, 2, vec![h, i]),
@ -217,26 +221,26 @@ fn small_tree_opening_is_consistent() {
#[test]
fn fail_on_duplicates() {
let entries = [(1_u64, int_to_node(1)), (5, int_to_node(2)), (1_u64, int_to_node(3))];
let entries = [(1_u64, int_to_leaf(1)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(3))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
let entries = [(1_u64, int_to_node(0)), (5, int_to_node(2)), (1_u64, int_to_node(0))];
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(0))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
let entries = [(1_u64, int_to_node(0)), (5, int_to_node(2)), (1_u64, int_to_node(1))];
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(1))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
let entries = [(1_u64, int_to_node(1)), (5, int_to_node(2)), (1_u64, int_to_node(0))];
let entries = [(1_u64, int_to_leaf(1)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(0))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
}
#[test]
fn with_no_duplicates_empty_node() {
let entries = [(1_u64, int_to_node(0)), (5, int_to_node(2))];
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_ok());
}
@ -244,9 +248,21 @@ fn with_no_duplicates_empty_node() {
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn compute_internal_nodes() -> (Word, Word, Word) {
let node2 = Rpo256::hash_elements(&[VALUES4[0], VALUES4[1]].concat());
let node3 = Rpo256::hash_elements(&[VALUES4[2], VALUES4[3]].concat());
fn compute_internal_nodes() -> (RpoDigest, RpoDigest, RpoDigest) {
let node2 = Rpo256::hash_elements(
&[VALUES4[0], VALUES4[1]]
.iter()
.map(|digest| *digest)
.collect::<Vec<Word>>()
.concat(),
);
let node3 = Rpo256::hash_elements(
&[VALUES4[2], VALUES4[3]]
.iter()
.map(|digest| *digest)
.collect::<Vec<Word>>()
.concat(),
);
let root = Rpo256::merge(&[node2, node3]);
(root.into(), node2.into(), node3.into())

+ 53
- 45
src/merkle/store/mod.rs

@ -1,6 +1,6 @@
use super::{
mmr::Mmr, BTreeMap, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, MerklePathSet,
MerkleTree, NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, TieredSmt, ValuePath, Vec, Word,
MerkleTree, NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, TieredSmt, ValuePath, Vec,
};
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
use core::borrow::Borrow;
@ -130,21 +130,20 @@ impl MerkleStore {
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_node(&self, root: Word, index: NodeIndex) -> Result<Word, MerkleError> {
let mut hash: RpoDigest = root.into();
pub fn get_node(&self, root: RpoDigest, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
let mut hash = root;
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash.into()))?;
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash))?;
for i in (0..index.depth()).rev() {
let node =
self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
let node = self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash, index))?;
let bit = (index.value() >> i) & 1;
hash = if bit == 0 { node.left } else { node.right }
}
Ok(hash.into())
Ok(hash)
}
/// Returns the node at the specified `index` and its opening to the `root`.
@ -155,23 +154,22 @@ impl MerkleStore {
/// This method can return the following errors:
/// - `RootNotInStore` if the `root` is not present in the store.
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn get_path(&self, root: Word, index: NodeIndex) -> Result<ValuePath, MerkleError> {
let mut hash: RpoDigest = root.into();
pub fn get_path(&self, root: RpoDigest, index: NodeIndex) -> Result<ValuePath, MerkleError> {
let mut hash = root;
let mut path = Vec::with_capacity(index.depth().into());
// corner case: check the root is in the store when called with index `NodeIndex::root()`
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash.into()))?;
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash))?;
for i in (0..index.depth()).rev() {
let node =
self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
let node = self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash, index))?;
let bit = (index.value() >> i) & 1;
hash = if bit == 0 {
path.push(node.right.into());
path.push(node.right);
node.left
} else {
path.push(node.left.into());
path.push(node.left);
node.right
}
}
@ -180,7 +178,7 @@ impl MerkleStore {
path.reverse();
Ok(ValuePath {
value: hash.into(),
value: hash,
path: MerklePath::new(path),
})
}
@ -202,7 +200,7 @@ impl MerkleStore {
/// information, check [NodeIndex::new].
pub fn get_leaf_depth(
&self,
root: Word,
root: RpoDigest,
tree_depth: u8,
index: u64,
) -> Result<u8, MerkleError> {
@ -221,9 +219,9 @@ impl MerkleStore {
// check if the root exists, providing the proper error report if it doesn't
let empty = EmptySubtreeRoots::empty_hashes(tree_depth);
let mut hash: RpoDigest = root.into();
let mut hash = root;
if !self.nodes.contains_key(&hash) {
return Err(MerkleError::RootNotInStore(hash.into()));
return Err(MerkleError::RootNotInStore(hash));
}
// we traverse from root to leaf, so the path is reversed
@ -266,11 +264,11 @@ impl MerkleStore {
pub fn subset<I, R>(&self, roots: I) -> MerkleStore
where
I: Iterator<Item = R>,
R: Borrow<Word>,
R: Borrow<RpoDigest>,
{
let mut store = MerkleStore::new();
for root in roots {
let root = RpoDigest::from(*root.borrow());
let root = *root.borrow();
store.clone_tree_from(root, self);
}
store
@ -279,9 +277,9 @@ impl MerkleStore {
/// Iterator over the inner nodes of the [MerkleStore].
pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
self.nodes.iter().map(|(r, n)| InnerNodeInfo {
value: r.into(),
left: n.left.into(),
right: n.right.into(),
value: *r,
left: n.left,
right: n.right,
})
}
@ -294,9 +292,9 @@ impl MerkleStore {
I: Iterator<Item = InnerNodeInfo>,
{
for node in iter {
let value: RpoDigest = node.value.into();
let left: RpoDigest = node.left.into();
let right: RpoDigest = node.right.into();
let value: RpoDigest = node.value;
let left: RpoDigest = node.left;
let right: RpoDigest = node.right;
debug_assert_eq!(Rpo256::merge(&[left, right]), value);
self.nodes.insert(value, Node { left, right });
@ -313,13 +311,13 @@ impl MerkleStore {
pub fn add_merkle_path(
&mut self,
index: u64,
node: Word,
node: RpoDigest,
path: MerklePath,
) -> Result<Word, MerkleError> {
let root = path.inner_nodes(index, node)?.fold(Word::default(), |_, node| {
let value: RpoDigest = node.value.into();
let left: RpoDigest = node.left.into();
let right: RpoDigest = node.right.into();
) -> Result<RpoDigest, MerkleError> {
let root = path.inner_nodes(index, node)?.fold(RpoDigest::default(), |_, node| {
let value: RpoDigest = node.value;
let left: RpoDigest = node.left;
let right: RpoDigest = node.right;
debug_assert_eq!(Rpo256::merge(&[left, right]), value);
self.nodes.insert(value, Node { left, right });
@ -337,7 +335,7 @@ impl MerkleStore {
/// For further reference, check [MerkleStore::add_merkle_path].
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<(), MerkleError>
where
I: IntoIterator<Item = (u64, Word, MerklePath)>,
I: IntoIterator<Item = (u64, RpoDigest, MerklePath)>,
{
for (index_value, node, path) in paths.into_iter() {
self.add_merkle_path(index_value, node, path)?;
@ -348,7 +346,10 @@ impl MerkleStore {
/// Appends the provided [MerklePathSet] into the store.
///
/// For further reference, check [MerkleStore::add_merkle_path].
pub fn add_merkle_path_set(&mut self, path_set: &MerklePathSet) -> Result<Word, MerkleError> {
pub fn add_merkle_path_set(
&mut self,
path_set: &MerklePathSet,
) -> Result<RpoDigest, MerkleError> {
let root = path_set.root();
for (index, path) in path_set.to_paths() {
self.add_merkle_path(index, path.value, path.path)?;
@ -365,9 +366,9 @@ impl MerkleStore {
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
pub fn set_node(
&mut self,
mut root: Word,
mut root: RpoDigest,
index: NodeIndex,
value: Word,
value: RpoDigest,
) -> Result<RootPath, MerkleError> {
let node = value;
let ValuePath { value, path } = self.get_path(root, index)?;
@ -383,14 +384,21 @@ impl MerkleStore {
/// Merges two elements and adds the resulting node into the store.
///
/// Merges arbitrary values. They may be leafs, nodes, or a mixture of both.
pub fn merge_roots(&mut self, root1: Word, root2: Word) -> Result<Word, MerkleError> {
let left: RpoDigest = root1.into();
let right: RpoDigest = root2.into();
let parent = Rpo256::merge(&[left, right]);
self.nodes.insert(parent, Node { left, right });
Ok(parent.into())
pub fn merge_roots(
&mut self,
left_root: RpoDigest,
right_root: RpoDigest,
) -> Result<RpoDigest, MerkleError> {
let parent = Rpo256::merge(&[left_root, right_root]);
self.nodes.insert(
parent,
Node {
left: left_root,
right: right_root,
},
);
Ok(parent)
}
// HELPER METHODS
@ -404,7 +412,7 @@ impl MerkleStore {
if let Some(node) = source.nodes.get(&root) {
// if the node has already been inserted, no need to process it further as all of its
// descendants should be already cloned from the source store
if matches!(self.nodes.insert(root, *node), None) {
if self.nodes.insert(root, *node).is_none() {
self.clone_tree_from(node.left, source);
self.clone_tree_from(node.right, source);
}

+ 85
- 80
src/merkle/store/tests.rs

@ -1,10 +1,10 @@
use super::{
super::EMPTY_WORD, Deserializable, EmptySubtreeRoots, MerkleError, MerklePath, MerkleStore,
NodeIndex, RpoDigest, Serializable,
Deserializable, EmptySubtreeRoots, MerkleError, MerklePath, MerkleStore, NodeIndex, RpoDigest,
Serializable,
};
use crate::{
hash::rpo::Rpo256,
merkle::{int_to_node, MerklePathSet, MerkleTree, SimpleSmt},
merkle::{int_to_leaf, int_to_node, MerklePathSet, MerkleTree, SimpleSmt},
Felt, Word, WORD_SIZE,
};
@ -15,17 +15,17 @@ use std::error::Error;
// ================================================================================================
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const VALUES4: [Word; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
const VALUES4: [Word; 4] = [int_to_leaf(1), int_to_leaf(2), int_to_leaf(3), int_to_leaf(4)];
const VALUES8: [Word; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
int_to_leaf(1),
int_to_leaf(2),
int_to_leaf(3),
int_to_leaf(4),
int_to_leaf(5),
int_to_leaf(6),
int_to_leaf(7),
int_to_leaf(8),
];
// TESTS
@ -36,13 +36,13 @@ fn test_root_not_in_store() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(VALUES4.to_vec())?;
let store = MerkleStore::from(&mtree);
assert_eq!(
store.get_node(VALUES4[0], NodeIndex::make(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(VALUES4[0])),
store.get_node(VALUES4[0].into(), NodeIndex::make(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(VALUES4[0].into())),
"Leaf 0 is not a root"
);
assert_eq!(
store.get_path(VALUES4[0], NodeIndex::make(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(VALUES4[0])),
store.get_path(VALUES4[0].into(), NodeIndex::make(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(VALUES4[0].into())),
"Leaf 0 is not a root"
);
@ -58,22 +58,22 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 0)),
Ok(VALUES4[0]),
Ok(VALUES4[0].into()),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 1)),
Ok(VALUES4[1]),
Ok(VALUES4[1].into()),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 2)),
Ok(VALUES4[2]),
Ok(VALUES4[2].into()),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3)),
Ok(VALUES4[3]),
Ok(VALUES4[3].into()),
"node 3 must be in the tree"
);
@ -104,7 +104,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
// assert the merkle path returned by the store is the same as the one in the tree
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 0)).unwrap();
assert_eq!(
VALUES4[0], result.value,
VALUES4[0], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -115,7 +115,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 1)).unwrap();
assert_eq!(
VALUES4[1], result.value,
VALUES4[1], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -126,7 +126,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 2)).unwrap();
assert_eq!(
VALUES4[2], result.value,
VALUES4[2], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -137,7 +137,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 3)).unwrap();
assert_eq!(
VALUES4[3], result.value,
VALUES4[3], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -152,7 +152,7 @@ fn test_merkle_tree() -> Result<(), MerkleError> {
#[test]
fn test_empty_roots() {
let store = MerkleStore::default();
let mut root = RpoDigest::new(EMPTY_WORD);
let mut root = RpoDigest::default();
for depth in 0..255 {
root = Rpo256::merge(&[root; 2]);
@ -176,13 +176,17 @@ fn test_leaf_paths_for_empty_trees() -> Result<(), MerkleError> {
let index = NodeIndex::make(depth, 0);
let store_path = store.get_path(smt.root(), index)?;
let smt_path = smt.get_path(index)?;
assert_eq!(store_path.value, EMPTY_WORD, "the leaf of an empty tree is always ZERO");
assert_eq!(
store_path.value,
RpoDigest::default(),
"the leaf of an empty tree is always ZERO"
);
assert_eq!(
store_path.path, smt_path,
"the returned merkle path does not match the computed values"
);
assert_eq!(
store_path.path.compute_root(depth.into(), EMPTY_WORD).unwrap(),
store_path.path.compute_root(depth.into(), RpoDigest::default()).unwrap(),
smt.root(),
"computed root from the path must match the empty tree root"
);
@ -201,16 +205,16 @@ fn test_get_invalid_node() {
#[test]
fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
let keys2: [u64; 2] = [0, 1];
let leaves2: [Word; 2] = [int_to_node(1), int_to_node(2)];
let leaves2: [Word; 2] = [int_to_leaf(1), int_to_leaf(2)];
let smt = SimpleSmt::with_leaves(1, keys2.into_iter().zip(leaves2.into_iter())).unwrap();
let store = MerkleStore::from(&smt);
let idx = NodeIndex::make(1, 0);
assert_eq!(smt.get_node(idx).unwrap(), leaves2[0]);
assert_eq!(store.get_node(smt.root(), idx).unwrap(), smt.get_node(idx).unwrap());
assert_eq!(smt.get_node(idx).unwrap(), leaves2[0].into());
assert_eq!(store.get_node(smt.root().into(), idx).unwrap(), smt.get_node(idx).unwrap());
let idx = NodeIndex::make(1, 1);
assert_eq!(smt.get_node(idx).unwrap(), leaves2[1]);
assert_eq!(smt.get_node(idx).unwrap(), leaves2[1].into());
assert_eq!(store.get_node(smt.root(), idx).unwrap(), smt.get_node(idx).unwrap());
Ok(())
@ -227,28 +231,28 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 0)),
Ok(VALUES4[0]),
store.get_node(smt.root().into(), NodeIndex::make(smt.depth(), 0)),
Ok(VALUES4[0].into()),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 1)),
Ok(VALUES4[1]),
store.get_node(smt.root().into(), NodeIndex::make(smt.depth(), 1)),
Ok(VALUES4[1].into()),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 2)),
Ok(VALUES4[2]),
store.get_node(smt.root().into(), NodeIndex::make(smt.depth(), 2)),
Ok(VALUES4[2].into()),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 3)),
Ok(VALUES4[3]),
store.get_node(smt.root().into(), NodeIndex::make(smt.depth(), 3)),
Ok(VALUES4[3].into()),
"node 3 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 4)),
Ok(EMPTY_WORD),
store.get_node(smt.root().into(), NodeIndex::make(smt.depth(), 4)),
Ok(RpoDigest::default()),
"unmodified node 4 must be ZERO"
);
@ -284,7 +288,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
// assert the merkle path returned by the store is the same as the one in the tree
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 0)).unwrap();
assert_eq!(
VALUES4[0], result.value,
VALUES4[0], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -295,7 +299,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 1)).unwrap();
assert_eq!(
VALUES4[1], result.value,
VALUES4[1], *result.value,
"Value for merkle path at index 1 must match leaf value"
);
assert_eq!(
@ -306,7 +310,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 2)).unwrap();
assert_eq!(
VALUES4[2], result.value,
VALUES4[2], *result.value,
"Value for merkle path at index 2 must match leaf value"
);
assert_eq!(
@ -317,7 +321,7 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 3)).unwrap();
assert_eq!(
VALUES4[3], result.value,
VALUES4[3], *result.value,
"Value for merkle path at index 3 must match leaf value"
);
assert_eq!(
@ -328,7 +332,8 @@ fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 4)).unwrap();
assert_eq!(
EMPTY_WORD, result.value,
RpoDigest::default(),
result.value,
"Value for merkle path at index 4 must match leaf value"
);
assert_eq!(
@ -357,10 +362,10 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
let p3 = mtree.get_path(NodeIndex::make(2, i3)).unwrap();
let paths = [
(i0, VALUES4[i0 as usize], p0),
(i1, VALUES4[i1 as usize], p1),
(i2, VALUES4[i2 as usize], p2),
(i3, VALUES4[i3 as usize], p3),
(i0, VALUES4[i0 as usize].into(), p0),
(i1, VALUES4[i1 as usize].into(), p1),
(i2, VALUES4[i2 as usize].into(), p2),
(i3, VALUES4[i3 as usize].into(), p3),
];
let mut store = MerkleStore::default();
@ -373,22 +378,22 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(set.root(), NodeIndex::make(set.depth(), 0)),
Ok(VALUES4[0]),
Ok(VALUES4[0].into()),
"node 0 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::make(set.depth(), 1)),
Ok(VALUES4[1]),
Ok(VALUES4[1].into()),
"node 1 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::make(set.depth(), 2)),
Ok(VALUES4[2]),
Ok(VALUES4[2].into()),
"node 2 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::make(set.depth(), 3)),
Ok(VALUES4[3]),
Ok(VALUES4[3].into()),
"node 3 must be in the set"
);
@ -419,7 +424,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
// assert the merkle path returned by the store is the same as the one in the set
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 0)).unwrap();
assert_eq!(
VALUES4[0], result.value,
VALUES4[0], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -430,7 +435,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 1)).unwrap();
assert_eq!(
VALUES4[1], result.value,
VALUES4[1], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -441,7 +446,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 2)).unwrap();
assert_eq!(
VALUES4[2], result.value,
VALUES4[2], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -452,7 +457,7 @@ fn test_add_merkle_paths() -> Result<(), MerkleError> {
let result = store.get_path(set.root(), NodeIndex::make(set.depth(), 3)).unwrap();
assert_eq!(
VALUES4[3], result.value,
VALUES4[3], *result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
@ -477,7 +482,7 @@ fn wont_open_to_different_depth_root() {
for depth in (1..=63).rev() {
root = Rpo256::merge(&[root, empty[depth]]);
}
let root = Word::from(root);
let root = RpoDigest::from(root);
// For this example, the depth of the Merkle tree is 1, as we have only two leaves. Here we
// attempt to fetch a node on the maximum depth, and it should fail because the root shouldn't
@ -556,20 +561,20 @@ fn test_constructors() -> Result<(), MerkleError> {
let d = 2;
let paths = [
(0, VALUES4[0], mtree.get_path(NodeIndex::make(d, 0)).unwrap()),
(1, VALUES4[1], mtree.get_path(NodeIndex::make(d, 1)).unwrap()),
(2, VALUES4[2], mtree.get_path(NodeIndex::make(d, 2)).unwrap()),
(3, VALUES4[3], mtree.get_path(NodeIndex::make(d, 3)).unwrap()),
(0, VALUES4[0].into(), mtree.get_path(NodeIndex::make(d, 0)).unwrap()),
(1, VALUES4[1].into(), mtree.get_path(NodeIndex::make(d, 1)).unwrap()),
(2, VALUES4[2].into(), mtree.get_path(NodeIndex::make(d, 2)).unwrap()),
(3, VALUES4[3].into(), mtree.get_path(NodeIndex::make(d, 3)).unwrap()),
];
let mut store1 = MerkleStore::default();
store1.add_merkle_paths(paths.clone())?;
let mut store2 = MerkleStore::default();
store2.add_merkle_path(0, VALUES4[0], mtree.get_path(NodeIndex::make(d, 0))?)?;
store2.add_merkle_path(1, VALUES4[1], mtree.get_path(NodeIndex::make(d, 1))?)?;
store2.add_merkle_path(2, VALUES4[2], mtree.get_path(NodeIndex::make(d, 2))?)?;
store2.add_merkle_path(3, VALUES4[3], mtree.get_path(NodeIndex::make(d, 3))?)?;
store2.add_merkle_path(0, VALUES4[0].into(), mtree.get_path(NodeIndex::make(d, 0))?)?;
store2.add_merkle_path(1, VALUES4[1].into(), mtree.get_path(NodeIndex::make(d, 1))?)?;
store2.add_merkle_path(2, VALUES4[2].into(), mtree.get_path(NodeIndex::make(d, 2))?)?;
store2.add_merkle_path(3, VALUES4[3].into(), mtree.get_path(NodeIndex::make(d, 3))?)?;
let set = MerklePathSet::new(d).with_paths(paths).unwrap();
for key in [0, 1, 2, 3] {
@ -590,11 +595,11 @@ fn node_path_should_be_truncated_by_midtier_insert() {
let key = 0b11010010_11001100_11001100_11001100_11001100_11001100_11001100_11001100_u64;
let mut store = MerkleStore::new();
let root: Word = EmptySubtreeRoots::empty_hashes(64)[0].into();
let root: RpoDigest = EmptySubtreeRoots::empty_hashes(64)[0];
// insert first node - works as expected
let depth = 64;
let node = [Felt::new(key); WORD_SIZE];
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
let index = NodeIndex::new(depth, key).unwrap();
let root = store.set_node(root, index, node).unwrap().root;
let result = store.get_node(root, index).unwrap();
@ -607,7 +612,7 @@ fn node_path_should_be_truncated_by_midtier_insert() {
let key = key ^ (1 << 63);
let key = key >> 8;
let depth = 56;
let node = [Felt::new(key); WORD_SIZE];
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
let index = NodeIndex::new(depth, key).unwrap();
let root = store.set_node(root, index, node).unwrap().root;
let result = store.get_node(root, index).unwrap();
@ -626,13 +631,13 @@ fn node_path_should_be_truncated_by_midtier_insert() {
#[test]
fn get_leaf_depth_works_depth_64() {
let mut store = MerkleStore::new();
let mut root: Word = EmptySubtreeRoots::empty_hashes(64)[0].into();
let mut root: RpoDigest = EmptySubtreeRoots::empty_hashes(64)[0];
let key = u64::MAX;
// this will create a rainbow tree and test all opening to depth 64
for d in 0..64 {
let k = key & (u64::MAX >> d);
let node = [Felt::new(k); WORD_SIZE];
let node = RpoDigest::from([Felt::new(k); WORD_SIZE]);
let index = NodeIndex::new(64, k).unwrap();
// assert the leaf doesn't exist before the insert. the returned depth should always
@ -649,14 +654,14 @@ fn get_leaf_depth_works_depth_64() {
#[test]
fn get_leaf_depth_works_with_incremental_depth() {
let mut store = MerkleStore::new();
let mut root: Word = EmptySubtreeRoots::empty_hashes(64)[0].into();
let mut root: RpoDigest = EmptySubtreeRoots::empty_hashes(64)[0];
// insert some path to the left of the root and assert it
let key = 0b01001011_10110110_00001101_01110100_00111011_10101101_00000100_01000001_u64;
assert_eq!(0, store.get_leaf_depth(root, 64, key).unwrap());
let depth = 64;
let index = NodeIndex::new(depth, key).unwrap();
let node = [Felt::new(key); WORD_SIZE];
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
@ -665,7 +670,7 @@ fn get_leaf_depth_works_with_incremental_depth() {
assert_eq!(1, store.get_leaf_depth(root, 64, key).unwrap());
let depth = 16;
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
let node = [Felt::new(key); WORD_SIZE];
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
@ -673,7 +678,7 @@ fn get_leaf_depth_works_with_incremental_depth() {
let key = 0b11001011_10110111_00000000_00000000_00000000_00000000_00000000_00000000_u64;
assert_eq!(16, store.get_leaf_depth(root, 64, key).unwrap());
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
let node = [Felt::new(key); WORD_SIZE];
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
@ -682,7 +687,7 @@ fn get_leaf_depth_works_with_incremental_depth() {
assert_eq!(15, store.get_leaf_depth(root, 64, key).unwrap());
let depth = 17;
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
let node = [Felt::new(key); WORD_SIZE];
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
}
@ -690,7 +695,7 @@ fn get_leaf_depth_works_with_incremental_depth() {
#[test]
fn get_leaf_depth_works_with_depth_8() {
let mut store = MerkleStore::new();
let mut root: Word = EmptySubtreeRoots::empty_hashes(8)[0].into();
let mut root: RpoDigest = EmptySubtreeRoots::empty_hashes(8)[0];
// insert some random, 8 depth keys. `a` diverges from the first bit
let a = 0b01101001_u64;
@ -700,7 +705,7 @@ fn get_leaf_depth_works_with_depth_8() {
for k in [a, b, c, d] {
let index = NodeIndex::new(8, k).unwrap();
let node = [Felt::new(k); WORD_SIZE];
let node = RpoDigest::from([Felt::new(k); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
}
@ -780,7 +785,7 @@ fn check_mstore_subtree(store: &MerkleStore, subtree: &MerkleTree) {
for (i, value) in subtree.leaves() {
let index = NodeIndex::new(subtree.depth(), i).unwrap();
let path1 = store.get_path(subtree.root(), index).unwrap();
assert_eq!(&path1.value, value);
assert_eq!(*path1.value, *value);
let path2 = subtree.get_path(index).unwrap();
assert_eq!(path1.path, path2);

+ 7
- 7
src/merkle/tiered_smt/mod.rs

@ -1,6 +1,6 @@
use super::{
BTreeMap, BTreeSet, EmptySubtreeRoots, Felt, InnerNodeInfo, MerkleError, MerklePath, NodeIndex,
Rpo256, RpoDigest, StarkField, Vec, Word, EMPTY_WORD, ZERO,
empty_roots::EMPTY_WORD, BTreeMap, BTreeSet, EmptySubtreeRoots, Felt, InnerNodeInfo,
MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, StarkField, Vec, Word, ZERO,
};
use core::cmp;
@ -123,7 +123,7 @@ impl TieredSmt {
let mut path = Vec::with_capacity(index.depth() as usize);
for _ in 0..index.depth() {
let node = self.get_node_unchecked(&index.sibling());
path.push(node.into());
path.push(node);
index.move_up();
}
@ -200,9 +200,9 @@ impl TieredSmt {
self.nodes.iter().filter_map(|(index, node)| {
if is_inner_node(index) {
Some(InnerNodeInfo {
value: node.into(),
left: self.get_node_unchecked(&index.left_child()).into(),
right: self.get_node_unchecked(&index.right_child()).into(),
value: *node,
left: self.get_node_unchecked(&index.left_child()),
right: self.get_node_unchecked(&index.right_child()),
})
} else {
None
@ -456,7 +456,7 @@ impl BottomLeaf {
let mut elements = Vec::with_capacity(self.values.len() * 2);
for (key, val) in self.values.iter() {
key.iter().for_each(|&v| elements.push(Felt::new(v)));
elements.extend_from_slice(val);
elements.extend_from_slice(val.as_slice());
}
// TODO: hash in domain
Rpo256::hash_elements(&elements)

+ 59
- 23
src/merkle/tiered_smt/tests.rs

@ -66,11 +66,19 @@ fn tsmt_insert_two_16() {
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(32, raw_a >> 32);
let leaf_node_a = build_leaf_node(key_a, val_a, 32);
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_a, leaf_node_a.into())
.unwrap()
.root
.into();
let index_b = NodeIndex::make(32, raw_b >> 32);
let leaf_node_b = build_leaf_node(key_b, val_b, 32);
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_b, leaf_node_b.into())
.unwrap()
.root
.into();
// --- verify that data is consistent between store and tree --------------
@ -78,12 +86,12 @@ fn tsmt_insert_two_16() {
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
@ -122,11 +130,19 @@ fn tsmt_insert_two_32() {
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(48, raw_a >> 16);
let leaf_node_a = build_leaf_node(key_a, val_a, 48);
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_a, leaf_node_a.into())
.unwrap()
.root
.into();
let index_b = NodeIndex::make(48, raw_b >> 16);
let leaf_node_b = build_leaf_node(key_b, val_b, 48);
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_b, leaf_node_b.into())
.unwrap()
.root
.into();
// --- verify that data is consistent between store and tree --------------
@ -134,12 +150,12 @@ fn tsmt_insert_two_32() {
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
@ -181,15 +197,27 @@ fn tsmt_insert_three() {
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(32, raw_a >> 32);
let leaf_node_a = build_leaf_node(key_a, val_a, 32);
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_a, leaf_node_a.into())
.unwrap()
.root
.into();
let index_b = NodeIndex::make(32, raw_b >> 32);
let leaf_node_b = build_leaf_node(key_b, val_b, 32);
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_b, leaf_node_b.into())
.unwrap()
.root
.into();
let index_c = NodeIndex::make(32, raw_c >> 32);
let leaf_node_c = build_leaf_node(key_c, val_c, 32);
tree_root = store.set_node(tree_root, index_c, leaf_node_c.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_c, leaf_node_c.into())
.unwrap()
.root
.into();
// --- verify that data is consistent between store and tree --------------
@ -197,17 +225,17 @@ fn tsmt_insert_three() {
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
assert_eq!(smt.get_value(key_c), val_c);
assert_eq!(smt.get_node(index_c).unwrap(), leaf_node_c);
let expected_path = store.get_path(tree_root, index_c).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_c).unwrap().path;
assert_eq!(smt.get_path(index_c).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
@ -236,13 +264,13 @@ fn tsmt_update() {
let mut tree_root = get_init_root();
let index = NodeIndex::make(16, raw >> 48);
let leaf_node = build_leaf_node(key, value_b, 16);
tree_root = store.set_node(tree_root, index, leaf_node.into()).unwrap().root;
tree_root = store.set_node(tree_root.into(), index, leaf_node.into()).unwrap().root.into();
assert_eq!(smt.root(), tree_root.into());
assert_eq!(smt.get_value(key), value_b);
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
let expected_path = store.get_path(tree_root, index).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index).unwrap().path;
assert_eq!(smt.get_path(index).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
@ -281,7 +309,7 @@ fn tsmt_bottom_tier() {
// key_b is smaller than key_a.
let leaf_node = build_bottom_leaf_node(&[key_b, key_a], &[val_b, val_a]);
let mut tree_root = get_init_root();
tree_root = store.set_node(tree_root, index, leaf_node.into()).unwrap().root;
tree_root = store.set_node(tree_root.into(), index, leaf_node.into()).unwrap().root.into();
// --- verify that data is consistent between store and tree --------------
@ -291,7 +319,7 @@ fn tsmt_bottom_tier() {
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index).unwrap(), leaf_node);
let expected_path = store.get_path(tree_root, index).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index).unwrap().path;
assert_eq!(smt.get_path(index).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
@ -329,11 +357,19 @@ fn tsmt_bottom_tier_two() {
let mut tree_root = get_init_root();
let index_a = NodeIndex::make(64, raw_a);
let leaf_node_a = build_bottom_leaf_node(&[key_a], &[val_a]);
tree_root = store.set_node(tree_root, index_a, leaf_node_a.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_a, leaf_node_a.into())
.unwrap()
.root
.into();
let index_b = NodeIndex::make(64, raw_b);
let leaf_node_b = build_bottom_leaf_node(&[key_b], &[val_b]);
tree_root = store.set_node(tree_root, index_b, leaf_node_b.into()).unwrap().root;
tree_root = store
.set_node(tree_root.into(), index_b, leaf_node_b.into())
.unwrap()
.root
.into();
// --- verify that data is consistent between store and tree --------------
@ -341,12 +377,12 @@ fn tsmt_bottom_tier_two() {
assert_eq!(smt.get_value(key_a), val_a);
assert_eq!(smt.get_node(index_a).unwrap(), leaf_node_a);
let expected_path = store.get_path(tree_root, index_a).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_a).unwrap().path;
assert_eq!(smt.get_path(index_a).unwrap(), expected_path);
assert_eq!(smt.get_value(key_b), val_b);
assert_eq!(smt.get_node(index_b).unwrap(), leaf_node_b);
let expected_path = store.get_path(tree_root, index_b).unwrap().path;
let expected_path = store.get_path(tree_root.into(), index_b).unwrap().path;
assert_eq!(smt.get_path(index_b).unwrap(), expected_path);
// make sure inner nodes match - the store contains more entries because it keeps track of
@ -423,7 +459,7 @@ fn build_bottom_leaf_node(keys: &[RpoDigest], values: &[Word]) -> RpoDigest {
let mut key = Word::from(key);
key[3] = ZERO;
elements.extend_from_slice(&key);
elements.extend_from_slice(val);
elements.extend_from_slice(val.as_slice());
}
Rpo256::hash_elements(&elements)

Loading…
Cancel
Save