You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

926 lines
35 KiB

use super::{
DefaultMerkleStore as MerkleStore, EmptySubtreeRoots, MerkleError, MerklePath, NodeIndex,
PartialMerkleTree, RecordingMerkleStore, Rpo256, RpoDigest,
};
use crate::{
merkle::{digests_to_words, int_to_leaf, int_to_node, MerkleTree, SimpleSmt},
Felt, Word, ONE, WORD_SIZE, ZERO,
};
#[cfg(feature = "std")]
use super::{Deserializable, Serializable};
#[cfg(feature = "std")]
use std::error::Error;
// TEST DATA
// ================================================================================================
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const VALUES4: [RpoDigest; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
const KEYS8: [u64; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
const VALUES8: [RpoDigest; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
];
// TESTS
// ================================================================================================
#[test]
fn test_root_not_in_store() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(digests_to_words(&VALUES4))?;
let store = MerkleStore::from(&mtree);
assert_eq!(
store.get_node(VALUES4[0], NodeIndex::make(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(VALUES4[0])),
"Leaf 0 is not a root"
);
assert_eq!(
store.get_path(VALUES4[0], NodeIndex::make(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(VALUES4[0])),
"Leaf 0 is not a root"
);
Ok(())
}
#[test]
fn test_merkle_tree() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(digests_to_words(&VALUES4))?;
let store = MerkleStore::from(&mtree);
// STORE LEAVES ARE CORRECT -------------------------------------------------------------------
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 0)),
Ok(VALUES4[0]),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 1)),
Ok(VALUES4[1]),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 2)),
Ok(VALUES4[2]),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3)),
Ok(VALUES4[3]),
"node 3 must be in the tree"
);
// STORE LEAVES MATCH TREE --------------------------------------------------------------------
// sanity check the values returned by the store and the tree
assert_eq!(
mtree.get_node(NodeIndex::make(mtree.depth(), 0)),
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 0)),
"node 0 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::make(mtree.depth(), 1)),
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 1)),
"node 1 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::make(mtree.depth(), 2)),
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 2)),
"node 2 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::make(mtree.depth(), 3)),
store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3)),
"node 3 must be the same for both MerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the tree
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 0)).unwrap();
assert_eq!(
VALUES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::make(mtree.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 1)).unwrap();
assert_eq!(
VALUES4[1], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::make(mtree.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 2)).unwrap();
assert_eq!(
VALUES4[2], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::make(mtree.depth(), 2)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(mtree.root(), NodeIndex::make(mtree.depth(), 3)).unwrap();
assert_eq!(
VALUES4[3], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::make(mtree.depth(), 3)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn test_empty_roots() {
let store = MerkleStore::default();
let mut root = RpoDigest::default();
for depth in 0..255 {
root = Rpo256::merge(&[root; 2]);
assert!(
store.get_node(root, NodeIndex::make(0, 0)).is_ok(),
"The root of the empty tree of depth {depth} must be registered"
);
}
}
#[test]
fn test_leaf_paths_for_empty_trees() -> Result<(), MerkleError> {
let store = MerkleStore::default();
// Starts at 1 because leafs are not included in the store.
// Ends at 64 because it is not possible to represent an index of a depth greater than 64,
// because a u64 is used to index the leaf.
for depth in 1..64 {
let smt = SimpleSmt::new(depth)?;
let index = NodeIndex::make(depth, 0);
let store_path = store.get_path(smt.root(), index)?;
let smt_path = smt.get_path(index)?;
assert_eq!(
store_path.value,
RpoDigest::default(),
"the leaf of an empty tree is always ZERO"
);
assert_eq!(
store_path.path, smt_path,
"the returned merkle path does not match the computed values"
);
assert_eq!(
store_path.path.compute_root(depth.into(), RpoDigest::default()).unwrap(),
smt.root(),
"computed root from the path must match the empty tree root"
);
}
Ok(())
}
#[test]
fn test_get_invalid_node() {
let mtree =
MerkleTree::new(digests_to_words(&VALUES4)).expect("creating a merkle tree must work");
let store = MerkleStore::from(&mtree);
let _ = store.get_node(mtree.root(), NodeIndex::make(mtree.depth(), 3));
}
#[test]
fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
let keys2: [u64; 2] = [0, 1];
let leaves2: [Word; 2] = [int_to_leaf(1), int_to_leaf(2)];
let smt = SimpleSmt::with_leaves(1, keys2.into_iter().zip(leaves2)).unwrap();
let store = MerkleStore::from(&smt);
let idx = NodeIndex::make(1, 0);
assert_eq!(smt.get_node(idx).unwrap(), leaves2[0].into());
assert_eq!(store.get_node(smt.root(), idx).unwrap(), smt.get_node(idx).unwrap());
let idx = NodeIndex::make(1, 1);
assert_eq!(smt.get_node(idx).unwrap(), leaves2[1].into());
assert_eq!(store.get_node(smt.root(), idx).unwrap(), smt.get_node(idx).unwrap());
Ok(())
}
#[test]
fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
let smt = SimpleSmt::with_leaves(
SimpleSmt::MAX_DEPTH,
KEYS4.into_iter().zip(digests_to_words(&VALUES4)),
)
.unwrap();
let store = MerkleStore::from(&smt);
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 0)),
Ok(VALUES4[0]),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 1)),
Ok(VALUES4[1]),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 2)),
Ok(VALUES4[2]),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 3)),
Ok(VALUES4[3]),
"node 3 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 4)),
Ok(RpoDigest::default()),
"unmodified node 4 must be ZERO"
);
// STORE LEAVES MATCH TREE ===============================================================
// sanity check the values returned by the store and the tree
assert_eq!(
smt.get_node(NodeIndex::make(smt.depth(), 0)),
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 0)),
"node 0 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(NodeIndex::make(smt.depth(), 1)),
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 1)),
"node 1 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(NodeIndex::make(smt.depth(), 2)),
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 2)),
"node 2 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(NodeIndex::make(smt.depth(), 3)),
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 3)),
"node 3 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(NodeIndex::make(smt.depth(), 4)),
store.get_node(smt.root(), NodeIndex::make(smt.depth(), 4)),
"node 4 must be the same for both SparseMerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the tree
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 0)).unwrap();
assert_eq!(
VALUES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::make(smt.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 1)).unwrap();
assert_eq!(
VALUES4[1], result.value,
"Value for merkle path at index 1 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::make(smt.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 2)).unwrap();
assert_eq!(
VALUES4[2], result.value,
"Value for merkle path at index 2 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::make(smt.depth(), 2)),
Ok(result.path),
"merkle path for index 2 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 3)).unwrap();
assert_eq!(
VALUES4[3], result.value,
"Value for merkle path at index 3 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::make(smt.depth(), 3)),
Ok(result.path),
"merkle path for index 3 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(smt.root(), NodeIndex::make(smt.depth(), 4)).unwrap();
assert_eq!(
RpoDigest::default(),
result.value,
"Value for merkle path at index 4 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::make(smt.depth(), 4)),
Ok(result.path),
"merkle path for index 4 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn test_add_merkle_paths() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(digests_to_words(&VALUES4))?;
let i0 = 0;
let p0 = mtree.get_path(NodeIndex::make(2, i0)).unwrap();
let i1 = 1;
let p1 = mtree.get_path(NodeIndex::make(2, i1)).unwrap();
let i2 = 2;
let p2 = mtree.get_path(NodeIndex::make(2, i2)).unwrap();
let i3 = 3;
let p3 = mtree.get_path(NodeIndex::make(2, i3)).unwrap();
let paths = [
(i0, VALUES4[i0 as usize], p0),
(i1, VALUES4[i1 as usize], p1),
(i2, VALUES4[i2 as usize], p2),
(i3, VALUES4[i3 as usize], p3),
];
let mut store = MerkleStore::default();
store.add_merkle_paths(paths.clone()).expect("the valid paths must work");
let pmt = PartialMerkleTree::with_paths(paths).unwrap();
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 0)),
Ok(VALUES4[0]),
"node 0 must be in the pmt"
);
assert_eq!(
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 1)),
Ok(VALUES4[1]),
"node 1 must be in the pmt"
);
assert_eq!(
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 2)),
Ok(VALUES4[2]),
"node 2 must be in the pmt"
);
assert_eq!(
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 3)),
Ok(VALUES4[3]),
"node 3 must be in the pmt"
);
// STORE LEAVES MATCH PMT ================================================================
// sanity check the values returned by the store and the pmt
assert_eq!(
pmt.get_node(NodeIndex::make(pmt.max_depth(), 0)),
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 0)),
"node 0 must be the same for both PartialMerkleTree and MerkleStore"
);
assert_eq!(
pmt.get_node(NodeIndex::make(pmt.max_depth(), 1)),
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 1)),
"node 1 must be the same for both PartialMerkleTree and MerkleStore"
);
assert_eq!(
pmt.get_node(NodeIndex::make(pmt.max_depth(), 2)),
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 2)),
"node 2 must be the same for both PartialMerkleTree and MerkleStore"
);
assert_eq!(
pmt.get_node(NodeIndex::make(pmt.max_depth(), 3)),
store.get_node(pmt.root(), NodeIndex::make(pmt.max_depth(), 3)),
"node 3 must be the same for both PartialMerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the pmt
let result = store.get_path(pmt.root(), NodeIndex::make(pmt.max_depth(), 0)).unwrap();
assert_eq!(
VALUES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
pmt.get_path(NodeIndex::make(pmt.max_depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(pmt.root(), NodeIndex::make(pmt.max_depth(), 1)).unwrap();
assert_eq!(
VALUES4[1], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
pmt.get_path(NodeIndex::make(pmt.max_depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(pmt.root(), NodeIndex::make(pmt.max_depth(), 2)).unwrap();
assert_eq!(
VALUES4[2], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
pmt.get_path(NodeIndex::make(pmt.max_depth(), 2)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store.get_path(pmt.root(), NodeIndex::make(pmt.max_depth(), 3)).unwrap();
assert_eq!(
VALUES4[3], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
pmt.get_path(NodeIndex::make(pmt.max_depth(), 3)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn wont_open_to_different_depth_root() {
let empty = EmptySubtreeRoots::empty_hashes(64);
let a = [ONE; 4];
let b = [Felt::new(2); 4];
// Compute the root for a different depth. We cherry-pick this specific depth to prevent a
// regression to a bug in the past that allowed the user to fetch a node at a depth lower than
// the inserted path of a Merkle tree.
let mut root = Rpo256::merge(&[a.into(), b.into()]);
for depth in (1..=63).rev() {
root = Rpo256::merge(&[root, empty[depth]]);
}
// For this example, the depth of the Merkle tree is 1, as we have only two leaves. Here we
// attempt to fetch a node on the maximum depth, and it should fail because the root shouldn't
// exist for the set.
let mtree = MerkleTree::new(vec![a, b]).unwrap();
let store = MerkleStore::from(&mtree);
let index = NodeIndex::root();
let err = store.get_node(root, index).err().unwrap();
assert_eq!(err, MerkleError::RootNotInStore(root));
}
#[test]
fn store_path_opens_from_leaf() {
let a = [ONE; 4];
let b = [Felt::new(2); 4];
let c = [Felt::new(3); 4];
let d = [Felt::new(4); 4];
let e = [Felt::new(5); 4];
let f = [Felt::new(6); 4];
let g = [Felt::new(7); 4];
let h = [Felt::new(8); 4];
let i = Rpo256::merge(&[a.into(), b.into()]);
let j = Rpo256::merge(&[c.into(), d.into()]);
let k = Rpo256::merge(&[e.into(), f.into()]);
let l = Rpo256::merge(&[g.into(), h.into()]);
let m = Rpo256::merge(&[i, j]);
let n = Rpo256::merge(&[k, l]);
let root = Rpo256::merge(&[m, n]);
let mtree = MerkleTree::new(vec![a, b, c, d, e, f, g, h]).unwrap();
let store = MerkleStore::from(&mtree);
let path = store.get_path(root, NodeIndex::make(3, 1)).unwrap().path;
let expected = MerklePath::new([a.into(), j, n].to_vec());
assert_eq!(path, expected);
}
#[test]
fn test_set_node() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(digests_to_words(&VALUES4))?;
let mut store = MerkleStore::from(&mtree);
let value = int_to_node(42);
let index = NodeIndex::make(mtree.depth(), 0);
let new_root = store.set_node(mtree.root(), index, value)?.root;
assert_eq!(store.get_node(new_root, index), Ok(value), "Value must have changed");
Ok(())
}
#[test]
fn test_constructors() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(digests_to_words(&VALUES4))?;
let store = MerkleStore::from(&mtree);
let depth = mtree.depth();
let leaves = 2u64.pow(depth.into());
for index in 0..leaves {
let index = NodeIndex::make(depth, index);
let value_path = store.get_path(mtree.root(), index)?;
assert_eq!(mtree.get_path(index)?, value_path.path);
}
let depth = 32;
let smt =
SimpleSmt::with_leaves(depth, KEYS4.into_iter().zip(digests_to_words(&VALUES4))).unwrap();
let store = MerkleStore::from(&smt);
let depth = smt.depth();
for key in KEYS4 {
let index = NodeIndex::make(depth, key);
let value_path = store.get_path(smt.root(), index)?;
assert_eq!(smt.get_path(index)?, value_path.path);
}
let d = 2;
let paths = [
(0, VALUES4[0], mtree.get_path(NodeIndex::make(d, 0)).unwrap()),
(1, VALUES4[1], mtree.get_path(NodeIndex::make(d, 1)).unwrap()),
(2, VALUES4[2], mtree.get_path(NodeIndex::make(d, 2)).unwrap()),
(3, VALUES4[3], mtree.get_path(NodeIndex::make(d, 3)).unwrap()),
];
let mut store1 = MerkleStore::default();
store1.add_merkle_paths(paths.clone())?;
let mut store2 = MerkleStore::default();
store2.add_merkle_path(0, VALUES4[0], mtree.get_path(NodeIndex::make(d, 0))?)?;
store2.add_merkle_path(1, VALUES4[1], mtree.get_path(NodeIndex::make(d, 1))?)?;
store2.add_merkle_path(2, VALUES4[2], mtree.get_path(NodeIndex::make(d, 2))?)?;
store2.add_merkle_path(3, VALUES4[3], mtree.get_path(NodeIndex::make(d, 3))?)?;
let pmt = PartialMerkleTree::with_paths(paths).unwrap();
for key in [0, 1, 2, 3] {
let index = NodeIndex::make(d, key);
let value_path1 = store1.get_path(pmt.root(), index)?;
let value_path2 = store2.get_path(pmt.root(), index)?;
assert_eq!(value_path1, value_path2);
let index = NodeIndex::make(d, key);
assert_eq!(pmt.get_path(index)?, value_path1.path);
}
Ok(())
}
#[test]
fn node_path_should_be_truncated_by_midtier_insert() {
let key = 0b11010010_11001100_11001100_11001100_11001100_11001100_11001100_11001100_u64;
let mut store = MerkleStore::new();
let root: RpoDigest = EmptySubtreeRoots::empty_hashes(64)[0];
// insert first node - works as expected
let depth = 64;
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
let index = NodeIndex::new(depth, key).unwrap();
let root = store.set_node(root, index, node).unwrap().root;
let result = store.get_node(root, index).unwrap();
let path = store.get_path(root, index).unwrap().path;
assert_eq!(node, result);
assert_eq!(path.depth(), depth);
assert!(path.verify(index.value(), result, &root));
// flip the first bit of the key and insert the second node on a different depth
let key = key ^ (1 << 63);
let key = key >> 8;
let depth = 56;
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
let index = NodeIndex::new(depth, key).unwrap();
let root = store.set_node(root, index, node).unwrap().root;
let result = store.get_node(root, index).unwrap();
let path = store.get_path(root, index).unwrap().path;
assert_eq!(node, result);
assert_eq!(path.depth(), depth);
assert!(path.verify(index.value(), result, &root));
// attempt to fetch a path of the second node to depth 64
// should fail because the previously inserted node will remove its sub-tree from the set
let key = key << 8;
let index = NodeIndex::new(64, key).unwrap();
assert!(store.get_node(root, index).is_err());
}
// LEAF TRAVERSAL
// ================================================================================================
#[test]
fn get_leaf_depth_works_depth_64() {
let mut store = MerkleStore::new();
let mut root: RpoDigest = EmptySubtreeRoots::empty_hashes(64)[0];
let key = u64::MAX;
// this will create a rainbow tree and test all opening to depth 64
for d in 0..64 {
let k = key & (u64::MAX >> d);
let node = RpoDigest::from([Felt::new(k); WORD_SIZE]);
let index = NodeIndex::new(64, k).unwrap();
// assert the leaf doesn't exist before the insert. the returned depth should always
// increment with the paths count of the set, as they are insersecting one another up to
// the first bits of the used key.
assert_eq!(d, store.get_leaf_depth(root, 64, k).unwrap());
// insert and assert the correct depth
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(64, store.get_leaf_depth(root, 64, k).unwrap());
}
}
#[test]
fn get_leaf_depth_works_with_incremental_depth() {
let mut store = MerkleStore::new();
let mut root: RpoDigest = EmptySubtreeRoots::empty_hashes(64)[0];
// insert some path to the left of the root and assert it
let key = 0b01001011_10110110_00001101_01110100_00111011_10101101_00000100_01000001_u64;
assert_eq!(0, store.get_leaf_depth(root, 64, key).unwrap());
let depth = 64;
let index = NodeIndex::new(depth, key).unwrap();
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
// flip the key to the right of the root and insert some content on depth 16
let key = 0b11001011_10110110_00000000_00000000_00000000_00000000_00000000_00000000_u64;
assert_eq!(1, store.get_leaf_depth(root, 64, key).unwrap());
let depth = 16;
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
// attempt the sibling of the previous leaf
let key = 0b11001011_10110111_00000000_00000000_00000000_00000000_00000000_00000000_u64;
assert_eq!(16, store.get_leaf_depth(root, 64, key).unwrap());
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
// move down to the next depth and assert correct behavior
let key = 0b11001011_10110100_00000000_00000000_00000000_00000000_00000000_00000000_u64;
assert_eq!(15, store.get_leaf_depth(root, 64, key).unwrap());
let depth = 17;
let index = NodeIndex::new(depth, key >> (64 - depth)).unwrap();
let node = RpoDigest::from([Felt::new(key); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
assert_eq!(depth, store.get_leaf_depth(root, 64, key).unwrap());
}
#[test]
fn get_leaf_depth_works_with_depth_8() {
let mut store = MerkleStore::new();
let mut root: RpoDigest = EmptySubtreeRoots::empty_hashes(8)[0];
// insert some random, 8 depth keys. `a` diverges from the first bit
let a = 0b01101001_u64;
let b = 0b10011001_u64;
let c = 0b10010110_u64;
let d = 0b11110110_u64;
for k in [a, b, c, d] {
let index = NodeIndex::new(8, k).unwrap();
let node = RpoDigest::from([Felt::new(k); WORD_SIZE]);
root = store.set_node(root, index, node).unwrap().root;
}
// assert all leaves returns the inserted depth
for k in [a, b, c, d] {
assert_eq!(8, store.get_leaf_depth(root, 8, k).unwrap());
}
// flip last bit of a and expect it to return the the same depth, but for an empty node
assert_eq!(8, store.get_leaf_depth(root, 8, 0b01101000_u64).unwrap());
// flip fourth bit of a and expect an empty node on depth 4
assert_eq!(4, store.get_leaf_depth(root, 8, 0b01111001_u64).unwrap());
// flip third bit of a and expect an empty node on depth 3
assert_eq!(3, store.get_leaf_depth(root, 8, 0b01001001_u64).unwrap());
// flip second bit of a and expect an empty node on depth 2
assert_eq!(2, store.get_leaf_depth(root, 8, 0b00101001_u64).unwrap());
// flip fourth bit of c and expect an empty node on depth 4
assert_eq!(4, store.get_leaf_depth(root, 8, 0b10000110_u64).unwrap());
// flip second bit of d and expect an empty node on depth 3 as depth 2 conflicts with b and c
assert_eq!(3, store.get_leaf_depth(root, 8, 0b10110110_u64).unwrap());
// duplicate the tree on `a` and assert the depth is short-circuited by such sub-tree
let index = NodeIndex::new(8, a).unwrap();
root = store.set_node(root, index, root).unwrap().root;
assert_eq!(Err(MerkleError::DepthTooBig(9)), store.get_leaf_depth(root, 8, a));
}
#[test]
fn find_lone_leaf() {
let mut store = MerkleStore::new();
let empty = EmptySubtreeRoots::empty_hashes(64);
let mut root: RpoDigest = empty[0];
// insert a single leaf into the store at depth 64
let key_a = 0b01010101_10101010_00001111_01110100_00111011_10101101_00000100_01000001_u64;
let idx_a = NodeIndex::make(64, key_a);
let val_a = RpoDigest::from([ONE, ONE, ONE, ONE]);
root = store.set_node(root, idx_a, val_a).unwrap().root;
// for every ancestor of A, A should be a long leaf
for depth in 1..64 {
let parent_index = NodeIndex::make(depth, key_a >> (64 - depth));
let parent = store.get_node(root, parent_index).unwrap();
let res = store.find_lone_leaf(parent, parent_index, 64).unwrap();
assert_eq!(res, Some((idx_a, val_a)));
}
// insert another leaf into the store such that it has the same 8 bit prefix as A
let key_b = 0b01010101_01111010_00001111_01110100_00111011_10101101_00000100_01000001_u64;
let idx_b = NodeIndex::make(64, key_b);
let val_b = RpoDigest::from([ONE, ONE, ONE, ZERO]);
root = store.set_node(root, idx_b, val_b).unwrap().root;
// for any node which is common between A and B, find_lone_leaf() should return None as the
// node has two descendants
for depth in 1..9 {
let parent_index = NodeIndex::make(depth, key_a >> (64 - depth));
let parent = store.get_node(root, parent_index).unwrap();
let res = store.find_lone_leaf(parent, parent_index, 64).unwrap();
assert_eq!(res, None);
}
// for other ancestors of A and B, A and B should be lone leaves respectively
for depth in 9..64 {
let parent_index = NodeIndex::make(depth, key_a >> (64 - depth));
let parent = store.get_node(root, parent_index).unwrap();
let res = store.find_lone_leaf(parent, parent_index, 64).unwrap();
assert_eq!(res, Some((idx_a, val_a)));
}
for depth in 9..64 {
let parent_index = NodeIndex::make(depth, key_b >> (64 - depth));
let parent = store.get_node(root, parent_index).unwrap();
let res = store.find_lone_leaf(parent, parent_index, 64).unwrap();
assert_eq!(res, Some((idx_b, val_b)));
}
// for any other node, find_lone_leaf() should return None as they have no leaf nodes
let parent_index = NodeIndex::make(16, 0b01010101_11111111);
let parent = store.get_node(root, parent_index).unwrap();
let res = store.find_lone_leaf(parent, parent_index, 64).unwrap();
assert_eq!(res, None);
}
// SUBSET EXTRACTION
// ================================================================================================
#[test]
fn mstore_subset() {
// add a Merkle tree of depth 3 to the store
let mtree = MerkleTree::new(digests_to_words(&VALUES8)).unwrap();
let mut store = MerkleStore::default();
let empty_store_num_nodes = store.nodes.len();
store.extend(mtree.inner_nodes());
// build 3 subtrees contained within the above Merkle tree; note that subtree2 is a subset
// of subtree1
let subtree1 = MerkleTree::new(digests_to_words(&VALUES8[..4])).unwrap();
let subtree2 = MerkleTree::new(digests_to_words(&VALUES8[2..4])).unwrap();
let subtree3 = MerkleTree::new(digests_to_words(&VALUES8[6..])).unwrap();
// --- extract all 3 subtrees ---------------------------------------------
let substore = store.subset([subtree1.root(), subtree2.root(), subtree3.root()].iter());
// number of nodes should increase by 4: 3 nodes form subtree1 and 1 node from subtree3
assert_eq!(substore.nodes.len(), empty_store_num_nodes + 4);
// make sure paths that all subtrees are in the store
check_mstore_subtree(&substore, &subtree1);
check_mstore_subtree(&substore, &subtree2);
check_mstore_subtree(&substore, &subtree3);
// --- extract subtrees 1 and 3 -------------------------------------------
// this should give the same result as above as subtree2 is nested within subtree1
let substore = store.subset([subtree1.root(), subtree3.root()].iter());
// number of nodes should increase by 4: 3 nodes form subtree1 and 1 node from subtree3
assert_eq!(substore.nodes.len(), empty_store_num_nodes + 4);
// make sure paths that all subtrees are in the store
check_mstore_subtree(&substore, &subtree1);
check_mstore_subtree(&substore, &subtree2);
check_mstore_subtree(&substore, &subtree3);
}
fn check_mstore_subtree(store: &MerkleStore, subtree: &MerkleTree) {
for (i, value) in subtree.leaves() {
let index = NodeIndex::new(subtree.depth(), i).unwrap();
let path1 = store.get_path(subtree.root(), index).unwrap();
assert_eq!(*path1.value, *value);
let path2 = subtree.get_path(index).unwrap();
assert_eq!(path1.path, path2);
}
}
// SERIALIZATION
// ================================================================================================
#[cfg(feature = "std")]
#[test]
fn test_serialization() -> Result<(), Box<dyn Error>> {
let mtree = MerkleTree::new(digests_to_words(&VALUES4))?;
let store = MerkleStore::from(&mtree);
let decoded = MerkleStore::read_from_bytes(&store.to_bytes()).expect("deserialization failed");
assert_eq!(store, decoded);
Ok(())
}
// MERKLE RECORDER
// ================================================================================================
#[test]
fn test_recorder() {
// instantiate recorder from MerkleTree and SimpleSmt
let mtree = MerkleTree::new(digests_to_words(&VALUES4)).unwrap();
let smtree = SimpleSmt::with_leaves(
64,
KEYS8.into_iter().zip(VALUES8.into_iter().map(|x| x.into()).rev()),
)
.unwrap();
let mut recorder: RecordingMerkleStore =
mtree.inner_nodes().chain(smtree.inner_nodes()).collect();
// get nodes from both trees and make sure they are correct
let index_0 = NodeIndex::new(mtree.depth(), 0).unwrap();
let node = recorder.get_node(mtree.root(), index_0).unwrap();
assert_eq!(node, mtree.get_node(index_0).unwrap());
let index_1 = NodeIndex::new(smtree.depth(), 1).unwrap();
let node = recorder.get_node(smtree.root(), index_1).unwrap();
assert_eq!(node, smtree.get_node(index_1).unwrap());
// insert a value and assert that when we request it next time it is accurate
let new_value = [ZERO, ZERO, ONE, ONE].into();
let index_2 = NodeIndex::new(smtree.depth(), 2).unwrap();
let root = recorder.set_node(smtree.root(), index_2, new_value).unwrap().root;
assert_eq!(recorder.get_node(root, index_2).unwrap(), new_value);
// construct the proof
let rec_map = recorder.into_inner();
let (_, proof) = rec_map.finalize();
let merkle_store: MerkleStore = proof.into();
// make sure the proof contains all nodes from both trees
let node = merkle_store.get_node(mtree.root(), index_0).unwrap();
assert_eq!(node, mtree.get_node(index_0).unwrap());
let node = merkle_store.get_node(smtree.root(), index_1).unwrap();
assert_eq!(node, smtree.get_node(index_1).unwrap());
let node = merkle_store.get_node(smtree.root(), index_2).unwrap();
assert_eq!(node, smtree.get_leaf(index_2.value()).unwrap().into());
// assert that is doesnt contain nodes that were not recorded
let not_recorded_index = NodeIndex::new(smtree.depth(), 4).unwrap();
assert!(merkle_store.get_node(smtree.root(), not_recorded_index).is_err());
assert!(smtree.get_node(not_recorded_index).is_ok());
}