You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

251 lines
8.3 KiB

use super::{
super::{InnerNodeInfo, MerkleError, MerkleTree, RpoDigest, SimpleSmt, EMPTY_WORD},
NodeIndex, Rpo256, Vec,
};
use crate::{
merkle::{digests_to_words, int_to_leaf, int_to_node},
Word,
};
// TEST DATA
// ================================================================================================
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const KEYS8: [u64; 8] = [0, 1, 2, 3, 4, 5, 6, 7];
const VALUES4: [RpoDigest; 4] = [int_to_node(1), int_to_node(2), int_to_node(3), int_to_node(4)];
const VALUES8: [RpoDigest; 8] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
int_to_node(5),
int_to_node(6),
int_to_node(7),
int_to_node(8),
];
const ZERO_VALUES8: [Word; 8] = [int_to_leaf(0); 8];
// TESTS
// ================================================================================================
#[test]
fn build_empty_tree() {
// tree of depth 3
let smt = SimpleSmt::new(3).unwrap();
let mt = MerkleTree::new(ZERO_VALUES8.to_vec()).unwrap();
assert_eq!(mt.root(), smt.root());
}
#[test]
fn build_sparse_tree() {
let mut smt = SimpleSmt::new(3).unwrap();
let mut values = ZERO_VALUES8.to_vec();
// insert single value
let key = 6;
let new_node = int_to_leaf(7);
values[key as usize] = new_node;
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
let mt2 = MerkleTree::new(values.clone()).unwrap();
assert_eq!(mt2.root(), smt.root());
assert_eq!(
mt2.get_path(NodeIndex::make(3, 6)).unwrap(),
smt.get_path(NodeIndex::make(3, 6)).unwrap()
);
assert_eq!(old_value, EMPTY_WORD);
// insert second value at distinct leaf branch
let key = 2;
let new_node = int_to_leaf(3);
values[key as usize] = new_node;
let old_value = smt.update_leaf(key, new_node).expect("Failed to update leaf");
let mt3 = MerkleTree::new(values).unwrap();
assert_eq!(mt3.root(), smt.root());
assert_eq!(
mt3.get_path(NodeIndex::make(3, 2)).unwrap(),
smt.get_path(NodeIndex::make(3, 2)).unwrap()
);
assert_eq!(old_value, EMPTY_WORD);
}
#[test]
fn test_depth2_tree() {
let tree =
SimpleSmt::with_leaves(2, KEYS4.into_iter().zip(digests_to_words(&VALUES4).into_iter()))
.unwrap();
// check internal structure
let (root, node2, node3) = compute_internal_nodes();
assert_eq!(root, tree.root());
assert_eq!(node2, tree.get_node(NodeIndex::make(1, 0)).unwrap());
assert_eq!(node3, tree.get_node(NodeIndex::make(1, 1)).unwrap());
// check get_node()
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
// check get_path(): depth 2
assert_eq!(vec![VALUES4[1], node3], *tree.get_path(NodeIndex::make(2, 0)).unwrap());
assert_eq!(vec![VALUES4[0], node3], *tree.get_path(NodeIndex::make(2, 1)).unwrap());
assert_eq!(vec![VALUES4[3], node2], *tree.get_path(NodeIndex::make(2, 2)).unwrap());
assert_eq!(vec![VALUES4[2], node2], *tree.get_path(NodeIndex::make(2, 3)).unwrap());
// check get_path(): depth 1
assert_eq!(vec![node3], *tree.get_path(NodeIndex::make(1, 0)).unwrap());
assert_eq!(vec![node2], *tree.get_path(NodeIndex::make(1, 1)).unwrap());
}
#[test]
fn test_inner_node_iterator() -> Result<(), MerkleError> {
let tree =
SimpleSmt::with_leaves(2, KEYS4.into_iter().zip(digests_to_words(&VALUES4).into_iter()))
.unwrap();
// check depth 2
assert_eq!(VALUES4[0], tree.get_node(NodeIndex::make(2, 0)).unwrap());
assert_eq!(VALUES4[1], tree.get_node(NodeIndex::make(2, 1)).unwrap());
assert_eq!(VALUES4[2], tree.get_node(NodeIndex::make(2, 2)).unwrap());
assert_eq!(VALUES4[3], tree.get_node(NodeIndex::make(2, 3)).unwrap());
// get parent nodes
let root = tree.root();
let l1n0 = tree.get_node(NodeIndex::make(1, 0))?;
let l1n1 = tree.get_node(NodeIndex::make(1, 1))?;
let l2n0 = tree.get_node(NodeIndex::make(2, 0))?;
let l2n1 = tree.get_node(NodeIndex::make(2, 1))?;
let l2n2 = tree.get_node(NodeIndex::make(2, 2))?;
let l2n3 = tree.get_node(NodeIndex::make(2, 3))?;
let nodes: Vec<InnerNodeInfo> = tree.inner_nodes().collect();
let expected = vec![
InnerNodeInfo { value: root, left: l1n0, right: l1n1 },
InnerNodeInfo { value: l1n0, left: l2n0, right: l2n1 },
InnerNodeInfo { value: l1n1, left: l2n2, right: l2n3 },
];
assert_eq!(nodes, expected);
Ok(())
}
#[test]
fn update_leaf() {
let mut tree =
SimpleSmt::with_leaves(3, KEYS8.into_iter().zip(digests_to_words(&VALUES8).into_iter()))
.unwrap();
// update one value
let key = 3;
let new_node = int_to_leaf(9);
let mut expected_values = digests_to_words(&VALUES8);
expected_values[key] = new_node;
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
let old_leaf = tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root(), tree.root);
assert_eq!(old_leaf, *VALUES8[key]);
// update another value
let key = 6;
let new_node = int_to_leaf(10);
expected_values[key] = new_node;
let expected_tree = MerkleTree::new(expected_values.clone()).unwrap();
let old_leaf = tree.update_leaf(key as u64, new_node).unwrap();
assert_eq!(expected_tree.root(), tree.root);
assert_eq!(old_leaf, *VALUES8[key]);
}
#[test]
fn small_tree_opening_is_consistent() {
// ____k____
// / \
// _i_ _j_
// / \ / \
// e f g h
// / \ / \ / \ / \
// a b 0 0 c 0 0 d
let z = EMPTY_WORD;
let a = Word::from(Rpo256::merge(&[z.into(); 2]));
let b = Word::from(Rpo256::merge(&[a.into(); 2]));
let c = Word::from(Rpo256::merge(&[b.into(); 2]));
let d = Word::from(Rpo256::merge(&[c.into(); 2]));
let e = Rpo256::merge(&[a.into(), b.into()]);
let f = Rpo256::merge(&[z.into(), z.into()]);
let g = Rpo256::merge(&[c.into(), z.into()]);
let h = Rpo256::merge(&[z.into(), d.into()]);
let i = Rpo256::merge(&[e, f]);
let j = Rpo256::merge(&[g, h]);
let k = Rpo256::merge(&[i, j]);
let depth = 3;
let entries = vec![(0, a), (1, b), (4, c), (7, d)];
let tree = SimpleSmt::with_leaves(depth, entries).unwrap();
assert_eq!(tree.root(), k);
let cases: Vec<(u8, u64, Vec<RpoDigest>)> = vec![
(3, 0, vec![b.into(), f, j]),
(3, 1, vec![a.into(), f, j]),
(3, 4, vec![z.into(), h, i]),
(3, 7, vec![z.into(), g, i]),
(2, 0, vec![f, j]),
(2, 1, vec![e, j]),
(2, 2, vec![h, i]),
(2, 3, vec![g, i]),
(1, 0, vec![j]),
(1, 1, vec![i]),
];
for (depth, key, path) in cases {
let opening = tree.get_path(NodeIndex::make(depth, key)).unwrap();
assert_eq!(path, *opening);
}
}
#[test]
fn fail_on_duplicates() {
let entries = [(1_u64, int_to_leaf(1)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(3))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(0))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(1))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
let entries = [(1_u64, int_to_leaf(1)), (5, int_to_leaf(2)), (1_u64, int_to_leaf(0))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_err());
}
#[test]
fn with_no_duplicates_empty_node() {
let entries = [(1_u64, int_to_leaf(0)), (5, int_to_leaf(2))];
let smt = SimpleSmt::with_leaves(64, entries);
assert!(smt.is_ok());
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
fn compute_internal_nodes() -> (RpoDigest, RpoDigest, RpoDigest) {
let node2 = Rpo256::merge(&[VALUES4[0], VALUES4[1]]);
let node3 = Rpo256::merge(&[VALUES4[2], VALUES4[3]]);
let root = Rpo256::merge(&[node2, node3]);
(root, node2, node3)
}