You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

263 lines
8.8 KiB

use super::{BTreeMap, MerkleError, MerklePath, NodeIndex, Rpo256, RpoDigest, Vec, Word};
#[cfg(test)]
mod tests;
// SPARSE MERKLE TREE
// ================================================================================================
/// A sparse Merkle tree with 63-bit keys and 4-element leaf values, without compaction.
/// Manipulation and retrieval of leaves and internal nodes is provided by its internal `Store`.
/// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct SimpleSmt {
root: Word,
depth: u8,
store: Store,
}
impl SimpleSmt {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// Minimum supported depth.
pub const MIN_DEPTH: u8 = 1;
/// Maximum supported depth.
pub const MAX_DEPTH: u8 = 63;
// CONSTRUCTORS
// --------------------------------------------------------------------------------------------
/// Creates a new simple SMT.
///
/// The provided entries will be tuples of the leaves and their corresponding keys.
///
/// # Errors
///
/// The function will fail if the provided entries count exceed the maximum tree capacity, that
/// is `2^{depth}`.
pub fn new<R, I>(entries: R, depth: u8) -> Result<Self, MerkleError>
where
R: IntoIterator<IntoIter = I>,
I: Iterator<Item = (u64, Word)> + ExactSizeIterator,
{
let mut entries = entries.into_iter();
// validate the range of the depth.
let max = 1 << depth;
if depth < Self::MIN_DEPTH {
return Err(MerkleError::DepthTooSmall(depth));
} else if Self::MAX_DEPTH < depth {
return Err(MerkleError::DepthTooBig(depth));
} else if entries.len() > max {
return Err(MerkleError::InvalidEntriesCount(max, entries.len()));
}
let (store, root) = Store::new(depth);
let mut tree = Self { root, depth, store };
entries.try_for_each(|(key, leaf)| tree.insert_leaf(key, leaf))?;
Ok(tree)
}
/// Returns the root of this Merkle tree.
pub const fn root(&self) -> Word {
self.root
}
/// Returns the depth of this Merkle tree.
pub const fn depth(&self) -> u8 {
self.depth
}
/// Returns the set count of the keys of the leaves.
pub fn leaves_count(&self) -> usize {
self.store.leaves_count()
}
/// Returns a node at the specified key
///
/// # Errors
/// Returns an error if:
/// * The specified depth is greater than the depth of the tree.
/// * The specified key does not exist
pub fn get_node(&self, index: &NodeIndex) -> Result<Word, MerkleError> {
if index.is_root() {
Err(MerkleError::DepthTooSmall(index.depth()))
} else if index.depth() > self.depth() {
Err(MerkleError::DepthTooBig(index.depth()))
} else if index.depth() == self.depth() {
self.store.get_leaf_node(index.value())
} else {
let branch_node = self.store.get_branch_node(index)?;
Ok(Rpo256::merge(&[branch_node.left, branch_node.right]).into())
}
}
/// Returns a Merkle path from the node at the specified key to the root. The node itself is
/// not included in the path.
///
/// # Errors
/// Returns an error if:
/// * The specified key does not exist as a branch or leaf node
/// * The specified depth is greater than the depth of the tree.
pub fn get_path(&self, mut index: NodeIndex) -> Result<MerklePath, MerkleError> {
if index.is_root() {
return Err(MerkleError::DepthTooSmall(index.depth()));
} else if index.depth() > self.depth() {
return Err(MerkleError::DepthTooBig(index.depth()));
} else if index.depth() == self.depth() && !self.store.check_leaf_node_exists(index.value())
{
return Err(MerkleError::InvalidIndex(index.with_depth(self.depth())));
}
let mut path = Vec::with_capacity(index.depth() as usize);
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self.store.get_branch_node(&index)?;
let value = if is_right { left } else { right };
path.push(*value);
}
Ok(path.into())
}
/// Return a Merkle path from the leaf at the specified key to the root. The leaf itself is not
/// included in the path.
///
/// # Errors
/// Returns an error if:
/// * The specified key does not exist as a leaf node.
pub fn get_leaf_path(&self, key: u64) -> Result<MerklePath, MerkleError> {
self.get_path(NodeIndex::new(self.depth(), key))
}
/// Replaces the leaf located at the specified key, and recomputes hashes by walking up the tree
///
/// # Errors
/// Returns an error if the specified key is not a valid leaf index for this tree.
pub fn update_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
if !self.store.check_leaf_node_exists(key) {
return Err(MerkleError::InvalidIndex(NodeIndex::new(self.depth(), key)));
}
self.insert_leaf(key, value)?;
Ok(())
}
/// Inserts a leaf located at the specified key, and recomputes hashes by walking up the tree
pub fn insert_leaf(&mut self, key: u64, value: Word) -> Result<(), MerkleError> {
self.store.insert_leaf_node(key, value);
// TODO consider using a map `index |-> word` instead of `index |-> (word, word)`
let mut index = NodeIndex::new(self.depth(), key);
let mut value = RpoDigest::from(value);
for _ in 0..index.depth() {
let is_right = index.is_value_odd();
index.move_up();
let BranchNode { left, right } = self
.store
.get_branch_node(&index)
.unwrap_or_else(|_| self.store.get_empty_node(index.depth() as usize + 1));
let (left, right) = if is_right {
(left, value)
} else {
(value, right)
};
self.store.insert_branch_node(index, left, right);
value = Rpo256::merge(&[left, right]);
}
self.root = value.into();
Ok(())
}
}
// STORE
// ================================================================================================
/// A data store for sparse Merkle tree key-value pairs.
/// Leaves and branch nodes are stored separately in B-tree maps, indexed by key and (key, depth)
/// respectively. Hashes for blank subtrees at each layer are stored in `empty_hashes`, beginning
/// with the root hash of an empty tree, and ending with the zero value of a leaf node.
#[derive(Debug, Clone, PartialEq, Eq)]
struct Store {
branches: BTreeMap<NodeIndex, BranchNode>,
leaves: BTreeMap<u64, Word>,
empty_hashes: Vec<RpoDigest>,
depth: u8,
}
#[derive(Debug, Default, Clone, PartialEq, Eq)]
struct BranchNode {
left: RpoDigest,
right: RpoDigest,
}
impl Store {
fn new(depth: u8) -> (Self, Word) {
let branches = BTreeMap::new();
let leaves = BTreeMap::new();
// Construct empty node digests for each layer of the tree
let empty_hashes: Vec<RpoDigest> = (0..depth + 1)
.scan(Word::default().into(), |state, _| {
let value = *state;
*state = Rpo256::merge(&[value, value]);
Some(value)
})
.collect::<Vec<_>>()
.into_iter()
.rev()
.collect();
let root = empty_hashes[0].into();
let store = Self {
branches,
leaves,
empty_hashes,
depth,
};
(store, root)
}
fn get_empty_node(&self, depth: usize) -> BranchNode {
let digest = self.empty_hashes[depth];
BranchNode {
left: digest,
right: digest,
}
}
fn check_leaf_node_exists(&self, key: u64) -> bool {
self.leaves.contains_key(&key)
}
fn get_leaf_node(&self, key: u64) -> Result<Word, MerkleError> {
self.leaves
.get(&key)
.cloned()
.ok_or(MerkleError::InvalidIndex(NodeIndex::new(self.depth, key)))
}
fn insert_leaf_node(&mut self, key: u64, node: Word) {
self.leaves.insert(key, node);
}
fn get_branch_node(&self, index: &NodeIndex) -> Result<BranchNode, MerkleError> {
self.branches
.get(index)
.cloned()
.ok_or(MerkleError::InvalidIndex(*index))
}
fn insert_branch_node(&mut self, index: NodeIndex, left: RpoDigest, right: RpoDigest) {
let branch = BranchNode { left, right };
self.branches.insert(index, branch);
}
fn leaves_count(&self) -> usize {
self.leaves.len()
}
}