You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

724 lines
25 KiB

use alloc::{collections::BTreeMap, vec::Vec};
use super::{Felt, LeafIndex, NodeIndex, Rpo256, RpoDigest, Smt, SmtLeaf, EMPTY_WORD, SMT_DEPTH};
use crate::{
merkle::{
smt::{NodeMutation, SparseMerkleTree},
EmptySubtreeRoots, MerkleStore, MutationSet,
},
utils::{Deserializable, Serializable},
Word, ONE, WORD_SIZE,
};
// SMT
// --------------------------------------------------------------------------------------------
/// This test checks that inserting twice at the same key functions as expected. The test covers
/// only the case where the key is alone in its leaf
#[test]
fn test_smt_insert_at_same_key() {
let mut smt = Smt::default();
let mut store: MerkleStore = MerkleStore::default();
assert_eq!(smt.root(), *EmptySubtreeRoots::entry(SMT_DEPTH, 0));
let key_1: RpoDigest = {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_1_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key_1).into();
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
// Insert value 1 and ensure root is as expected
{
let leaf_node = build_empty_or_single_leaf_node(key_1, value_1);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.root(), tree_root);
}
// Insert value 2 and ensure root is as expected
{
let leaf_node = build_empty_or_single_leaf_node(key_1, value_2);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_2 = smt.insert(key_1, value_2);
assert_eq!(old_value_2, value_1);
assert_eq!(smt.root(), tree_root);
}
}
/// This test checks that inserting twice at the same key functions as expected. The test covers
/// only the case where the leaf type is `SmtLeaf::Multiple`
#[test]
fn test_smt_insert_at_same_key_2() {
// The most significant u64 used for both keys (to ensure they map to the same leaf)
let key_msb: u64 = 42;
let key_already_present: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(key_msb)]);
let key_already_present_index: NodeIndex =
LeafIndex::<SMT_DEPTH>::from(key_already_present).into();
let value_already_present = [ONE + ONE + ONE; WORD_SIZE];
let mut smt =
Smt::with_entries(core::iter::once((key_already_present, value_already_present))).unwrap();
let mut store: MerkleStore = {
let mut store = MerkleStore::default();
let leaf_node = build_empty_or_single_leaf_node(key_already_present, value_already_present);
store
.set_node(*EmptySubtreeRoots::entry(SMT_DEPTH, 0), key_already_present_index, leaf_node)
.unwrap();
store
};
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(key_msb)]);
let key_1_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key_1).into();
assert_eq!(key_1_index, key_already_present_index);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
// Insert value 1 and ensure root is as expected
{
// Note: key_1 comes first because it is smaller
let leaf_node = build_multiple_leaf_node(&[
(key_1, value_1),
(key_already_present, value_already_present),
]);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.root(), tree_root);
}
// Insert value 2 and ensure root is as expected
{
let leaf_node = build_multiple_leaf_node(&[
(key_1, value_2),
(key_already_present, value_already_present),
]);
let tree_root = store.set_node(smt.root(), key_1_index, leaf_node).unwrap().root;
let old_value_2 = smt.insert(key_1, value_2);
assert_eq!(old_value_2, value_1);
assert_eq!(smt.root(), tree_root);
}
}
/// This test ensures that the root of the tree is as expected when we add/remove 3 items at 3
/// different keys. This also tests that the merkle paths produced are as expected.
#[test]
fn test_smt_insert_and_remove_multiple_values() {
fn insert_values_and_assert_path(
smt: &mut Smt,
store: &mut MerkleStore,
key_values: &[(RpoDigest, Word)],
) {
for &(key, value) in key_values {
let key_index: NodeIndex = LeafIndex::<SMT_DEPTH>::from(key).into();
let leaf_node = build_empty_or_single_leaf_node(key, value);
let tree_root = store.set_node(smt.root(), key_index, leaf_node).unwrap().root;
let _ = smt.insert(key, value);
assert_eq!(smt.root(), tree_root);
let expected_path = store.get_path(tree_root, key_index).unwrap();
assert_eq!(smt.open(&key).into_parts().0, expected_path.path);
}
}
let mut smt = Smt::default();
let mut store: MerkleStore = MerkleStore::default();
assert_eq!(smt.root(), *EmptySubtreeRoots::entry(SMT_DEPTH, 0));
let key_1: RpoDigest = {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_2: RpoDigest = {
let raw = 0b_11111111_11111111_11111111_11111111_11111111_11111111_11111111_11111111_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let key_3: RpoDigest = {
let raw = 0b_00000000_00000000_00000000_00000000_00000000_00000000_00000000_00000000_u64;
RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)])
};
let value_1 = [ONE; WORD_SIZE];
let value_2 = [ONE + ONE; WORD_SIZE];
let value_3 = [ONE + ONE + ONE; WORD_SIZE];
// Insert values in the tree
let key_values = [(key_1, value_1), (key_2, value_2), (key_3, value_3)];
insert_values_and_assert_path(&mut smt, &mut store, &key_values);
// Remove values from the tree
let key_empty_values = [(key_1, EMPTY_WORD), (key_2, EMPTY_WORD), (key_3, EMPTY_WORD)];
insert_values_and_assert_path(&mut smt, &mut store, &key_empty_values);
let empty_root = *EmptySubtreeRoots::entry(SMT_DEPTH, 0);
assert_eq!(smt.root(), empty_root);
// an empty tree should have no leaves or inner nodes
assert!(smt.leaves.is_empty());
assert!(smt.inner_nodes.is_empty());
}
/// This tests that inserting the empty value does indeed remove the key-value contained at the
/// leaf. We insert & remove 3 values at the same leaf to ensure that all cases are covered (empty,
/// single, multiple).
#[test]
fn test_smt_removal() {
let mut smt = Smt::default();
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(raw)]);
let key_3: RpoDigest =
RpoDigest::from([3_u32.into(), 3_u32.into(), 3_u32.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let value_3: [Felt; 4] = [3_u32.into(); WORD_SIZE];
// insert key-value 1
{
let old_value_1 = smt.insert(key_1, value_1);
assert_eq!(old_value_1, EMPTY_WORD);
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::Single((key_1, value_1)));
}
// insert key-value 2
{
let old_value_2 = smt.insert(key_2, value_2);
assert_eq!(old_value_2, EMPTY_WORD);
assert_eq!(
smt.get_leaf(&key_2),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// insert key-value 3
{
let old_value_3 = smt.insert(key_3, value_3);
assert_eq!(old_value_3, EMPTY_WORD);
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2), (key_3, value_3)])
);
}
// remove key 3
{
let old_value_3 = smt.insert(key_3, EMPTY_WORD);
assert_eq!(old_value_3, value_3);
assert_eq!(
smt.get_leaf(&key_3),
SmtLeaf::Multiple(vec![(key_1, value_1), (key_2, value_2)])
);
}
// remove key 2
{
let old_value_2 = smt.insert(key_2, EMPTY_WORD);
assert_eq!(old_value_2, value_2);
assert_eq!(smt.get_leaf(&key_2), SmtLeaf::Single((key_1, value_1)));
}
// remove key 1
{
let old_value_1 = smt.insert(key_1, EMPTY_WORD);
assert_eq!(old_value_1, value_1);
assert_eq!(smt.get_leaf(&key_1), SmtLeaf::new_empty(key_1.into()));
}
}
/// This tests that we can correctly calculate prospective leaves -- that is, we can construct
/// correct [`SmtLeaf`] values for a theoretical insertion on a Merkle tree without mutating or
/// cloning the tree.
#[test]
fn test_prospective_hash() {
let mut smt = Smt::default();
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(raw)]);
// Sort key_3 before key_1, to test non-append insertion.
let key_3: RpoDigest =
RpoDigest::from([0_u32.into(), 0_u32.into(), 0_u32.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let value_3: [Felt; 4] = [3_u32.into(); WORD_SIZE];
// insert key-value 1
{
let prospective =
smt.construct_prospective_leaf(smt.get_leaf(&key_1), &key_1, &value_1).hash();
smt.insert(key_1, value_1);
let leaf = smt.get_leaf(&key_1);
assert_eq!(
prospective,
leaf.hash(),
"prospective hash for leaf {leaf:?} did not match actual hash",
);
}
// insert key-value 2
{
let prospective =
smt.construct_prospective_leaf(smt.get_leaf(&key_2), &key_2, &value_2).hash();
smt.insert(key_2, value_2);
let leaf = smt.get_leaf(&key_2);
assert_eq!(
prospective,
leaf.hash(),
"prospective hash for leaf {leaf:?} did not match actual hash",
);
}
// insert key-value 3
{
let prospective =
smt.construct_prospective_leaf(smt.get_leaf(&key_3), &key_3, &value_3).hash();
smt.insert(key_3, value_3);
let leaf = smt.get_leaf(&key_3);
assert_eq!(
prospective,
leaf.hash(),
"prospective hash for leaf {leaf:?} did not match actual hash",
);
}
// remove key 3
{
let old_leaf = smt.get_leaf(&key_3);
let old_value_3 = smt.insert(key_3, EMPTY_WORD);
assert_eq!(old_value_3, value_3);
let prospective_leaf =
smt.construct_prospective_leaf(smt.get_leaf(&key_3), &key_3, &old_value_3);
assert_eq!(
old_leaf.hash(),
prospective_leaf.hash(),
"removing and prospectively re-adding a leaf didn't yield the original leaf:\
\n original leaf: {old_leaf:?}\
\n prospective leaf: {prospective_leaf:?}",
);
}
// remove key 2
{
let old_leaf = smt.get_leaf(&key_2);
let old_value_2 = smt.insert(key_2, EMPTY_WORD);
assert_eq!(old_value_2, value_2);
let prospective_leaf =
smt.construct_prospective_leaf(smt.get_leaf(&key_2), &key_2, &old_value_2);
assert_eq!(
old_leaf.hash(),
prospective_leaf.hash(),
"removing and prospectively re-adding a leaf didn't yield the original leaf:\
\n original leaf: {old_leaf:?}\
\n prospective leaf: {prospective_leaf:?}",
);
}
// remove key 1
{
let old_leaf = smt.get_leaf(&key_1);
let old_value_1 = smt.insert(key_1, EMPTY_WORD);
assert_eq!(old_value_1, value_1);
let prospective_leaf =
smt.construct_prospective_leaf(smt.get_leaf(&key_1), &key_1, &old_value_1);
assert_eq!(
old_leaf.hash(),
prospective_leaf.hash(),
"removing and prospectively re-adding a leaf didn't yield the original leaf:\
\n original leaf: {old_leaf:?}\
\n prospective leaf: {prospective_leaf:?}",
);
}
}
/// This tests that we can perform prospective changes correctly.
#[test]
fn test_prospective_insertion() {
let mut smt = Smt::default();
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(raw)]);
// Sort key_3 before key_1, to test non-append insertion.
let key_3: RpoDigest =
RpoDigest::from([0_u32.into(), 0_u32.into(), 0_u32.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let value_3: [Felt; 4] = [3_u32.into(); WORD_SIZE];
let root_empty = smt.root();
let root_1 = {
smt.insert(key_1, value_1);
smt.root()
};
let root_2 = {
smt.insert(key_2, value_2);
smt.root()
};
let root_3 = {
smt.insert(key_3, value_3);
smt.root()
};
// Test incremental updates.
let mut smt = Smt::default();
let mutations = smt.compute_mutations(vec![(key_1, value_1)]);
assert_eq!(mutations.root(), root_1, "prospective root 1 did not match actual root 1");
let revert = apply_mutations(&mut smt, mutations);
assert_eq!(smt.root(), root_1, "mutations before and after apply did not match");
assert_eq!(revert.old_root, smt.root(), "reverse mutations old root did not match");
assert_eq!(revert.root(), root_empty, "reverse mutations new root did not match");
assert_eq!(
revert.new_pairs,
BTreeMap::from_iter([(key_1, EMPTY_WORD)]),
"reverse mutations pairs did not match"
);
assert_eq!(
revert.node_mutations,
smt.inner_nodes.keys().map(|key| (*key, NodeMutation::Removal)).collect(),
"reverse mutations inner nodes did not match"
);
let mutations = smt.compute_mutations(vec![(key_2, value_2)]);
assert_eq!(mutations.root(), root_2, "prospective root 2 did not match actual root 2");
let mutations =
smt.compute_mutations(vec![(key_3, EMPTY_WORD), (key_2, value_2), (key_3, value_3)]);
assert_eq!(mutations.root(), root_3, "mutations before and after apply did not match");
let old_root = smt.root();
let revert = apply_mutations(&mut smt, mutations);
assert_eq!(revert.old_root, smt.root(), "reverse mutations old root did not match");
assert_eq!(revert.root(), old_root, "reverse mutations new root did not match");
assert_eq!(
revert.new_pairs,
BTreeMap::from_iter([(key_2, EMPTY_WORD), (key_3, EMPTY_WORD)]),
"reverse mutations pairs did not match"
);
// Edge case: multiple values at the same key, where a later pair restores the original value.
let mutations = smt.compute_mutations(vec![(key_3, EMPTY_WORD), (key_3, value_3)]);
assert_eq!(mutations.root(), root_3);
let old_root = smt.root();
let revert = apply_mutations(&mut smt, mutations);
assert_eq!(smt.root(), root_3);
assert_eq!(revert.old_root, smt.root(), "reverse mutations old root did not match");
assert_eq!(revert.root(), old_root, "reverse mutations new root did not match");
assert_eq!(
revert.new_pairs,
BTreeMap::from_iter([(key_3, value_3)]),
"reverse mutations pairs did not match"
);
// Test batch updates, and that the order doesn't matter.
let pairs =
vec![(key_3, value_2), (key_2, EMPTY_WORD), (key_1, EMPTY_WORD), (key_3, EMPTY_WORD)];
let mutations = smt.compute_mutations(pairs);
assert_eq!(
mutations.root(),
root_empty,
"prospective root for batch removal did not match actual root",
);
let old_root = smt.root();
let revert = apply_mutations(&mut smt, mutations);
assert_eq!(smt.root(), root_empty, "mutations before and after apply did not match");
assert_eq!(revert.old_root, smt.root(), "reverse mutations old root did not match");
assert_eq!(revert.root(), old_root, "reverse mutations new root did not match");
assert_eq!(
revert.new_pairs,
BTreeMap::from_iter([(key_1, value_1), (key_2, value_2), (key_3, value_3)]),
"reverse mutations pairs did not match"
);
let pairs = vec![(key_3, value_3), (key_1, value_1), (key_2, value_2)];
let mutations = smt.compute_mutations(pairs);
assert_eq!(mutations.root(), root_3);
smt.apply_mutations(mutations).unwrap();
assert_eq!(smt.root(), root_3);
}
#[test]
fn test_mutations_revert() {
let mut smt = Smt::default();
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(1)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(2)]);
let key_3: RpoDigest =
RpoDigest::from([0_u32.into(), 0_u32.into(), 0_u32.into(), Felt::new(3)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let value_3 = [3_u32.into(); WORD_SIZE];
smt.insert(key_1, value_1);
smt.insert(key_2, value_2);
let mutations =
smt.compute_mutations(vec![(key_1, EMPTY_WORD), (key_2, value_1), (key_3, value_3)]);
let original = smt.clone();
let revert = smt.apply_mutations_with_reversion(mutations).unwrap();
assert_eq!(revert.old_root, smt.root(), "reverse mutations old root did not match");
assert_eq!(revert.root(), original.root(), "reverse mutations new root did not match");
smt.apply_mutations(revert).unwrap();
assert_eq!(smt, original, "SMT with applied revert mutations did not match original SMT");
}
#[test]
fn test_mutation_set_serialization() {
let mut smt = Smt::default();
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(1)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(2)]);
let key_3: RpoDigest =
RpoDigest::from([0_u32.into(), 0_u32.into(), 0_u32.into(), Felt::new(3)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let value_3 = [3_u32.into(); WORD_SIZE];
smt.insert(key_1, value_1);
smt.insert(key_2, value_2);
let mutations =
smt.compute_mutations(vec![(key_1, EMPTY_WORD), (key_2, value_1), (key_3, value_3)]);
let serialized = mutations.to_bytes();
let deserialized =
MutationSet::<SMT_DEPTH, RpoDigest, Word>::read_from_bytes(&serialized).unwrap();
assert_eq!(deserialized, mutations, "deserialized mutations did not match original");
let revert = smt.apply_mutations_with_reversion(mutations).unwrap();
let serialized = revert.to_bytes();
let deserialized =
MutationSet::<SMT_DEPTH, RpoDigest, Word>::read_from_bytes(&serialized).unwrap();
assert_eq!(deserialized, revert, "deserialized mutations did not match original");
}
/// Tests that 2 key-value pairs stored in the same leaf have the same path
#[test]
fn test_smt_path_to_keys_in_same_leaf_are_equal() {
let raw = 0b_01101001_01101100_00011111_11111111_10010110_10010011_11100000_00000000_u64;
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, Felt::new(raw)]);
let key_2: RpoDigest =
RpoDigest::from([2_u32.into(), 2_u32.into(), 2_u32.into(), Felt::new(raw)]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let smt = Smt::with_entries([(key_1, value_1), (key_2, value_2)]).unwrap();
assert_eq!(smt.open(&key_1), smt.open(&key_2));
}
/// Tests that an empty leaf hashes to the empty word
#[test]
fn test_empty_leaf_hash() {
let smt = Smt::default();
let leaf = smt.get_leaf(&RpoDigest::default());
assert_eq!(leaf.hash(), EMPTY_WORD.into());
}
/// Tests that `get_value()` works as expected
#[test]
fn test_smt_get_value() {
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, ONE]);
let key_2: RpoDigest = RpoDigest::from([2_u32, 2_u32, 2_u32, 2_u32]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let smt = Smt::with_entries([(key_1, value_1), (key_2, value_2)]).unwrap();
let returned_value_1 = smt.get_value(&key_1);
let returned_value_2 = smt.get_value(&key_2);
assert_eq!(value_1, returned_value_1);
assert_eq!(value_2, returned_value_2);
// Check that a key with no inserted value returns the empty word
let key_no_value = RpoDigest::from([42_u32, 42_u32, 42_u32, 42_u32]);
assert_eq!(EMPTY_WORD, smt.get_value(&key_no_value));
}
/// Tests that `entries()` works as expected
#[test]
fn test_smt_entries() {
let key_1: RpoDigest = RpoDigest::from([ONE, ONE, ONE, ONE]);
let key_2: RpoDigest = RpoDigest::from([2_u32, 2_u32, 2_u32, 2_u32]);
let value_1 = [ONE; WORD_SIZE];
let value_2 = [2_u32.into(); WORD_SIZE];
let smt = Smt::with_entries([(key_1, value_1), (key_2, value_2)]).unwrap();
let mut entries = smt.entries();
// Note: for simplicity, we assume the order `(k1,v1), (k2,v2)`. If a new implementation
// switches the order, it is OK to modify the order here as well.
assert_eq!(&(key_1, value_1), entries.next().unwrap());
assert_eq!(&(key_2, value_2), entries.next().unwrap());
assert!(entries.next().is_none());
}
/// Tests that `EMPTY_ROOT` constant generated in the `Smt` equals to the root of the empty tree of
/// depth 64
#[test]
fn test_smt_check_empty_root_constant() {
// get the root of the empty tree of depth 64
let empty_root_64_depth = EmptySubtreeRoots::empty_hashes(64)[0];
assert_eq!(empty_root_64_depth, Smt::EMPTY_ROOT);
}
// SMT LEAF
// --------------------------------------------------------------------------------------------
#[test]
fn test_empty_smt_leaf_serialization() {
let empty_leaf = SmtLeaf::new_empty(LeafIndex::new_max_depth(42));
let mut serialized = empty_leaf.to_bytes();
// extend buffer with random bytes
serialized.extend([1, 2, 3, 4, 5]);
let deserialized = SmtLeaf::read_from_bytes(&serialized).unwrap();
assert_eq!(empty_leaf, deserialized);
}
#[test]
fn test_single_smt_leaf_serialization() {
let single_leaf = SmtLeaf::new_single(
RpoDigest::from([10_u32, 11_u32, 12_u32, 13_u32]),
[1_u32.into(), 2_u32.into(), 3_u32.into(), 4_u32.into()],
);
let mut serialized = single_leaf.to_bytes();
// extend buffer with random bytes
serialized.extend([1, 2, 3, 4, 5]);
let deserialized = SmtLeaf::read_from_bytes(&serialized).unwrap();
assert_eq!(single_leaf, deserialized);
}
#[test]
fn test_multiple_smt_leaf_serialization_success() {
let multiple_leaf = SmtLeaf::new_multiple(vec![
(
RpoDigest::from([10_u32, 11_u32, 12_u32, 13_u32]),
[1_u32.into(), 2_u32.into(), 3_u32.into(), 4_u32.into()],
),
(
RpoDigest::from([100_u32, 101_u32, 102_u32, 13_u32]),
[11_u32.into(), 12_u32.into(), 13_u32.into(), 14_u32.into()],
),
])
.unwrap();
let mut serialized = multiple_leaf.to_bytes();
// extend buffer with random bytes
serialized.extend([1, 2, 3, 4, 5]);
let deserialized = SmtLeaf::read_from_bytes(&serialized).unwrap();
assert_eq!(multiple_leaf, deserialized);
}
// HELPERS
// --------------------------------------------------------------------------------------------
fn build_empty_or_single_leaf_node(key: RpoDigest, value: Word) -> RpoDigest {
if value == EMPTY_WORD {
SmtLeaf::new_empty(key.into()).hash()
} else {
SmtLeaf::Single((key, value)).hash()
}
}
fn build_multiple_leaf_node(kv_pairs: &[(RpoDigest, Word)]) -> RpoDigest {
let elements: Vec<Felt> = kv_pairs
.iter()
.flat_map(|(key, value)| {
let key_elements = key.into_iter();
let value_elements = (*value).into_iter();
key_elements.chain(value_elements)
})
.collect();
Rpo256::hash_elements(&elements)
}
/// Applies mutations with and without reversion to the given SMT, comparing resulting SMTs,
/// returning mutation set for reversion.
fn apply_mutations(
smt: &mut Smt,
mutation_set: MutationSet<SMT_DEPTH, RpoDigest, Word>,
) -> MutationSet<SMT_DEPTH, RpoDigest, Word> {
let mut smt2 = smt.clone();
let reversion = smt.apply_mutations_with_reversion(mutation_set.clone()).unwrap();
smt2.apply_mutations(mutation_set).unwrap();
assert_eq!(&smt2, smt);
reversion
}