use super::mmr::Mmr;
|
|
use super::{
|
|
BTreeMap, EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, MerklePathSet, MerkleTree,
|
|
NodeIndex, RootPath, Rpo256, RpoDigest, SimpleSmt, ValuePath, Vec, Word,
|
|
};
|
|
use crate::utils::{ByteReader, ByteWriter, Deserializable, DeserializationError, Serializable};
|
|
|
|
#[cfg(test)]
|
|
mod tests;
|
|
|
|
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq)]
|
|
pub struct Node {
|
|
left: RpoDigest,
|
|
right: RpoDigest,
|
|
}
|
|
|
|
/// An in-memory data store for Merkle-lized data.
|
|
///
|
|
/// This is a in memory data store for Merkle trees, this store allows all the nodes of multiple
|
|
/// trees to live as long as necessary and without duplication, this allows the implementation of
|
|
/// space efficient persistent data structures.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// ```rust
|
|
/// # use miden_crypto::{ZERO, Felt, Word};
|
|
/// # use miden_crypto::merkle::{NodeIndex, MerkleStore, MerkleTree};
|
|
/// # use miden_crypto::hash::rpo::Rpo256;
|
|
/// # const fn int_to_node(value: u64) -> Word {
|
|
/// # [Felt::new(value), ZERO, ZERO, ZERO]
|
|
/// # }
|
|
/// # let A = int_to_node(1);
|
|
/// # let B = int_to_node(2);
|
|
/// # let C = int_to_node(3);
|
|
/// # let D = int_to_node(4);
|
|
/// # let E = int_to_node(5);
|
|
/// # let F = int_to_node(6);
|
|
/// # let G = int_to_node(7);
|
|
/// # let H0 = int_to_node(8);
|
|
/// # let H1 = int_to_node(9);
|
|
/// # let T0 = MerkleTree::new([A, B, C, D, E, F, G, H0].to_vec()).expect("even number of leaves provided");
|
|
/// # let T1 = MerkleTree::new([A, B, C, D, E, F, G, H1].to_vec()).expect("even number of leaves provided");
|
|
/// # let ROOT0 = T0.root();
|
|
/// # let ROOT1 = T1.root();
|
|
/// let mut store = MerkleStore::new();
|
|
///
|
|
/// // the store is initialized with the SMT empty nodes
|
|
/// assert_eq!(store.num_internal_nodes(), 255);
|
|
///
|
|
/// let tree1 = MerkleTree::new(vec![A, B, C, D, E, F, G, H0]).unwrap();
|
|
/// let tree2 = MerkleTree::new(vec![A, B, C, D, E, F, G, H1]).unwrap();
|
|
///
|
|
/// // populates the store with two merkle trees, common nodes are shared
|
|
/// store
|
|
/// .extend(tree1.inner_nodes())
|
|
/// .extend(tree2.inner_nodes());
|
|
///
|
|
/// // every leaf except the last are the same
|
|
/// for i in 0..7 {
|
|
/// let idx0 = NodeIndex::new(3, i).unwrap();
|
|
/// let d0 = store.get_node(ROOT0, idx0).unwrap();
|
|
/// let idx1 = NodeIndex::new(3, i).unwrap();
|
|
/// let d1 = store.get_node(ROOT1, idx1).unwrap();
|
|
/// assert_eq!(d0, d1, "Both trees have the same leaf at pos {i}");
|
|
/// }
|
|
///
|
|
/// // The leafs A-B-C-D are the same for both trees, so are their 2 immediate parents
|
|
/// for i in 0..4 {
|
|
/// let idx0 = NodeIndex::new(3, i).unwrap();
|
|
/// let d0 = store.get_path(ROOT0, idx0).unwrap();
|
|
/// let idx1 = NodeIndex::new(3, i).unwrap();
|
|
/// let d1 = store.get_path(ROOT1, idx1).unwrap();
|
|
/// assert_eq!(d0.path[0..2], d1.path[0..2], "Both sub-trees are equal up to two levels");
|
|
/// }
|
|
///
|
|
/// // Common internal nodes are shared, the two added trees have a total of 30, but the store has
|
|
/// // only 10 new entries, corresponding to the 10 unique internal nodes of these trees.
|
|
/// assert_eq!(store.num_internal_nodes() - 255, 10);
|
|
/// ```
|
|
#[derive(Debug, Clone, Eq, PartialEq)]
|
|
pub struct MerkleStore {
|
|
nodes: BTreeMap<RpoDigest, Node>,
|
|
}
|
|
|
|
impl Default for MerkleStore {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
impl MerkleStore {
|
|
// CONSTRUCTORS
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
/// Creates an empty `MerkleStore` instance.
|
|
pub fn new() -> MerkleStore {
|
|
// pre-populate the store with the empty hashes
|
|
let subtrees = EmptySubtreeRoots::empty_hashes(255);
|
|
let nodes = subtrees
|
|
.iter()
|
|
.rev()
|
|
.copied()
|
|
.zip(subtrees.iter().rev().skip(1).copied())
|
|
.map(|(child, parent)| {
|
|
(
|
|
parent,
|
|
Node {
|
|
left: child,
|
|
right: child,
|
|
},
|
|
)
|
|
})
|
|
.collect();
|
|
|
|
MerkleStore { nodes }
|
|
}
|
|
|
|
/// Appends the provided merkle path set.
|
|
pub fn with_merkle_path(
|
|
mut self,
|
|
index_value: u64,
|
|
node: Word,
|
|
path: MerklePath,
|
|
) -> Result<Self, MerkleError> {
|
|
self.add_merkle_path(index_value, node, path)?;
|
|
Ok(self)
|
|
}
|
|
|
|
/// Appends the provided merkle path set.
|
|
pub fn with_merkle_paths<I>(mut self, paths: I) -> Result<Self, MerkleError>
|
|
where
|
|
I: IntoIterator<Item = (u64, Word, MerklePath)>,
|
|
{
|
|
self.add_merkle_paths(paths)?;
|
|
Ok(self)
|
|
}
|
|
|
|
// PUBLIC ACCESSORS
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
/// Return a count of the non-leaf nodes in the store.
|
|
pub fn num_internal_nodes(&self) -> usize {
|
|
self.nodes.len()
|
|
}
|
|
|
|
/// Returns the node at `index` rooted on the tree `root`.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// This method can return the following errors:
|
|
/// - `RootNotInStore` if the `root` is not present in the store.
|
|
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
|
|
pub fn get_node(&self, root: Word, index: NodeIndex) -> Result<Word, MerkleError> {
|
|
let mut hash: RpoDigest = root.into();
|
|
|
|
// corner case: check the root is in the store when called with index `NodeIndex::root()`
|
|
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash.into()))?;
|
|
|
|
for i in (0..index.depth()).rev() {
|
|
let node =
|
|
self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
|
|
|
|
let bit = (index.value() >> i) & 1;
|
|
hash = if bit == 0 { node.left } else { node.right }
|
|
}
|
|
|
|
Ok(hash.into())
|
|
}
|
|
|
|
/// Returns the node at the specified `index` and its opening to the `root`.
|
|
///
|
|
/// The path starts at the sibling of the target leaf.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// This method can return the following errors:
|
|
/// - `RootNotInStore` if the `root` is not present in the store.
|
|
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
|
|
pub fn get_path(&self, root: Word, index: NodeIndex) -> Result<ValuePath, MerkleError> {
|
|
let mut hash: RpoDigest = root.into();
|
|
let mut path = Vec::with_capacity(index.depth().into());
|
|
|
|
// corner case: check the root is in the store when called with index `NodeIndex::root()`
|
|
self.nodes.get(&hash).ok_or(MerkleError::RootNotInStore(hash.into()))?;
|
|
|
|
for i in (0..index.depth()).rev() {
|
|
let node =
|
|
self.nodes.get(&hash).ok_or(MerkleError::NodeNotInStore(hash.into(), index))?;
|
|
|
|
let bit = (index.value() >> i) & 1;
|
|
hash = if bit == 0 {
|
|
path.push(node.right.into());
|
|
node.left
|
|
} else {
|
|
path.push(node.left.into());
|
|
node.right
|
|
}
|
|
}
|
|
|
|
// the path is computed from root to leaf, so it must be reversed
|
|
path.reverse();
|
|
|
|
Ok(ValuePath {
|
|
value: hash.into(),
|
|
path: MerklePath::new(path),
|
|
})
|
|
}
|
|
|
|
/// Reconstructs a path from the root until a leaf or empty node and returns its depth.
|
|
///
|
|
/// The `tree_depth` parameter defines up to which depth the tree will be traversed, starting
|
|
/// from `root`. The maximum value the argument accepts is [u64::BITS].
|
|
///
|
|
/// The traversed path from leaf to root will start at the least significant bit of `index`,
|
|
/// and will be executed for `tree_depth` bits.
|
|
///
|
|
/// # Errors
|
|
/// Will return an error if:
|
|
/// - The provided root is not found.
|
|
/// - The path from the root continues to a depth greater than `tree_depth`.
|
|
/// - The provided `tree_depth` is greater than `64.
|
|
/// - The provided `index` is not valid for a depth equivalent to `tree_depth`. For more
|
|
/// information, check [NodeIndex::new].
|
|
pub fn get_leaf_depth(
|
|
&self,
|
|
root: Word,
|
|
tree_depth: u8,
|
|
index: u64,
|
|
) -> Result<u8, MerkleError> {
|
|
// validate depth and index
|
|
if tree_depth > 64 {
|
|
return Err(MerkleError::DepthTooBig(tree_depth as u64));
|
|
}
|
|
NodeIndex::new(tree_depth, index)?;
|
|
|
|
// it's not illegal to have a maximum depth of `0`; we should just return the root in that
|
|
// case. this check will simplify the implementation as we could overflow bits for depth
|
|
// `0`.
|
|
if tree_depth == 0 {
|
|
return Ok(0);
|
|
}
|
|
|
|
// check if the root exists, providing the proper error report if it doesn't
|
|
let empty = EmptySubtreeRoots::empty_hashes(tree_depth);
|
|
let mut hash: RpoDigest = root.into();
|
|
if !self.nodes.contains_key(&hash) {
|
|
return Err(MerkleError::RootNotInStore(hash.into()));
|
|
}
|
|
|
|
// we traverse from root to leaf, so the path is reversed
|
|
let mut path = (index << (64 - tree_depth)).reverse_bits();
|
|
|
|
// iterate every depth and reconstruct the path from root to leaf
|
|
for depth in 0..tree_depth {
|
|
// we short-circuit if an empty node has been found
|
|
if hash == empty[depth as usize] {
|
|
return Ok(depth);
|
|
}
|
|
|
|
// fetch the children pair, mapped by its parent hash
|
|
let children = match self.nodes.get(&hash) {
|
|
Some(node) => node,
|
|
None => return Ok(depth),
|
|
};
|
|
|
|
// traverse down
|
|
hash = if path & 1 == 0 { children.left } else { children.right };
|
|
path >>= 1;
|
|
}
|
|
|
|
// at max depth assert it doesn't have sub-trees
|
|
if self.nodes.contains_key(&hash) {
|
|
return Err(MerkleError::DepthTooBig(tree_depth as u64 + 1));
|
|
}
|
|
|
|
// depleted bits; return max depth
|
|
Ok(tree_depth)
|
|
}
|
|
|
|
// STATE MUTATORS
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
/// Adds a new [InnerNodeInfo] into the store.
|
|
pub fn extend(&mut self, iter: impl Iterator<Item = InnerNodeInfo>) -> &mut MerkleStore {
|
|
for node in iter {
|
|
let value: RpoDigest = node.value.into();
|
|
let left: RpoDigest = node.left.into();
|
|
let right: RpoDigest = node.right.into();
|
|
|
|
debug_assert_eq!(Rpo256::merge(&[left, right]), value);
|
|
self.nodes.insert(value, Node { left, right });
|
|
}
|
|
|
|
self
|
|
}
|
|
|
|
/// Adds all the nodes of a Merkle path represented by `path`, opening to `node`. Returns the
|
|
/// new root.
|
|
///
|
|
/// This will compute the sibling elements determined by the Merkle `path` and `node`, and
|
|
/// include all the nodes into the store.
|
|
pub fn add_merkle_path(
|
|
&mut self,
|
|
index_value: u64,
|
|
mut node: Word,
|
|
path: MerklePath,
|
|
) -> Result<Word, MerkleError> {
|
|
let mut index = NodeIndex::new(path.len() as u8, index_value)?;
|
|
|
|
for sibling in path {
|
|
let (left, right) = match index.is_value_odd() {
|
|
true => (sibling, node),
|
|
false => (node, sibling),
|
|
};
|
|
let parent = Rpo256::merge(&[left.into(), right.into()]);
|
|
self.nodes.insert(
|
|
parent,
|
|
Node {
|
|
left: left.into(),
|
|
right: right.into(),
|
|
},
|
|
);
|
|
|
|
index.move_up();
|
|
node = parent.into();
|
|
}
|
|
|
|
Ok(node)
|
|
}
|
|
|
|
/// Adds all the nodes of multiple Merkle paths into the store.
|
|
///
|
|
/// This will compute the sibling elements for each Merkle `path` and include all the nodes
|
|
/// into the store.
|
|
///
|
|
/// For further reference, check [MerkleStore::add_merkle_path].
|
|
pub fn add_merkle_paths<I>(&mut self, paths: I) -> Result<(), MerkleError>
|
|
where
|
|
I: IntoIterator<Item = (u64, Word, MerklePath)>,
|
|
{
|
|
for (index_value, node, path) in paths.into_iter() {
|
|
self.add_merkle_path(index_value, node, path)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Appends the provided [MerklePathSet] into the store.
|
|
///
|
|
/// For further reference, check [MerkleStore::add_merkle_path].
|
|
pub fn add_merkle_path_set(&mut self, path_set: &MerklePathSet) -> Result<Word, MerkleError> {
|
|
let root = path_set.root();
|
|
for (index, path) in path_set.to_paths() {
|
|
self.add_merkle_path(index, path.value, path.path)?;
|
|
}
|
|
Ok(root)
|
|
}
|
|
|
|
/// Sets a node to `value`.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// This method can return the following errors:
|
|
/// - `RootNotInStore` if the `root` is not present in the store.
|
|
/// - `NodeNotInStore` if a node needed to traverse from `root` to `index` is not present in the store.
|
|
pub fn set_node(
|
|
&mut self,
|
|
mut root: Word,
|
|
index: NodeIndex,
|
|
value: Word,
|
|
) -> Result<RootPath, MerkleError> {
|
|
let node = value;
|
|
let ValuePath { value, path } = self.get_path(root, index)?;
|
|
|
|
// performs the update only if the node value differs from the opening
|
|
if node != value {
|
|
root = self.add_merkle_path(index.value(), node, path.clone())?;
|
|
}
|
|
|
|
Ok(RootPath { root, path })
|
|
}
|
|
|
|
/// Merges two elements and adds the resulting node into the store.
|
|
///
|
|
/// Merges arbitrary values. They may be leafs, nodes, or a mixture of both.
|
|
pub fn merge_roots(&mut self, root1: Word, root2: Word) -> Result<Word, MerkleError> {
|
|
let left: RpoDigest = root1.into();
|
|
let right: RpoDigest = root2.into();
|
|
|
|
let parent = Rpo256::merge(&[left, right]);
|
|
self.nodes.insert(parent, Node { left, right });
|
|
|
|
Ok(parent.into())
|
|
}
|
|
}
|
|
|
|
// CONVERTIONS
|
|
// ================================================================================================
|
|
|
|
impl From<MerkleTree> for MerkleStore {
|
|
fn from(value: MerkleTree) -> Self {
|
|
let mut store = MerkleStore::new();
|
|
store.extend(value.inner_nodes());
|
|
store
|
|
}
|
|
}
|
|
|
|
impl From<SimpleSmt> for MerkleStore {
|
|
fn from(value: SimpleSmt) -> Self {
|
|
let mut store = MerkleStore::new();
|
|
store.extend(value.inner_nodes());
|
|
store
|
|
}
|
|
}
|
|
|
|
impl From<Mmr> for MerkleStore {
|
|
fn from(value: Mmr) -> Self {
|
|
let mut store = MerkleStore::new();
|
|
store.extend(value.inner_nodes());
|
|
store
|
|
}
|
|
}
|
|
|
|
// ITERATORS
|
|
// ================================================================================================
|
|
|
|
impl Extend<InnerNodeInfo> for MerkleStore {
|
|
fn extend<T: IntoIterator<Item = InnerNodeInfo>>(&mut self, iter: T) {
|
|
self.extend(iter.into_iter());
|
|
}
|
|
}
|
|
|
|
// SERIALIZATION
|
|
// ================================================================================================
|
|
|
|
impl Serializable for Node {
|
|
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
|
self.left.write_into(target);
|
|
self.right.write_into(target);
|
|
}
|
|
}
|
|
|
|
impl Deserializable for Node {
|
|
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
|
let left = RpoDigest::read_from(source)?;
|
|
let right = RpoDigest::read_from(source)?;
|
|
Ok(Node { left, right })
|
|
}
|
|
}
|
|
|
|
impl Serializable for MerkleStore {
|
|
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
|
target.write_u64(self.nodes.len() as u64);
|
|
|
|
for (k, v) in self.nodes.iter() {
|
|
k.write_into(target);
|
|
v.write_into(target);
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Deserializable for MerkleStore {
|
|
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
|
let len = source.read_u64()?;
|
|
let mut nodes: BTreeMap<RpoDigest, Node> = BTreeMap::new();
|
|
|
|
for _ in 0..len {
|
|
let key = RpoDigest::read_from(source)?;
|
|
let value = Node::read_from(source)?;
|
|
nodes.insert(key, value);
|
|
}
|
|
|
|
Ok(MerkleStore { nodes })
|
|
}
|
|
}
|