Files
miden-crypto/src/merkle/store/tests.rs
Victor Lopez 84086bdb95 feat: add merkle path containers and return them on tree update
Returning tuples is often confusing as they don't convey meaning and it
should be used only when there is no possible ambiguity.

For `MerkleStore`, we had a couple of tuples being returned, and reading
the implementation was required in order to distinguish if they were
leaf values or computed roots.

This commit introduces two containers that will self-document these
returns: `RootPath` and `ValuePath`. It will also update `set_node` to
return both the new root & the new path, so we can prevent duplicated
traversals downstream when updating a node (one to update, the second to
fetch the new path/root).
2023-03-21 20:45:01 +01:00

501 lines
17 KiB
Rust

use super::*;
use crate::{
hash::rpo::Rpo256,
merkle::{int_to_node, MerklePathSet},
Felt, Word,
};
const KEYS4: [u64; 4] = [0, 1, 2, 3];
const LEAVES4: [Word; 4] = [
int_to_node(1),
int_to_node(2),
int_to_node(3),
int_to_node(4),
];
#[test]
fn test_root_not_in_store() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
let store = MerkleStore::default().with_merkle_tree(LEAVES4)?;
assert_eq!(
store.get_node(LEAVES4[0], NodeIndex::new(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(LEAVES4[0])),
"Leaf 0 is not a root"
);
assert_eq!(
store.get_path(LEAVES4[0], NodeIndex::new(mtree.depth(), 0)),
Err(MerkleError::RootNotInStore(LEAVES4[0])),
"Leaf 0 is not a root"
);
Ok(())
}
#[test]
fn test_merkle_tree() -> Result<(), MerkleError> {
let mut store = MerkleStore::default();
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
store.add_merkle_tree(LEAVES4.to_vec())?;
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 0)),
Ok(LEAVES4[0]),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 1)),
Ok(LEAVES4[1]),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 2)),
Ok(LEAVES4[2]),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3)),
Ok(LEAVES4[3]),
"node 3 must be in the tree"
);
// STORE LEAVES MATCH TREE ===============================================================
// sanity check the values returned by the store and the tree
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 0)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 0)),
"node 0 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 1)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 1)),
"node 1 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 2)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 2)),
"node 2 must be the same for both MerkleTree and MerkleStore"
);
assert_eq!(
mtree.get_node(NodeIndex::new(mtree.depth(), 3)),
store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3)),
"node 3 must be the same for both MerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the tree
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 0))
.unwrap();
assert_eq!(
LEAVES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 1))
.unwrap();
assert_eq!(
LEAVES4[1], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 2))
.unwrap();
assert_eq!(
LEAVES4[2], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 2)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(mtree.root(), NodeIndex::new(mtree.depth(), 3))
.unwrap();
assert_eq!(
LEAVES4[3], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
mtree.get_path(NodeIndex::new(mtree.depth(), 3)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn test_get_invalid_node() {
let mut store = MerkleStore::default();
let mtree = MerkleTree::new(LEAVES4.to_vec()).expect("creating a merkle tree must work");
store
.add_merkle_tree(LEAVES4.to_vec())
.expect("adding a merkle tree to the store must work");
let _ = store.get_node(mtree.root(), NodeIndex::new(mtree.depth(), 3));
}
#[test]
fn test_add_sparse_merkle_tree_one_level() -> Result<(), MerkleError> {
let mut store = MerkleStore::default();
let keys2: [u64; 2] = [0, 1];
let leaves2: [Word; 2] = [int_to_node(1), int_to_node(2)];
store.add_sparse_merkle_tree(keys2.into_iter().zip(leaves2.into_iter()))?;
let smt = SimpleSmt::new(1)
.unwrap()
.with_leaves(keys2.into_iter().zip(leaves2.into_iter()))
.unwrap();
let idx = NodeIndex::new(1, 0);
assert_eq!(smt.get_node(&idx).unwrap(), leaves2[0]);
assert_eq!(
store.get_node(smt.root(), idx).unwrap(),
smt.get_node(&idx).unwrap()
);
let idx = NodeIndex::new(1, 1);
assert_eq!(smt.get_node(&idx).unwrap(), leaves2[1]);
assert_eq!(
store.get_node(smt.root(), idx).unwrap(),
smt.get_node(&idx).unwrap()
);
Ok(())
}
#[test]
fn test_sparse_merkle_tree() -> Result<(), MerkleError> {
let mut store = MerkleStore::default();
store.add_sparse_merkle_tree(KEYS4.into_iter().zip(LEAVES4.into_iter()))?;
let smt = SimpleSmt::new(SimpleSmt::MAX_DEPTH)
.unwrap()
.with_leaves(KEYS4.into_iter().zip(LEAVES4.into_iter()))
.unwrap();
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 0)),
Ok(LEAVES4[0]),
"node 0 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 1)),
Ok(LEAVES4[1]),
"node 1 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 2)),
Ok(LEAVES4[2]),
"node 2 must be in the tree"
);
assert_eq!(
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 3)),
Ok(LEAVES4[3]),
"node 3 must be in the tree"
);
// STORE LEAVES MATCH TREE ===============================================================
// sanity check the values returned by the store and the tree
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 0)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 0)),
"node 0 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 1)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 1)),
"node 1 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 2)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 2)),
"node 2 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
smt.get_node(&NodeIndex::new(smt.depth(), 3)),
store.get_node(smt.root(), NodeIndex::new(smt.depth(), 3)),
"node 3 must be the same for both SparseMerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the tree
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 0))
.unwrap();
assert_eq!(
LEAVES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 1))
.unwrap();
assert_eq!(
LEAVES4[1], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 2))
.unwrap();
assert_eq!(
LEAVES4[2], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 2)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(smt.root(), NodeIndex::new(smt.depth(), 3))
.unwrap();
assert_eq!(
LEAVES4[3], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
smt.get_path(NodeIndex::new(smt.depth(), 3)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn test_add_merkle_paths() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
let i0 = 0;
let p0 = mtree.get_path(NodeIndex::new(2, i0)).unwrap();
let i1 = 1;
let p1 = mtree.get_path(NodeIndex::new(2, i1)).unwrap();
let i2 = 2;
let p2 = mtree.get_path(NodeIndex::new(2, i2)).unwrap();
let i3 = 3;
let p3 = mtree.get_path(NodeIndex::new(2, i3)).unwrap();
let paths = [
(i0, LEAVES4[i0 as usize], p0),
(i1, LEAVES4[i1 as usize], p1),
(i2, LEAVES4[i2 as usize], p2),
(i3, LEAVES4[i3 as usize], p3),
];
let mut store = MerkleStore::default();
store
.add_merkle_paths(paths.clone())
.expect("the valid paths must work");
let depth = 3;
let set = MerklePathSet::new(depth).with_paths(paths).unwrap();
// STORE LEAVES ARE CORRECT ==============================================================
// checks the leaves in the store corresponds to the expected values
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 0)),
Ok(LEAVES4[0]),
"node 0 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 1)),
Ok(LEAVES4[1]),
"node 1 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 2)),
Ok(LEAVES4[2]),
"node 2 must be in the set"
);
assert_eq!(
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 3)),
Ok(LEAVES4[3]),
"node 3 must be in the set"
);
// STORE LEAVES MATCH SET ================================================================
// sanity check the values returned by the store and the set
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 0)),
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 0)),
"node 0 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 1)),
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 1)),
"node 1 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 2)),
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 2)),
"node 2 must be the same for both SparseMerkleTree and MerkleStore"
);
assert_eq!(
set.get_node(NodeIndex::new(set.depth(), 3)),
store.get_node(set.root(), NodeIndex::new(set.depth() - 1, 3)),
"node 3 must be the same for both SparseMerkleTree and MerkleStore"
);
// STORE MERKLE PATH MATCHS ==============================================================
// assert the merkle path returned by the store is the same as the one in the set
let result = store
.get_path(set.root(), NodeIndex::new(set.depth() - 1, 0))
.unwrap();
assert_eq!(
LEAVES4[0], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 0)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(set.root(), NodeIndex::new(set.depth() - 1, 1))
.unwrap();
assert_eq!(
LEAVES4[1], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 1)),
Ok(result.path),
"merkle path for index 1 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(set.root(), NodeIndex::new(set.depth() - 1, 2))
.unwrap();
assert_eq!(
LEAVES4[2], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 2)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
let result = store
.get_path(set.root(), NodeIndex::new(set.depth() - 1, 3))
.unwrap();
assert_eq!(
LEAVES4[3], result.value,
"Value for merkle path at index 0 must match leaf value"
);
assert_eq!(
set.get_path(NodeIndex::new(set.depth(), 3)),
Ok(result.path),
"merkle path for index 0 must be the same for the MerkleTree and MerkleStore"
);
Ok(())
}
#[test]
fn wont_open_to_different_depth_root() {
let empty = EmptySubtreeRoots::empty_hashes(64);
let a = [Felt::new(1); 4];
let b = [Felt::new(2); 4];
// Compute the root for a different depth. We cherry-pick this specific depth to prevent a
// regression to a bug in the past that allowed the user to fetch a node at a depth lower than
// the inserted path of a Merkle tree.
let mut root = Rpo256::merge(&[a.into(), b.into()]);
for depth in (1..=63).rev() {
root = Rpo256::merge(&[root, empty[depth]]);
}
let root = Word::from(root);
// For this example, the depth of the Merkle tree is 1, as we have only two leaves. Here we
// attempt to fetch a node on the maximum depth, and it should fail because the root shouldn't
// exist for the set.
let store = MerkleStore::default().with_merkle_tree([a, b]).unwrap();
let index = NodeIndex::root();
let err = store.get_node(root, index).err().unwrap();
assert_eq!(err, MerkleError::RootNotInStore(root));
}
#[test]
fn store_path_opens_from_leaf() {
let a = [Felt::new(1); 4];
let b = [Felt::new(2); 4];
let c = [Felt::new(3); 4];
let d = [Felt::new(4); 4];
let e = [Felt::new(5); 4];
let f = [Felt::new(6); 4];
let g = [Felt::new(7); 4];
let h = [Felt::new(8); 4];
let i = Rpo256::merge(&[a.into(), b.into()]);
let j = Rpo256::merge(&[c.into(), d.into()]);
let k = Rpo256::merge(&[e.into(), f.into()]);
let l = Rpo256::merge(&[g.into(), h.into()]);
let m = Rpo256::merge(&[i.into(), j.into()]);
let n = Rpo256::merge(&[k.into(), l.into()]);
let root = Rpo256::merge(&[m.into(), n.into()]);
let store = MerkleStore::default()
.with_merkle_tree([a, b, c, d, e, f, g, h])
.unwrap();
let path = store
.get_path(root.into(), NodeIndex::new(3, 1))
.unwrap()
.path;
let expected = MerklePath::new([a.into(), j.into(), n.into()].to_vec());
assert_eq!(path, expected);
}
#[test]
fn test_set_node() -> Result<(), MerkleError> {
let mtree = MerkleTree::new(LEAVES4.to_vec())?;
let mut store = MerkleStore::default().with_merkle_tree(LEAVES4)?;
let value = int_to_node(42);
let index = NodeIndex::new(mtree.depth(), 0);
let new_root = store.set_node(mtree.root(), index, value)?.root;
assert_eq!(
store.get_node(new_root, index),
Ok(value),
"Value must have changed"
);
Ok(())
}