You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

845 lines
29 KiB

use super::{Digest, ElementHasher, Felt, FieldElement, Hasher, StarkField, ONE, ZERO};
use core::{convert::TryInto, ops::Range};
mod digest;
pub use digest::RpoDigest;
mod mds_freq;
use mds_freq::mds_multiply_freq;
#[cfg(test)]
mod tests;
// CONSTANTS
// ================================================================================================
/// Sponge state is set to 12 field elements or 96 bytes; 8 elements are reserved for rate and
/// the remaining 4 elements are reserved for capacity.
const STATE_WIDTH: usize = 12;
/// The rate portion of the state is located in elements 4 through 11.
const RATE_RANGE: Range<usize> = 4..12;
const RATE_WIDTH: usize = RATE_RANGE.end - RATE_RANGE.start;
const INPUT1_RANGE: Range<usize> = 4..8;
const INPUT2_RANGE: Range<usize> = 8..12;
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
const CAPACITY_RANGE: Range<usize> = 0..4;
/// The output of the hash function is a digest which consists of 4 field elements or 32 bytes.
///
/// The digest is returned from state elements 4, 5, 6, and 7 (the first four elements of the
/// rate portion).
const DIGEST_RANGE: Range<usize> = 4..8;
const DIGEST_SIZE: usize = DIGEST_RANGE.end - DIGEST_RANGE.start;
/// The number of rounds is set to 7 to target 128-bit security level
const NUM_ROUNDS: usize = 7;
/// The number of byte chunks defining a field element when hashing a sequence of bytes
const BINARY_CHUNK_SIZE: usize = 7;
/// S-Box and Inverse S-Box powers;
///
/// The constants are defined for tests only because the exponentiations in the code are unrolled
/// for efficiency reasons.
#[cfg(test)]
const ALPHA: u64 = 7;
#[cfg(test)]
const INV_ALPHA: u64 = 10540996611094048183;
// HASHER IMPLEMENTATION
// ================================================================================================
/// Implementation of the Rescue Prime Optimized hash function with 256-bit output.
///
/// The hash function is implemented according to the Rescue Prime Optimized
/// [specifications](https://eprint.iacr.org/2022/1577)
///
/// The parameters used to instantiate the function are:
/// * Field: 64-bit prime field with modulus 2^64 - 2^32 + 1.
/// * State width: 12 field elements.
/// * Capacity size: 4 field elements.
/// * Number of founds: 7.
/// * S-Box degree: 7.
///
/// The above parameters target 128-bit security level. The digest consists of four field elements
/// and it can be serialized into 32 bytes (256 bits).
///
/// ## Hash output consistency
/// Functions [hash_elements()](Rpo256::hash_elements), [merge()](Rpo256::merge), and
/// [merge_with_int()](Rpo256::merge_with_int) are internally consistent. That is, computing
/// a hash for the same set of elements using these functions will always produce the same
/// result. For example, merging two digests using [merge()](Rpo256::merge) will produce the
/// same result as hashing 8 elements which make up these digests using
/// [hash_elements()](Rpo256::hash_elements) function.
///
/// However, [hash()](Rpo256::hash) function is not consistent with functions mentioned above.
/// For example, if we take two field elements, serialize them to bytes and hash them using
/// [hash()](Rpo256::hash), the result will differ from the result obtained by hashing these
/// elements directly using [hash_elements()](Rpo256::hash_elements) function. The reason for
/// this difference is that [hash()](Rpo256::hash) function needs to be able to handle
/// arbitrary binary strings, which may or may not encode valid field elements - and thus,
/// deserialization procedure used by this function is different from the procedure used to
/// deserialize valid field elements.
///
/// Thus, if the underlying data consists of valid field elements, it might make more sense
/// to deserialize them into field elements and then hash them using
/// [hash_elements()](Rpo256::hash_elements) function rather then hashing the serialized bytes
/// using [hash()](Rpo256::hash) function.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct Rpo256();
impl Hasher for Rpo256 {
/// Rpo256 collision resistance is the same as the security level, that is 128-bits.
///
/// #### Collision resistance
///
/// However, our setup of the capacity registers might drop it to 126.
///
/// Related issue: [#69](https://github.com/0xPolygonMiden/crypto/issues/69)
const COLLISION_RESISTANCE: u32 = 128;
type Digest = RpoDigest;
fn hash(bytes: &[u8]) -> Self::Digest {
// initialize the state with zeroes
let mut state = [ZERO; STATE_WIDTH];
// set the capacity (first element) to a flag on whether or not the input length is evenly
// divided by the rate. this will prevent collisions between padded and non-padded inputs,
// and will rule out the need to perform an extra permutation in case of evenly divided
// inputs.
let is_rate_multiple = bytes.len() % RATE_WIDTH == 0;
if !is_rate_multiple {
state[CAPACITY_RANGE.start] = ONE;
}
// initialize a buffer to receive the little-endian elements.
let mut buf = [0_u8; 8];
// iterate the chunks of bytes, creating a field element from each chunk and copying it
// into the state.
//
// every time the rate range is filled, a permutation is performed. if the final value of
// `i` is not zero, then the chunks count wasn't enough to fill the state range, and an
// additional permutation must be performed.
let i = bytes.chunks(BINARY_CHUNK_SIZE).fold(0, |i, chunk| {
// the last element of the iteration may or may not be a full chunk. if it's not, then
// we need to pad the remainder bytes of the chunk with zeroes, separated by a `1`.
// this will avoid collisions.
if chunk.len() == BINARY_CHUNK_SIZE {
buf[..BINARY_CHUNK_SIZE].copy_from_slice(chunk);
} else {
buf.fill(0);
buf[..chunk.len()].copy_from_slice(chunk);
buf[chunk.len()] = 1;
}
// set the current rate element to the input. since we take at most 7 bytes, we are
// guaranteed that the inputs data will fit into a single field element.
state[RATE_RANGE.start + i] = Felt::new(u64::from_le_bytes(buf));
// proceed filling the range. if it's full, then we apply a permutation and reset the
// counter to the beginning of the range.
if i == RATE_WIDTH - 1 {
Self::apply_permutation(&mut state);
0
} else {
i + 1
}
});
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPO permutation. we
// don't need to apply any extra padding because the first capacity element containts a
// flag indicating whether the input is evenly divisible by the rate.
if i != 0 {
state[RATE_RANGE.start + i..RATE_RANGE.end].fill(ZERO);
state[RATE_RANGE.start + i] = ONE;
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the rate as hash result.
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge(values: &[Self::Digest; 2]) -> Self::Digest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = Self::Digest::digests_as_elements(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// apply the RPO permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
fn merge_with_int(seed: Self::Digest, value: u64) -> Self::Digest {
// initialize the state as follows:
// - seed is copied into the first 4 elements of the rate portion of the state.
// - if the value fits into a single field element, copy it into the fifth rate element
// and set the sixth rate element to 1.
// - if the value doesn't fit into a single field element, split it into two field
// elements, copy them into rate elements 5 and 6, and set the seventh rate element
// to 1.
// - set the first capacity element to 1
let mut state = [ZERO; STATE_WIDTH];
state[INPUT1_RANGE].copy_from_slice(seed.as_elements());
state[INPUT2_RANGE.start] = Felt::new(value);
if value < Felt::MODULUS {
state[INPUT2_RANGE.start + 1] = ONE;
} else {
state[INPUT2_RANGE.start + 1] = Felt::new(value / Felt::MODULUS);
state[INPUT2_RANGE.start + 2] = ONE;
}
// common padding for both cases
state[CAPACITY_RANGE.start] = ONE;
// apply the RPO permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
impl ElementHasher for Rpo256 {
type BaseField = Felt;
fn hash_elements<E: FieldElement<BaseField = Self::BaseField>>(elements: &[E]) -> Self::Digest {
// convert the elements into a list of base field elements
let elements = E::as_base_elements(elements);
// initialize state to all zeros, except for the first element of the capacity part, which
// is set to 1 if the number of elements is not a multiple of RATE_WIDTH.
let mut state = [ZERO; STATE_WIDTH];
if elements.len() % RATE_WIDTH != 0 {
state[CAPACITY_RANGE.start] = ONE;
}
// absorb elements into the state one by one until the rate portion of the state is filled
// up; then apply the Rescue permutation and start absorbing again; repeat until all
// elements have been absorbed
let mut i = 0;
for &element in elements.iter() {
state[RATE_RANGE.start + i] = element;
i += 1;
if i % RATE_WIDTH == 0 {
Self::apply_permutation(&mut state);
i = 0;
}
}
// if we absorbed some elements but didn't apply a permutation to them (would happen when
// the number of elements is not a multiple of RATE_WIDTH), apply the RPO permutation after
// padding by appending a 1 followed by as many 0 as necessary to make the input length a
// multiple of the RATE_WIDTH.
if i > 0 {
state[RATE_RANGE.start + i] = ONE;
i += 1;
while i != RATE_WIDTH {
state[RATE_RANGE.start + i] = ZERO;
i += 1;
}
Self::apply_permutation(&mut state);
}
// return the first 4 elements of the state as hash result
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
}
// HASH FUNCTION IMPLEMENTATION
// ================================================================================================
impl Rpo256 {
// CONSTANTS
// --------------------------------------------------------------------------------------------
/// The number of rounds is set to 7 to target 128-bit security level.
pub const NUM_ROUNDS: usize = NUM_ROUNDS;
/// Sponge state is set to 12 field elements or 768 bytes; 8 elements are reserved for rate and
/// the remaining 4 elements are reserved for capacity.
pub const STATE_WIDTH: usize = STATE_WIDTH;
/// The rate portion of the state is located in elements 4 through 11 (inclusive).
pub const RATE_RANGE: Range<usize> = RATE_RANGE;
/// The capacity portion of the state is located in elements 0, 1, 2, and 3.
pub const CAPACITY_RANGE: Range<usize> = CAPACITY_RANGE;
/// The output of the hash function can be read from state elements 4, 5, 6, and 7.
pub const DIGEST_RANGE: Range<usize> = DIGEST_RANGE;
/// MDS matrix used for computing the linear layer in a RPO round.
pub const MDS: [[Felt; STATE_WIDTH]; STATE_WIDTH] = MDS;
/// Round constants added to the hasher state in the first half of the RPO round.
pub const ARK1: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK1;
/// Round constants added to the hasher state in the second half of the RPO round.
pub const ARK2: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = ARK2;
// TRAIT PASS-THROUGH FUNCTIONS
// --------------------------------------------------------------------------------------------
/// Returns a hash of the provided sequence of bytes.
#[inline(always)]
pub fn hash(bytes: &[u8]) -> RpoDigest {
<Self as Hasher>::hash(bytes)
}
/// Returns a hash of two digests. This method is intended for use in construction of
/// Merkle trees and verification of Merkle paths.
#[inline(always)]
pub fn merge(values: &[RpoDigest; 2]) -> RpoDigest {
<Self as Hasher>::merge(values)
}
/// Returns a hash of the provided field elements.
#[inline(always)]
pub fn hash_elements<E: FieldElement<BaseField = Felt>>(elements: &[E]) -> RpoDigest {
<Self as ElementHasher>::hash_elements(elements)
}
// DOMAIN IDENTIFIER
// --------------------------------------------------------------------------------------------
/// Returns a hash of two digests and a domain identifier.
pub fn merge_in_domain(values: &[RpoDigest; 2], domain: Felt) -> RpoDigest {
// initialize the state by copying the digest elements into the rate portion of the state
// (8 total elements), and set the capacity elements to 0.
let mut state = [ZERO; STATE_WIDTH];
let it = RpoDigest::digests_as_elements(values.iter());
for (i, v) in it.enumerate() {
state[RATE_RANGE.start + i] = *v;
}
// set the second capacity element to the domain value. The first capacity element is used
// for padding purposes.
state[CAPACITY_RANGE.start + 1] = domain;
// apply the RPO permutation and return the first four elements of the state
Self::apply_permutation(&mut state);
RpoDigest::new(state[DIGEST_RANGE].try_into().unwrap())
}
// RESCUE PERMUTATION
// --------------------------------------------------------------------------------------------
/// Applies RPO permutation to the provided state.
#[inline(always)]
pub fn apply_permutation(state: &mut [Felt; STATE_WIDTH]) {
for i in 0..NUM_ROUNDS {
Self::apply_round(state, i);
}
}
/// RPO round function.
#[inline(always)]
pub fn apply_round(state: &mut [Felt; STATE_WIDTH], round: usize) {
// apply first half of RPO round
Self::apply_mds(state);
Self::add_constants(state, &ARK1[round]);
Self::apply_sbox(state);
// apply second half of RPO round
Self::apply_mds(state);
Self::add_constants(state, &ARK2[round]);
Self::apply_inv_sbox(state);
}
// HELPER FUNCTIONS
// --------------------------------------------------------------------------------------------
#[inline(always)]
fn apply_mds(state: &mut [Felt; STATE_WIDTH]) {
let mut result = [ZERO; STATE_WIDTH];
// Using the linearity of the operations we can split the state into a low||high decomposition
// and operate on each with no overflow and then combine/reduce the result to a field element.
// The no overflow is guaranteed by the fact that the MDS matrix is a small powers of two in
// frequency domain.
let mut state_l = [0u64; STATE_WIDTH];
let mut state_h = [0u64; STATE_WIDTH];
for r in 0..STATE_WIDTH {
let s = state[r].inner();
state_h[r] = s >> 32;
state_l[r] = (s as u32) as u64;
}
let state_h = mds_multiply_freq(state_h);
let state_l = mds_multiply_freq(state_l);
for r in 0..STATE_WIDTH {
let s = state_l[r] as u128 + ((state_h[r] as u128) << 32);
let s_hi = (s >> 64) as u64;
let s_lo = s as u64;
let z = (s_hi << 32) - s_hi;
let (res, over) = s_lo.overflowing_add(z);
result[r] = Felt::from_mont(res.wrapping_add(0u32.wrapping_sub(over as u32) as u64));
}
*state = result;
}
#[inline(always)]
fn add_constants(state: &mut [Felt; STATE_WIDTH], ark: &[Felt; STATE_WIDTH]) {
state.iter_mut().zip(ark).for_each(|(s, &k)| *s += k);
}
#[inline(always)]
fn apply_sbox(state: &mut [Felt; STATE_WIDTH]) {
state[0] = state[0].exp7();
state[1] = state[1].exp7();
state[2] = state[2].exp7();
state[3] = state[3].exp7();
state[4] = state[4].exp7();
state[5] = state[5].exp7();
state[6] = state[6].exp7();
state[7] = state[7].exp7();
state[8] = state[8].exp7();
state[9] = state[9].exp7();
state[10] = state[10].exp7();
state[11] = state[11].exp7();
}
#[inline(always)]
fn apply_inv_sbox(state: &mut [Felt; STATE_WIDTH]) {
// compute base^10540996611094048183 using 72 multiplications per array element
// 10540996611094048183 = b1001001001001001001001001001000110110110110110110110110110110111
// compute base^10
let mut t1 = *state;
t1.iter_mut().for_each(|t| *t = t.square());
// compute base^100
let mut t2 = t1;
t2.iter_mut().for_each(|t| *t = t.square());
// compute base^100100
let t3 = Self::exp_acc::<Felt, STATE_WIDTH, 3>(t2, t2);
// compute base^100100100100
let t4 = Self::exp_acc::<Felt, STATE_WIDTH, 6>(t3, t3);
// compute base^100100100100100100100100
let t5 = Self::exp_acc::<Felt, STATE_WIDTH, 12>(t4, t4);
// compute base^100100100100100100100100100100
let t6 = Self::exp_acc::<Felt, STATE_WIDTH, 6>(t5, t3);
// compute base^1001001001001001001001001001000100100100100100100100100100100
let t7 = Self::exp_acc::<Felt, STATE_WIDTH, 31>(t6, t6);
// compute base^1001001001001001001001001001000110110110110110110110110110110111
for (i, s) in state.iter_mut().enumerate() {
let a = (t7[i].square() * t6[i]).square().square();
let b = t1[i] * t2[i] * *s;
*s = a * b;
}
}
#[inline(always)]
fn exp_acc<B: StarkField, const N: usize, const M: usize>(
base: [B; N],
tail: [B; N],
) -> [B; N] {
let mut result = base;
for _ in 0..M {
result.iter_mut().for_each(|r| *r = r.square());
}
result.iter_mut().zip(tail).for_each(|(r, t)| *r *= t);
result
}
}
// MDS
// ================================================================================================
/// RPO MDS matrix
const MDS: [[Felt; STATE_WIDTH]; STATE_WIDTH] = [
[
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
],
[
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
],
[
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
],
[
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
],
[
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
],
[
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
],
[
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
],
[
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
],
[
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
Felt::new(26),
],
[
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
Felt::new(8),
],
[
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
Felt::new(23),
],
[
Felt::new(23),
Felt::new(8),
Felt::new(26),
Felt::new(13),
Felt::new(10),
Felt::new(9),
Felt::new(7),
Felt::new(6),
Felt::new(22),
Felt::new(21),
Felt::new(8),
Felt::new(7),
],
];
// ROUND CONSTANTS
// ================================================================================================
/// Rescue round constants;
/// computed as in [specifications](https://github.com/ASDiscreteMathematics/rpo)
///
/// The constants are broken up into two arrays ARK1 and ARK2; ARK1 contains the constants for the
/// first half of RPO round, and ARK2 contains constants for the second half of RPO round.
const ARK1: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = [
[
Felt::new(5789762306288267392),
Felt::new(6522564764413701783),
Felt::new(17809893479458208203),
Felt::new(107145243989736508),
Felt::new(6388978042437517382),
Felt::new(15844067734406016715),
Felt::new(9975000513555218239),
Felt::new(3344984123768313364),
Felt::new(9959189626657347191),
Felt::new(12960773468763563665),
Felt::new(9602914297752488475),
Felt::new(16657542370200465908),
],
[
Felt::new(12987190162843096997),
Felt::new(653957632802705281),
Felt::new(4441654670647621225),
Felt::new(4038207883745915761),
Felt::new(5613464648874830118),
Felt::new(13222989726778338773),
Felt::new(3037761201230264149),
Felt::new(16683759727265180203),
Felt::new(8337364536491240715),
Felt::new(3227397518293416448),
Felt::new(8110510111539674682),
Felt::new(2872078294163232137),
],
[
Felt::new(18072785500942327487),
Felt::new(6200974112677013481),
Felt::new(17682092219085884187),
Felt::new(10599526828986756440),
Felt::new(975003873302957338),
Felt::new(8264241093196931281),
Felt::new(10065763900435475170),
Felt::new(2181131744534710197),
Felt::new(6317303992309418647),
Felt::new(1401440938888741532),
Felt::new(8884468225181997494),
Felt::new(13066900325715521532),
],
[
Felt::new(5674685213610121970),
Felt::new(5759084860419474071),
Felt::new(13943282657648897737),
Felt::new(1352748651966375394),
Felt::new(17110913224029905221),
Felt::new(1003883795902368422),
Felt::new(4141870621881018291),
Felt::new(8121410972417424656),
Felt::new(14300518605864919529),
Felt::new(13712227150607670181),
Felt::new(17021852944633065291),
Felt::new(6252096473787587650),
],
[
Felt::new(4887609836208846458),
Felt::new(3027115137917284492),
Felt::new(9595098600469470675),
Felt::new(10528569829048484079),
Felt::new(7864689113198939815),
Felt::new(17533723827845969040),
Felt::new(5781638039037710951),
Felt::new(17024078752430719006),
Felt::new(109659393484013511),
Felt::new(7158933660534805869),
Felt::new(2955076958026921730),
Felt::new(7433723648458773977),
],
[
Felt::new(16308865189192447297),
Felt::new(11977192855656444890),
Felt::new(12532242556065780287),
Felt::new(14594890931430968898),
Felt::new(7291784239689209784),
Felt::new(5514718540551361949),
Felt::new(10025733853830934803),
Felt::new(7293794580341021693),
Felt::new(6728552937464861756),
Felt::new(6332385040983343262),
Felt::new(13277683694236792804),
Felt::new(2600778905124452676),
],
[
Felt::new(7123075680859040534),
Felt::new(1034205548717903090),
Felt::new(7717824418247931797),
Felt::new(3019070937878604058),
Felt::new(11403792746066867460),
Felt::new(10280580802233112374),
Felt::new(337153209462421218),
Felt::new(13333398568519923717),
Felt::new(3596153696935337464),
Felt::new(8104208463525993784),
Felt::new(14345062289456085693),
Felt::new(17036731477169661256),
],
];
const ARK2: [[Felt; STATE_WIDTH]; NUM_ROUNDS] = [
[
Felt::new(6077062762357204287),
Felt::new(15277620170502011191),
Felt::new(5358738125714196705),
Felt::new(14233283787297595718),
Felt::new(13792579614346651365),
Felt::new(11614812331536767105),
Felt::new(14871063686742261166),
Felt::new(10148237148793043499),
Felt::new(4457428952329675767),
Felt::new(15590786458219172475),
Felt::new(10063319113072092615),
Felt::new(14200078843431360086),
],
[
Felt::new(6202948458916099932),
Felt::new(17690140365333231091),
Felt::new(3595001575307484651),
Felt::new(373995945117666487),
Felt::new(1235734395091296013),
Felt::new(14172757457833931602),
Felt::new(707573103686350224),
Felt::new(15453217512188187135),
Felt::new(219777875004506018),
Felt::new(17876696346199469008),
Felt::new(17731621626449383378),
Felt::new(2897136237748376248),
],
[
Felt::new(8023374565629191455),
Felt::new(15013690343205953430),
Felt::new(4485500052507912973),
Felt::new(12489737547229155153),
Felt::new(9500452585969030576),
Felt::new(2054001340201038870),
Felt::new(12420704059284934186),
Felt::new(355990932618543755),
Felt::new(9071225051243523860),
Felt::new(12766199826003448536),
Felt::new(9045979173463556963),
Felt::new(12934431667190679898),
],
[
Felt::new(18389244934624494276),
Felt::new(16731736864863925227),
Felt::new(4440209734760478192),
Felt::new(17208448209698888938),
Felt::new(8739495587021565984),
Felt::new(17000774922218161967),
Felt::new(13533282547195532087),
Felt::new(525402848358706231),
Felt::new(16987541523062161972),
Felt::new(5466806524462797102),
Felt::new(14512769585918244983),
Felt::new(10973956031244051118),
],
[
Felt::new(6982293561042362913),
Felt::new(14065426295947720331),
Felt::new(16451845770444974180),
Felt::new(7139138592091306727),
Felt::new(9012006439959783127),
Felt::new(14619614108529063361),
Felt::new(1394813199588124371),
Felt::new(4635111139507788575),
Felt::new(16217473952264203365),
Felt::new(10782018226466330683),
Felt::new(6844229992533662050),
Felt::new(7446486531695178711),
],
[
Felt::new(3736792340494631448),
Felt::new(577852220195055341),
Felt::new(6689998335515779805),
Felt::new(13886063479078013492),
Felt::new(14358505101923202168),
Felt::new(7744142531772274164),
Felt::new(16135070735728404443),
Felt::new(12290902521256031137),
Felt::new(12059913662657709804),
Felt::new(16456018495793751911),
Felt::new(4571485474751953524),
Felt::new(17200392109565783176),
],
[
Felt::new(17130398059294018733),
Felt::new(519782857322261988),
Felt::new(9625384390925085478),
Felt::new(1664893052631119222),
Felt::new(7629576092524553570),
Felt::new(3485239601103661425),
Felt::new(9755891797164033838),
Felt::new(15218148195153269027),
Felt::new(16460604813734957368),
Felt::new(9643968136937729763),
Felt::new(3611348709641382851),
Felt::new(18256379591337759196),
],
];