use super::{
|
|
super::{
|
|
math::{ffldl, ffsampling, gram, normalize_tree, FalconFelt, FastFft, LdlTree, Polynomial},
|
|
signature::SignaturePoly,
|
|
ByteReader, ByteWriter, Deserializable, DeserializationError, Nonce, Serializable,
|
|
ShortLatticeBasis, Signature, Word, MODULUS, N, SIGMA, SIG_L2_BOUND,
|
|
},
|
|
PubKeyPoly, PublicKey,
|
|
};
|
|
use crate::dsa::rpo_falcon512::{
|
|
hash_to_point::hash_to_point_rpo256, math::ntru_gen, SIG_NONCE_LEN, SK_LEN,
|
|
};
|
|
use alloc::{string::ToString, vec::Vec};
|
|
use num::Complex;
|
|
use num_complex::Complex64;
|
|
use rand::Rng;
|
|
|
|
#[cfg(not(feature = "std"))]
|
|
use num::Float;
|
|
|
|
// CONSTANTS
|
|
// ================================================================================================
|
|
|
|
const WIDTH_BIG_POLY_COEFFICIENT: usize = 8;
|
|
const WIDTH_SMALL_POLY_COEFFICIENT: usize = 6;
|
|
|
|
// SECRET KEY
|
|
// ================================================================================================
|
|
|
|
/// The secret key is a quadruple [[g, -f], [G, -F]] of polynomials with integer coefficients.
|
|
///
|
|
/// Each polynomial is of degree at most N = 512 and computations with these polynomials are done
|
|
/// modulo the monic irreducible polynomial ϕ = x^N + 1. The secret key is a basis for a lattice
|
|
/// and has the property of being short with respect to a certain norm and an upper bound
|
|
/// appropriate for a given security parameter. The public key on the other hand is another basis
|
|
/// for the same lattice and can be described by a single polynomial h with integer coefficients
|
|
/// modulo ϕ. The two keys are related by the following relation:
|
|
///
|
|
/// 1. h = g /f [mod ϕ][mod p]
|
|
/// 2. f.G - g.F = p [mod ϕ]
|
|
///
|
|
/// where p = 12289 is the Falcon prime. Equation 2 is called the NTRU equation.
|
|
/// The secret key is generated by first sampling a random pair (f, g) of polynomials using
|
|
/// an appropriate distribution that yields short but not too short polynomials with integer
|
|
/// coefficients modulo ϕ. The NTRU equation is then used to find a matching pair (F, G).
|
|
/// The public key is then derived from the secret key using equation 1.
|
|
///
|
|
/// To allow for fast signature generation, the secret key is pre-processed into a more suitable
|
|
/// form, called the LDL tree, and this allows for fast sampling of short vectors in the lattice
|
|
/// using Fast Fourier sampling during signature generation (ffSampling algorithm 11 in [1]).
|
|
///
|
|
/// [1]: https://falcon-sign.info/falcon.pdf
|
|
#[derive(Debug, Clone)]
|
|
pub struct SecretKey {
|
|
secret_key: ShortLatticeBasis,
|
|
tree: LdlTree,
|
|
}
|
|
|
|
#[allow(clippy::new_without_default)]
|
|
impl SecretKey {
|
|
// CONSTRUCTORS
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
/// Generates a secret key from OS-provided randomness.
|
|
#[cfg(feature = "std")]
|
|
pub fn new() -> Self {
|
|
use rand::{rngs::StdRng, SeedableRng};
|
|
|
|
let mut rng = StdRng::from_entropy();
|
|
Self::with_rng(&mut rng)
|
|
}
|
|
|
|
/// Generates a secret_key using the provided random number generator `Rng`.
|
|
pub fn with_rng<R: Rng>(rng: &mut R) -> Self {
|
|
let basis = ntru_gen(N, rng);
|
|
Self::from_short_lattice_basis(basis)
|
|
}
|
|
|
|
/// Given a short basis [[g, -f], [G, -F]], computes the normalized LDL tree i.e., Falcon tree.
|
|
fn from_short_lattice_basis(basis: ShortLatticeBasis) -> SecretKey {
|
|
// FFT each polynomial of the short basis.
|
|
let basis_fft = to_complex_fft(&basis);
|
|
// compute the Gram matrix.
|
|
let gram_fft = gram(basis_fft);
|
|
// construct the LDL tree of the Gram matrix.
|
|
let mut tree = ffldl(gram_fft);
|
|
// normalize the leaves of the LDL tree.
|
|
normalize_tree(&mut tree, SIGMA);
|
|
Self { secret_key: basis, tree }
|
|
}
|
|
|
|
// PUBLIC ACCESSORS
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
/// Returns the polynomials of the short lattice basis of this secret key.
|
|
pub fn short_lattice_basis(&self) -> &ShortLatticeBasis {
|
|
&self.secret_key
|
|
}
|
|
|
|
/// Returns the public key corresponding to this secret key.
|
|
pub fn public_key(&self) -> PublicKey {
|
|
self.compute_pub_key_poly().into()
|
|
}
|
|
|
|
/// Returns the LDL tree associated to this secret key.
|
|
pub fn tree(&self) -> &LdlTree {
|
|
&self.tree
|
|
}
|
|
|
|
// SIGNATURE GENERATION
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
/// Signs a message with this secret key.
|
|
#[cfg(feature = "std")]
|
|
pub fn sign(&self, message: Word) -> Signature {
|
|
use rand::{rngs::StdRng, SeedableRng};
|
|
|
|
let mut rng = StdRng::from_entropy();
|
|
self.sign_with_rng(message, &mut rng)
|
|
}
|
|
|
|
/// Signs a message with the secret key relying on the provided randomness generator.
|
|
pub fn sign_with_rng<R: Rng>(&self, message: Word, rng: &mut R) -> Signature {
|
|
let mut nonce_bytes = [0u8; SIG_NONCE_LEN];
|
|
rng.fill_bytes(&mut nonce_bytes);
|
|
let nonce = Nonce::new(nonce_bytes);
|
|
|
|
let h = self.compute_pub_key_poly();
|
|
let c = hash_to_point_rpo256(message, &nonce);
|
|
let s2 = self.sign_helper(c, rng);
|
|
|
|
Signature::new(nonce, h, s2)
|
|
}
|
|
|
|
// HELPER METHODS
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
/// Derives the public key corresponding to this secret key using h = g /f [mod ϕ][mod p].
|
|
pub fn compute_pub_key_poly(&self) -> PubKeyPoly {
|
|
let g: Polynomial<FalconFelt> = self.secret_key[0].clone().into();
|
|
let g_fft = g.fft();
|
|
let minus_f: Polynomial<FalconFelt> = self.secret_key[1].clone().into();
|
|
let f = -minus_f;
|
|
let f_fft = f.fft();
|
|
let h_fft = g_fft.hadamard_div(&f_fft);
|
|
h_fft.ifft().into()
|
|
}
|
|
|
|
/// Signs a message polynomial with the secret key.
|
|
///
|
|
/// Takes a randomness generator implementing `Rng` and message polynomial representing `c`
|
|
/// the hash-to-point of the message to be signed. It outputs a signature polynomial `s2`.
|
|
fn sign_helper<R: Rng>(&self, c: Polynomial<FalconFelt>, rng: &mut R) -> SignaturePoly {
|
|
let one_over_q = 1.0 / (MODULUS as f64);
|
|
let c_over_q_fft = c.map(|cc| Complex::new(one_over_q * cc.value() as f64, 0.0)).fft();
|
|
|
|
// B = [[FFT(g), -FFT(f)], [FFT(G), -FFT(F)]]
|
|
let [g_fft, minus_f_fft, big_g_fft, minus_big_f_fft] = to_complex_fft(&self.secret_key);
|
|
let t0 = c_over_q_fft.hadamard_mul(&minus_big_f_fft);
|
|
let t1 = -c_over_q_fft.hadamard_mul(&minus_f_fft);
|
|
|
|
loop {
|
|
let bold_s = loop {
|
|
let z = ffsampling(&(t0.clone(), t1.clone()), &self.tree, rng);
|
|
let t0_min_z0 = t0.clone() - z.0;
|
|
let t1_min_z1 = t1.clone() - z.1;
|
|
|
|
// s = (t-z) * B
|
|
let s0 = t0_min_z0.hadamard_mul(&g_fft) + t1_min_z1.hadamard_mul(&big_g_fft);
|
|
let s1 =
|
|
t0_min_z0.hadamard_mul(&minus_f_fft) + t1_min_z1.hadamard_mul(&minus_big_f_fft);
|
|
|
|
// compute the norm of (s0||s1) and note that they are in FFT representation
|
|
let length_squared: f64 =
|
|
(s0.coefficients.iter().map(|a| (a * a.conj()).re).sum::<f64>()
|
|
+ s1.coefficients.iter().map(|a| (a * a.conj()).re).sum::<f64>())
|
|
/ (N as f64);
|
|
|
|
if length_squared > (SIG_L2_BOUND as f64) {
|
|
continue;
|
|
}
|
|
|
|
break [-s0, s1];
|
|
};
|
|
|
|
let s2 = bold_s[1].ifft();
|
|
let s2_coef: [i16; N] = s2
|
|
.coefficients
|
|
.iter()
|
|
.map(|a| a.re.round() as i16)
|
|
.collect::<Vec<i16>>()
|
|
.try_into()
|
|
.expect("The number of coefficients should be equal to N");
|
|
|
|
if let Ok(s2) = SignaturePoly::try_from(&s2_coef) {
|
|
return s2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// SERIALIZATION / DESERIALIZATION
|
|
// ================================================================================================
|
|
|
|
impl Serializable for SecretKey {
|
|
fn write_into<W: ByteWriter>(&self, target: &mut W) {
|
|
let basis = &self.secret_key;
|
|
|
|
// header
|
|
let n = basis[0].coefficients.len();
|
|
let l = n.checked_ilog2().unwrap() as u8;
|
|
let header: u8 = (5 << 4) | l;
|
|
|
|
let neg_f = &basis[1];
|
|
let g = &basis[0];
|
|
let neg_big_f = &basis[3];
|
|
|
|
let mut buffer = Vec::with_capacity(1281);
|
|
buffer.push(header);
|
|
|
|
let f_i8: Vec<i8> = neg_f
|
|
.coefficients
|
|
.iter()
|
|
.map(|&a| FalconFelt::new(-a).balanced_value() as i8)
|
|
.collect();
|
|
let f_i8_encoded = encode_i8(&f_i8, WIDTH_SMALL_POLY_COEFFICIENT).unwrap();
|
|
buffer.extend_from_slice(&f_i8_encoded);
|
|
|
|
let g_i8: Vec<i8> = g
|
|
.coefficients
|
|
.iter()
|
|
.map(|&a| FalconFelt::new(a).balanced_value() as i8)
|
|
.collect();
|
|
let g_i8_encoded = encode_i8(&g_i8, WIDTH_SMALL_POLY_COEFFICIENT).unwrap();
|
|
buffer.extend_from_slice(&g_i8_encoded);
|
|
|
|
let big_f_i8: Vec<i8> = neg_big_f
|
|
.coefficients
|
|
.iter()
|
|
.map(|&a| FalconFelt::new(-a).balanced_value() as i8)
|
|
.collect();
|
|
let big_f_i8_encoded = encode_i8(&big_f_i8, WIDTH_BIG_POLY_COEFFICIENT).unwrap();
|
|
buffer.extend_from_slice(&big_f_i8_encoded);
|
|
target.write_bytes(&buffer);
|
|
}
|
|
}
|
|
|
|
impl Deserializable for SecretKey {
|
|
fn read_from<R: ByteReader>(source: &mut R) -> Result<Self, DeserializationError> {
|
|
let byte_vector: [u8; SK_LEN] = source.read_array()?;
|
|
|
|
// check length
|
|
if byte_vector.len() < 2 {
|
|
return Err(DeserializationError::InvalidValue("Invalid encoding length: Failed to decode as length is different from the one expected".to_string()));
|
|
}
|
|
|
|
// read fields
|
|
let header = byte_vector[0];
|
|
|
|
// check fixed bits in header
|
|
if (header >> 4) != 5 {
|
|
return Err(DeserializationError::InvalidValue("Invalid header format".to_string()));
|
|
}
|
|
|
|
// check log n
|
|
let logn = (header & 15) as usize;
|
|
let n = 1 << logn;
|
|
|
|
// match against const variant generic parameter
|
|
if n != N {
|
|
return Err(DeserializationError::InvalidValue(
|
|
"Unsupported Falcon DSA variant".to_string(),
|
|
));
|
|
}
|
|
|
|
if byte_vector.len() != SK_LEN {
|
|
return Err(DeserializationError::InvalidValue("Invalid encoding length: Failed to decode as length is different from the one expected".to_string()));
|
|
}
|
|
|
|
let chunk_size_f = ((n * WIDTH_SMALL_POLY_COEFFICIENT) + 7) >> 3;
|
|
let chunk_size_g = ((n * WIDTH_SMALL_POLY_COEFFICIENT) + 7) >> 3;
|
|
let chunk_size_big_f = ((n * WIDTH_BIG_POLY_COEFFICIENT) + 7) >> 3;
|
|
|
|
let f = decode_i8(&byte_vector[1..chunk_size_f + 1], WIDTH_SMALL_POLY_COEFFICIENT).unwrap();
|
|
let g = decode_i8(
|
|
&byte_vector[chunk_size_f + 1..(chunk_size_f + chunk_size_g + 1)],
|
|
WIDTH_SMALL_POLY_COEFFICIENT,
|
|
)
|
|
.unwrap();
|
|
let big_f = decode_i8(
|
|
&byte_vector[(chunk_size_f + chunk_size_g + 1)
|
|
..(chunk_size_f + chunk_size_g + chunk_size_big_f + 1)],
|
|
WIDTH_BIG_POLY_COEFFICIENT,
|
|
)
|
|
.unwrap();
|
|
|
|
let f = Polynomial::new(f.iter().map(|&c| FalconFelt::new(c.into())).collect());
|
|
let g = Polynomial::new(g.iter().map(|&c| FalconFelt::new(c.into())).collect());
|
|
let big_f = Polynomial::new(big_f.iter().map(|&c| FalconFelt::new(c.into())).collect());
|
|
|
|
// big_g * f - g * big_f = p (mod X^n + 1)
|
|
let big_g = g.fft().hadamard_div(&f.fft()).hadamard_mul(&big_f.fft()).ifft();
|
|
let basis = [
|
|
g.map(|f| f.balanced_value()),
|
|
-f.map(|f| f.balanced_value()),
|
|
big_g.map(|f| f.balanced_value()),
|
|
-big_f.map(|f| f.balanced_value()),
|
|
];
|
|
Ok(Self::from_short_lattice_basis(basis))
|
|
}
|
|
}
|
|
|
|
// HELPER FUNCTIONS
|
|
// ================================================================================================
|
|
|
|
/// Computes the complex FFT of the secret key polynomials.
|
|
fn to_complex_fft(basis: &[Polynomial<i16>; 4]) -> [Polynomial<Complex<f64>>; 4] {
|
|
let [g, f, big_g, big_f] = basis.clone();
|
|
let g_fft = g.map(|cc| Complex64::new(*cc as f64, 0.0)).fft();
|
|
let minus_f_fft = f.map(|cc| -Complex64::new(*cc as f64, 0.0)).fft();
|
|
let big_g_fft = big_g.map(|cc| Complex64::new(*cc as f64, 0.0)).fft();
|
|
let minus_big_f_fft = big_f.map(|cc| -Complex64::new(*cc as f64, 0.0)).fft();
|
|
[g_fft, minus_f_fft, big_g_fft, minus_big_f_fft]
|
|
}
|
|
|
|
/// Encodes a sequence of signed integers such that each integer x satisfies |x| < 2^(bits-1)
|
|
/// for a given parameter bits. bits can take either the value 6 or 8.
|
|
pub fn encode_i8(x: &[i8], bits: usize) -> Option<Vec<u8>> {
|
|
let maxv = (1 << (bits - 1)) - 1_usize;
|
|
let maxv = maxv as i8;
|
|
let minv = -maxv;
|
|
|
|
for &c in x {
|
|
if c > maxv || c < minv {
|
|
return None;
|
|
}
|
|
}
|
|
|
|
let out_len = ((N * bits) + 7) >> 3;
|
|
let mut buf = vec![0_u8; out_len];
|
|
|
|
let mut acc = 0_u32;
|
|
let mut acc_len = 0;
|
|
let mask = ((1_u16 << bits) - 1) as u8;
|
|
|
|
let mut input_pos = 0;
|
|
for &c in x {
|
|
acc = (acc << bits) | (c as u8 & mask) as u32;
|
|
acc_len += bits;
|
|
while acc_len >= 8 {
|
|
acc_len -= 8;
|
|
buf[input_pos] = (acc >> acc_len) as u8;
|
|
input_pos += 1;
|
|
}
|
|
}
|
|
if acc_len > 0 {
|
|
buf[input_pos] = (acc >> (8 - acc_len)) as u8;
|
|
}
|
|
|
|
Some(buf)
|
|
}
|
|
|
|
/// Decodes a sequence of bytes into a sequence of signed integers such that each integer x
|
|
/// satisfies |x| < 2^(bits-1) for a given parameter bits. bits can take either the value 6 or 8.
|
|
pub fn decode_i8(buf: &[u8], bits: usize) -> Option<Vec<i8>> {
|
|
let mut x = [0_i8; N];
|
|
|
|
let mut i = 0;
|
|
let mut j = 0;
|
|
let mut acc = 0_u32;
|
|
let mut acc_len = 0;
|
|
let mask = (1_u32 << bits) - 1;
|
|
let a = (1 << bits) as u8;
|
|
let b = ((1 << (bits - 1)) - 1) as u8;
|
|
|
|
while i < N {
|
|
acc = (acc << 8) | (buf[j] as u32);
|
|
j += 1;
|
|
acc_len += 8;
|
|
|
|
while acc_len >= bits && i < N {
|
|
acc_len -= bits;
|
|
let w = (acc >> acc_len) & mask;
|
|
|
|
let w = w as u8;
|
|
|
|
let z = if w > b { w as i8 - a as i8 } else { w as i8 };
|
|
|
|
x[i] = z;
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
if (acc & ((1u32 << acc_len) - 1)) == 0 {
|
|
Some(x.to_vec())
|
|
} else {
|
|
None
|
|
}
|
|
}
|