mirror of
https://github.com/arnaucube/nova-study.git
synced 2026-01-09 23:51:29 +01:00
folding witness & crossterms works, add Ve helpers
This commit is contained in:
@@ -4,6 +4,6 @@ Implementation of [Nova](https://eprint.iacr.org/2021/370.pdf) using [arkworks-r
|
||||
|
||||
> Warning: Implementation from scratch to learn the internals of Nova. Do not use in production.
|
||||
|
||||
This repo is an ongoing implementation, the code will be dirty for a while and not optimized and not to be used but just to understand and experiment with the internals of the scheme and try experimental combinations.
|
||||
This repo is an ongoing implementation, the code will be dirty for a while and not optimized but just to understand and experiment with the internals of the scheme and try experimental combinations.
|
||||
|
||||
Thanks to [levs57](https://twitter.com/levs57) for clarifications on the Nova folding.
|
||||
|
||||
106
src/nifs.rs
106
src/nifs.rs
@@ -1,17 +1,24 @@
|
||||
use ark_ec::AffineRepr;
|
||||
use ark_std::ops::Add;
|
||||
use ark_std::One;
|
||||
use std::marker::PhantomData;
|
||||
|
||||
use crate::pedersen::{Commitment, CommitmentVec};
|
||||
use crate::pedersen::{Commitment, CommitmentVec, Params as PedersenParams, Pedersen};
|
||||
use crate::r1cs::*;
|
||||
use crate::transcript::Transcript;
|
||||
use crate::utils::*;
|
||||
use ark_std::{
|
||||
rand::{Rng, RngCore},
|
||||
UniformRand,
|
||||
};
|
||||
|
||||
// Phi: φ in the paper (later 𝖴), a folded instance
|
||||
pub struct Phi<C: AffineRepr> {
|
||||
cmE: Commitment<C>, // TODO not Commitment but directly C (without rE)
|
||||
// cmE: CommitmentVec<C>, // TODO not Commitment but directly C (without rE)
|
||||
cmE: C,
|
||||
u: C::ScalarField,
|
||||
cmW: Commitment<C>, // TODO not Commitment but directly C (without rW)
|
||||
// cmW: CommitmentVec<C>, // TODO not Commitment but directly C (without rW)
|
||||
cmW: C,
|
||||
x: Vec<C::ScalarField>,
|
||||
}
|
||||
|
||||
@@ -24,8 +31,21 @@ pub struct FWit<C: AffineRepr> {
|
||||
}
|
||||
|
||||
impl<C: AffineRepr> FWit<C> {
|
||||
pub fn commit(&self) -> Phi<C> {
|
||||
unimplemented!();
|
||||
pub fn commit<R: Rng>(
|
||||
&self,
|
||||
rng: &mut R,
|
||||
params: &PedersenParams<C>,
|
||||
x: Vec<C::ScalarField>,
|
||||
) -> Phi<C> {
|
||||
// TODO instead of rand r, use self.rE and self.rW for the commit_vec
|
||||
let cmE = Pedersen::commit_vec(rng, ¶ms, &self.E);
|
||||
let cmW = Pedersen::commit_vec(rng, ¶ms, &self.W);
|
||||
Phi {
|
||||
cmE: cmE.cm,
|
||||
u: C::ScalarField::one(),
|
||||
cmW: cmW.cm,
|
||||
x,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -46,17 +66,19 @@ impl<C: AffineRepr> NIFS<C> {
|
||||
// this is parallelizable (for the future)
|
||||
let Az1 = matrix_vector_product(&A, &z1);
|
||||
let Bz1 = matrix_vector_product(&B, &z1);
|
||||
let Az1_Bz1 = hadamard_product(Az1, Bz1);
|
||||
let Cz1 = matrix_vector_product(&C, &z1);
|
||||
let Az2 = matrix_vector_product(&A, &z2);
|
||||
let Bz2 = matrix_vector_product(&B, &z2);
|
||||
let Az2_Bz2 = hadamard_product(Az2, Bz2);
|
||||
let Cz2 = matrix_vector_product(&C, &z2);
|
||||
let Cz1 = matrix_vector_product(&C, &z1);
|
||||
|
||||
let Az1_Bz2 = hadamard_product(Az1, Bz2);
|
||||
let Az2_Bz1 = hadamard_product(Az2, Bz1);
|
||||
let u1Cz2 = vector_elem_product(&Cz2, &cs1.u);
|
||||
let u2Cz1 = vector_elem_product(&Cz1, &cs2.u);
|
||||
// this will get simplifyied with future operators from Add trait
|
||||
let T = vec_sub(vec_sub(vec_add(Az1_Bz1, Az2_Bz2), u1Cz2), u2Cz1);
|
||||
T
|
||||
|
||||
// let T = vec_sub(vec_sub(vec_add(Az1_Bz2, Az2_Bz1), u1Cz2), u2Cz1);
|
||||
let T = ((Ve(Az1_Bz2) + Ve(Az2_Bz1)) - Ve(u1Cz2)) - Ve(u2Cz1);
|
||||
T.0
|
||||
}
|
||||
|
||||
pub fn fold_witness(
|
||||
@@ -67,12 +89,15 @@ impl<C: AffineRepr> NIFS<C> {
|
||||
) -> FWit<C> {
|
||||
let r2 = r * r;
|
||||
let E: Vec<C::ScalarField> = vec_add(
|
||||
// TODO this syntax will be simplified with future operators impl
|
||||
// this syntax will be simplified with future operators impl (or at least a method
|
||||
// for r-lin)
|
||||
vec_add(fw1.E.clone(), vector_elem_product(&T, &r)),
|
||||
// rlin(fw1.E.clone(), T, r),
|
||||
vector_elem_product(&fw2.E, &r2),
|
||||
);
|
||||
let rE = fw1.rE + r * fw2.rE;
|
||||
let rE = fw1.rE + r2 * fw2.rE; // TODO rT
|
||||
let W = vec_add(fw1.W.clone(), vector_elem_product(&fw2.W, &r));
|
||||
// let W = rlin(fw1.W.clone(), fw2.W.clone(), r);
|
||||
let rW = fw1.rW + r * fw2.rW;
|
||||
FWit::<C> {
|
||||
E: E.into(),
|
||||
@@ -90,21 +115,24 @@ impl<C: AffineRepr> NIFS<C> {
|
||||
) -> Phi<C> {
|
||||
let r2 = r * r;
|
||||
|
||||
let cmE = phi1.cmE.cm + cmT.cm.mul(r) + phi2.cmE.cm.mul(r2);
|
||||
let cmE = phi1.cmE + cmT.cm.mul(r) + phi2.cmE.mul(r2);
|
||||
let u = phi1.u + r * phi2.u;
|
||||
let cmW = phi1.cmW.cm + phi2.cmW.cm.mul(r);
|
||||
let cmW = phi1.cmW + phi2.cmW.mul(r);
|
||||
let x = vec_add(phi1.x, vector_elem_product(&phi2.x, &r));
|
||||
// let x = rlin(phi1.x, phi2.x, r);
|
||||
|
||||
Phi::<C> {
|
||||
cmE: Commitment::<C> {
|
||||
cm: cmE.into(),
|
||||
r: phi1.cmE.r,
|
||||
},
|
||||
// cmE: Commitment::<C> {
|
||||
// cm: cmE.into(),
|
||||
// r: phi1.cmE.r,
|
||||
// },
|
||||
cmE: cmE.into(),
|
||||
u,
|
||||
cmW: Commitment::<C> {
|
||||
cm: cmW.into(),
|
||||
r: phi1.cmW.r,
|
||||
},
|
||||
// cmW: Commitment::<C> {
|
||||
// cm: cmW.into(),
|
||||
// r: phi1.cmW.r,
|
||||
// },
|
||||
cmW: cmW.into(),
|
||||
x,
|
||||
}
|
||||
}
|
||||
@@ -127,7 +155,8 @@ mod tests {
|
||||
fn test_simple_folding() {
|
||||
let mut rng = ark_std::test_rng();
|
||||
|
||||
// R1CS for: x^3 + x + 5 = y
|
||||
// R1CS for: x^3 + x + 5 = y (example from article
|
||||
// https://www.vitalik.ca/general/2016/12/10/qap.html )
|
||||
let A = to_F_matrix::<Fr>(vec![
|
||||
vec![0, 1, 0, 0, 0, 0],
|
||||
vec![0, 0, 0, 1, 0, 0],
|
||||
@@ -147,7 +176,9 @@ mod tests {
|
||||
vec![0, 0, 1, 0, 0, 0],
|
||||
]);
|
||||
let z1 = to_F_vec::<Fr>(vec![1, 3, 35, 9, 27, 30]);
|
||||
let x1 = to_F_vec::<Fr>(vec![35]);
|
||||
let z2 = to_F_vec::<Fr>(vec![1, 4, 73, 16, 64, 68]);
|
||||
let x2 = to_F_vec::<Fr>(vec![73]);
|
||||
|
||||
let relaxed_r1cs_1 = R1CS::<Fr> {
|
||||
A: A.clone(),
|
||||
@@ -155,7 +186,12 @@ mod tests {
|
||||
C: C.clone(),
|
||||
}
|
||||
.relax();
|
||||
let relaxed_r1cs_2 = R1CS::<Fr> { A, B, C }.relax();
|
||||
let relaxed_r1cs_2 = R1CS::<Fr> {
|
||||
A: A.clone(),
|
||||
B: B.clone(),
|
||||
C: C.clone(),
|
||||
}
|
||||
.relax();
|
||||
|
||||
let T = NIFS::<G1Affine>::comp_T(relaxed_r1cs_1, relaxed_r1cs_2, &z1, &z2);
|
||||
let params = Pedersen::<G1Affine>::new_params(&mut rng);
|
||||
@@ -179,11 +215,23 @@ mod tests {
|
||||
|
||||
// fold witness
|
||||
let folded_witness = NIFS::<G1Affine>::fold_witness(r, &fw1, &fw2, T);
|
||||
let phi1 = fw1.commit(); // <- unimplemented
|
||||
let phi2 = fw2.commit();
|
||||
|
||||
let pedersen_params = Pedersen::<G1Affine>::new_params(&mut rng);
|
||||
let phi1 = fw1.commit(&mut rng, &pedersen_params, x1); // wip
|
||||
let phi2 = fw2.commit(&mut rng, &pedersen_params, x2);
|
||||
// fold instance
|
||||
let folded_instance = NIFS::<G1Affine>::fold_instance(r, phi1, phi2, cmT);
|
||||
// naive check r1cs of the folded witness
|
||||
// assert_eq!(hadamard_product(Az, Bz), vec_add(vector_elem_product(Cz, u), E));
|
||||
|
||||
// naive check that the folded witness satisfies the relaxed r1cs
|
||||
let Az = matrix_vector_product(&A, &folded_witness.W);
|
||||
let Bz = matrix_vector_product(&B, &folded_witness.W);
|
||||
let Cz = matrix_vector_product(&C, &folded_witness.W);
|
||||
assert_eq!(
|
||||
hadamard_product(Az, Bz),
|
||||
vec_add(
|
||||
vector_elem_product(&Cz, &folded_instance.u),
|
||||
folded_witness.E
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
67
src/utils.rs
67
src/utils.rs
@@ -1,6 +1,7 @@
|
||||
use ark_ec::AffineRepr;
|
||||
use ark_ff::fields::PrimeField;
|
||||
use core::ops::Add;
|
||||
use core::ops::{Add, Sub};
|
||||
use std::fmt;
|
||||
|
||||
pub fn vector_elem_product<F: PrimeField>(a: &Vec<F>, e: &F) -> Vec<F> {
|
||||
// maybe move this method to operator a * e
|
||||
@@ -30,6 +31,11 @@ pub fn hadamard_product<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
|
||||
r
|
||||
}
|
||||
|
||||
// rlin: random linear combination
|
||||
// pub fn rlin<F: PrimeField>(a: Vec<F>, b: Vec<F>, r: F) -> Vec<F> {
|
||||
// vec_add(a, vector_elem_product(&b, &r)) // WIP probably group loops
|
||||
// }
|
||||
|
||||
pub fn naive_msm<C: AffineRepr>(s: &Vec<C::ScalarField>, p: &Vec<C>) -> C {
|
||||
// check lengths
|
||||
|
||||
@@ -47,17 +53,6 @@ pub fn vec_add<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
|
||||
}
|
||||
r
|
||||
}
|
||||
// TODO instead of vec_add do:
|
||||
// impl<'a, 'b, F> Add<&'b Vec<F>> for &'a Vec<F> {
|
||||
// type Output = Vec<F>;
|
||||
// fn add(self, rhs: &'b Vec<F>) -> Vec<F> {
|
||||
// let mut r: Vec<F> = vec![F::zero(); self.len()];
|
||||
// for i in 0..self.len() {
|
||||
// r[i] = self[i] + rhs[i];
|
||||
// }
|
||||
// r
|
||||
// }
|
||||
// }
|
||||
pub fn vec_sub<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
|
||||
let mut r: Vec<F> = vec![F::zero(); a.len()];
|
||||
for i in 0..a.len() {
|
||||
@@ -66,6 +61,48 @@ pub fn vec_sub<F: PrimeField>(a: Vec<F>, b: Vec<F>) -> Vec<F> {
|
||||
r
|
||||
}
|
||||
|
||||
// instead of vec_{add/sub} can use Ve wrapper which has '+', '-' operators
|
||||
#[derive(Debug, Clone, PartialEq)]
|
||||
pub struct Ve<F: PrimeField>(pub Vec<F>);
|
||||
|
||||
impl<F: PrimeField> fmt::Display for Ve<F> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
for (i, e) in self.0.iter().enumerate() {
|
||||
if i == self.0.len() - 1 {
|
||||
write!(f, "{}", e)?;
|
||||
break;
|
||||
}
|
||||
write!(f, "{}, ", e)?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl<F: PrimeField> Add<Ve<F>> for Ve<F> {
|
||||
type Output = Ve<F>;
|
||||
fn add(self, rhs_vec: Self) -> Ve<F> {
|
||||
let lhs = self.0.clone();
|
||||
let rhs = rhs_vec.0.clone();
|
||||
let mut r: Vec<F> = vec![F::zero(); lhs.len()];
|
||||
for i in 0..self.0.len() {
|
||||
r[i] = lhs[i] + rhs[i];
|
||||
}
|
||||
Ve(r)
|
||||
}
|
||||
}
|
||||
impl<F: PrimeField> Sub<Ve<F>> for Ve<F> {
|
||||
type Output = Ve<F>;
|
||||
fn sub(self, rhs_vec: Self) -> Ve<F> {
|
||||
let lhs = self.0.clone();
|
||||
let rhs = rhs_vec.0.clone();
|
||||
let mut r: Vec<F> = vec![F::zero(); lhs.len()];
|
||||
for i in 0..self.0.len() {
|
||||
r[i] = lhs[i] - rhs[i];
|
||||
}
|
||||
Ve(r)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_F_matrix<F: PrimeField>(M: Vec<Vec<usize>>) -> Vec<Vec<F>> {
|
||||
let mut R: Vec<Vec<F>> = vec![Vec::new(); M.len()];
|
||||
for i in 0..M.len() {
|
||||
@@ -114,6 +151,12 @@ mod tests {
|
||||
to_F_vec(vec![7, 16, 27, 40, 55, 72])
|
||||
);
|
||||
}
|
||||
#[test]
|
||||
fn test_vec_add() {
|
||||
let a: Vec<Fr> = to_F_vec::<Fr>(vec![1, 2, 3, 4, 5, 6]);
|
||||
let b: Vec<Fr> = to_F_vec(vec![7, 8, 9, 10, 11, 12]);
|
||||
assert_eq!(vec_add(a.clone(), b.clone()), (Ve(a) + Ve(b)).0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ABC_hadamard() {
|
||||
|
||||
Reference in New Issue
Block a user