You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

189 lines
5.5 KiB

use ark_ec::AffineRepr;
use ark_std::ops::Add;
use std::marker::PhantomData;
use crate::pedersen::{Commitment, CommitmentVec};
use crate::r1cs::*;
use crate::transcript::Transcript;
use crate::utils::*;
// Phi: φ in the paper (later 𝖴), a folded instance
pub struct Phi<C: AffineRepr> {
cmE: Commitment<C>, // TODO not Commitment but directly C (without rE)
u: C::ScalarField,
cmW: Commitment<C>, // TODO not Commitment but directly C (without rW)
x: Vec<C::ScalarField>,
}
// FWit: Folded Witness
pub struct FWit<C: AffineRepr> {
E: Vec<C::ScalarField>,
rE: C::ScalarField,
W: Vec<C::ScalarField>,
rW: C::ScalarField,
}
impl<C: AffineRepr> FWit<C> {
pub fn commit(&self) -> Phi<C> {
unimplemented!();
}
}
pub struct NIFS<C: AffineRepr> {
_phantom: PhantomData<C>,
}
impl<C: AffineRepr> NIFS<C> {
pub fn comp_T(
cs1: RelaxedR1CS<C::ScalarField>,
cs2: RelaxedR1CS<C::ScalarField>,
z1: &Vec<C::ScalarField>,
z2: &Vec<C::ScalarField>,
) -> Vec<C::ScalarField> {
// assuming cs1.R1CS == cs2.R1CS
let (A, B, C) = (cs1.ABC.A, cs1.ABC.B, cs1.ABC.C);
// this is parallelizable (for the future)
let Az1 = matrix_vector_product(&A, &z1);
let Bz1 = matrix_vector_product(&B, &z1);
let Az1_Bz1 = hadamard_product(Az1, Bz1);
let Az2 = matrix_vector_product(&A, &z2);
let Bz2 = matrix_vector_product(&B, &z2);
let Az2_Bz2 = hadamard_product(Az2, Bz2);
let Cz2 = matrix_vector_product(&C, &z2);
let Cz1 = matrix_vector_product(&C, &z1);
let u1Cz2 = vector_elem_product(&Cz2, &cs1.u);
let u2Cz1 = vector_elem_product(&Cz1, &cs2.u);
// this will get simplifyied with future operators from Add trait
let T = vec_sub(vec_sub(vec_add(Az1_Bz1, Az2_Bz2), u1Cz2), u2Cz1);
T
}
pub fn fold_witness(
r: C::ScalarField,
fw1: &FWit<C>,
fw2: &FWit<C>,
T: Vec<C::ScalarField>,
) -> FWit<C> {
let r2 = r * r;
let E: Vec<C::ScalarField> = vec_add(
// TODO this syntax will be simplified with future operators impl
vec_add(fw1.E.clone(), vector_elem_product(&T, &r)),
vector_elem_product(&fw2.E, &r2),
);
let rE = fw1.rE + r * fw2.rE;
let W = vec_add(fw1.W.clone(), vector_elem_product(&fw2.W, &r));
let rW = fw1.rW + r * fw2.rW;
FWit::<C> {
E: E.into(),
rE,
W: W.into(),
rW,
}
}
pub fn fold_instance(
r: C::ScalarField,
phi1: Phi<C>,
phi2: Phi<C>,
cmT: CommitmentVec<C>,
) -> Phi<C> {
let r2 = r * r;
let cmE = phi1.cmE.cm + cmT.cm.mul(r) + phi2.cmE.cm.mul(r2);
let u = phi1.u + r * phi2.u;
let cmW = phi1.cmW.cm + phi2.cmW.cm.mul(r);
let x = vec_add(phi1.x, vector_elem_product(&phi2.x, &r));
Phi::<C> {
cmE: Commitment::<C> {
cm: cmE.into(),
r: phi1.cmE.r,
},
u,
cmW: Commitment::<C> {
cm: cmW.into(),
r: phi1.cmW.r,
},
x,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::pedersen::Pedersen;
use ark_bn254::{g1::G1Affine, Fr};
use ark_ec::CurveGroup;
use ark_std::{
rand::{Rng, RngCore},
UniformRand,
};
use ark_std::{One, Zero};
use std::ops::Mul;
#[test]
fn test_simple_folding() {
let mut rng = ark_std::test_rng();
// R1CS for: x^3 + x + 5 = y
let A = to_F_matrix::<Fr>(vec![
vec![0, 1, 0, 0, 0, 0],
vec![0, 0, 0, 1, 0, 0],
vec![0, 1, 0, 0, 1, 0],
vec![5, 0, 0, 0, 0, 1],
]);
let B = to_F_matrix::<Fr>(vec![
vec![0, 1, 0, 0, 0, 0],
vec![0, 1, 0, 0, 0, 0],
vec![1, 0, 0, 0, 0, 0],
vec![1, 0, 0, 0, 0, 0],
]);
let C = to_F_matrix::<Fr>(vec![
vec![0, 0, 0, 1, 0, 0],
vec![0, 0, 0, 0, 1, 0],
vec![0, 0, 0, 0, 0, 1],
vec![0, 0, 1, 0, 0, 0],
]);
let z1 = to_F_vec::<Fr>(vec![1, 3, 35, 9, 27, 30]);
let z2 = to_F_vec::<Fr>(vec![1, 4, 73, 16, 64, 68]);
let relaxed_r1cs_1 = R1CS::<Fr> {
A: A.clone(),
B: B.clone(),
C: C.clone(),
}
.relax();
let relaxed_r1cs_2 = R1CS::<Fr> { A, B, C }.relax();
let T = NIFS::<G1Affine>::comp_T(relaxed_r1cs_1, relaxed_r1cs_2, &z1, &z2);
let params = Pedersen::<G1Affine>::new_params(&mut rng);
let cmT = Pedersen::commit_vec(&mut rng, &params, &T);
let r = Fr::rand(&mut rng); // this would come from the transcript
// WIP TMP
let fw1 = FWit::<G1Affine> {
E: vec![Fr::zero(); T.len()],
rE: Fr::zero(),
W: z1,
rW: Fr::zero(),
};
let fw2 = FWit::<G1Affine> {
E: vec![Fr::zero(); T.len()],
rE: Fr::zero(),
W: z2,
rW: Fr::zero(),
};
// fold witness
let folded_witness = NIFS::<G1Affine>::fold_witness(r, &fw1, &fw2, T);
let phi1 = fw1.commit(); // <- unimplemented
let phi2 = fw2.commit();
// fold instance
let folded_instance = NIFS::<G1Affine>::fold_instance(r, phi1, phi2, cmT);
// naive check r1cs of the folded witness
// assert_eq!(hadamard_product(Az, Bz), vec_add(vector_elem_product(Cz, u), E));
}
}