|
|
from sklearn.neural_network import MLPClassifier from skimage import io
img1 = io.imread("imgs/25.png") img2 = io.imread("imgs/24.png") img3 = io.imread("imgs/104.png")
img4 = io.imread("otherimgs/image_0008.jpg")
data_train = [img1, img2, img3, img4] data_labels = [1, 1, 1, 0] data_test = [img4, img3] clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5,2), random_state=1) clf.fit(data_train, data_labels)
clf.predict(data_test)
print "MPLClassifier values:" [coef.shape for coef in clf.coefs_]
'''
images_and_predictions = list(zip(digits.images[n_samples // 2:], predicted)) for index, (image, prediction) in enumerate(images_and_predictions[:4]): plt.subplot(2, 4, index + 5) plt.axis('off') plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest') plt.title('Prediction: %i' % prediction) '''
|