|
|
from os import walk import matplotlib.pyplot as plt import numpy as np from PIL import Image, ImageOps import pandas as pd
#pixels, pixels of the output resizing images size = 100, 100 def imgFileToData(path): image = Image.open(path) #resize the image thumb = ImageOps.fit(image, size, Image.ANTIALIAS) image_data = np.asarray(thumb) #.flatten()
#check if the image had been resized to 100x100. 3pixels * 100width + 100 height = 30000 if len(image_data)!=100: print("possible future ERROR!") print("len: " + str(len(image_data))) print("please, delete: " + path) return np.array(list(image_data))
def getDirectoryFiles(path, imgClass): images = [] for (dirpath, dirnames, filenames) in walk(path): for filename in filenames: #print(filename) image_data = imgFileToData(path + "/" + filename) images.append([image_data, imgClass]) print(path + "/" + filename) return images
objects = getDirectoryFiles("object", 1) noobjects = getDirectoryFiles("noobject", 0)
dataset = np.concatenate((objects, noobjects), axis=0) #print(dataset[0])
np.save('dataset.npy', dataset) '''
print(dataset) np.savetxt('dataset.csv', dataset, delimiter=",", fmt='%d')
pd.set_option('display.max_colwidth', -1) df = pd.DataFrame(dataset) print(df.head()) print("aaa") print(df[0][0]) print("aaa") pd.set_option('display.max_colwidth', -1) pd.set_option('display.max_columns', None) df.to_csv("dataset.csv", encoding='utf-8', index=False, header=False) '''
|