pipeline model chooser working, server predictor working

This commit is contained in:
arnaucode
2017-11-29 18:22:09 +01:00
parent 26f61c02f5
commit 950c6b4c57
207 changed files with 1168 additions and 449 deletions

4
other/cropObjects/.gitignore vendored Normal file
View File

@@ -0,0 +1,4 @@
object
noobject
*.jpeg
*.png

View File

@@ -0,0 +1,37 @@
# imagesToDataset
Gets all the images from the directories 'object' and 'noobject', and puts in a dataset file.
The dataset file is a dataset.data file that contains 2 columns:
- images arrays of pixels
- 0 or 1, depending if is from the 'noobject' or 'object' directory
First, install the libraries.
### install scikit-learn
http://scikit-learn.org/stable/install.html
pip install -U scikit-learn
### install scikit-image
http://scikit-image.org/download
pip install -U scikit-image
### install numpy
https://www.scipy.org/install.html
python -m pip install --upgrade pip
pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose
### install Pillow
http://pillow.readthedocs.io/en/3.0.x/installation.html
(sudo) pip install Pillow
### install matplotlib
https://matplotlib.org/users/installing.html
python -mpip install -U pip
python -mpip install -U matplotlib
may need to install python-tk:
sudo apt-get install python-tk
## to run
python readDataset.py

View File

@@ -0,0 +1,57 @@
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import os
from skimage import io
from skimage import color
from skimage import filters
def imgFileToData(path):
image = Image.open(path)
image_data = np.asarray(image)
return image_data
def imgFileToData2(path):
img = io.imread(path)
return img
def detectObj(image_data):
#image_data_blue = image_data[:,:,2]
image_data_blue = color.rgb2grey(image_data)
#image_data_blue = threshold(image_data)
median_blue = np.median(image_data_blue)
print median_blue
median_blue = median_blue - median_blue/1.5
print median_blue
print image_data_blue
non_empty_columns = np.where(image_data_blue.min(axis=0)<median_blue)[0]
non_empty_rows = np.where(image_data_blue.min(axis=1)<median_blue)[0]
boundingBox = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns))
print boundingBox
return boundingBox
def threshold(img):
#img = color.rgb2grey(img)
#img = img[:,:,2]
img = color.rgb2grey(img)
thresh = filters.threshold_mean(img)
binary = img > thresh
return binary
def prova(img):
#return color.rgb2grey(img)
return img
def crop(image_data, box):
return image_data[box[0]:box[1], box[2]:box[3]]
def saveDataToImageFile(data, filename):
image = Image.fromarray(data)
image.save(filename)

Binary file not shown.

View File

@@ -0,0 +1,24 @@
import cv2
#reading the image
#image = cv2.imread("demo.jpeg")
def detectObjects(image):
edged = cv2.Canny(image, 10, 250)
cv2.imshow("Edges", edged)
cv2.waitKey(0)
#applying closing function
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7))
closed = cv2.morphologyEx(edged, cv2.MORPH_CLOSE, kernel)
cv2.imshow("Closed", closed)
cv2.waitKey(0)
#finding_contours
(_, cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)
cv2.imshow("Output", image)
cv2.waitKey(0)

Binary file not shown.

42
other/cropObjects/main.py Normal file
View File

@@ -0,0 +1,42 @@
from os import walk
import detectObject as do
import matplotlib.pyplot as plt
#image_data = do.imgFileToData("imgs/34.png")
image_data = do.imgFileToData2("object/25.png")
boundingBox = do.detectObj(image_data)
image_data = do.prova(image_data)
r = do.crop(image_data, boundingBox)
import detectObjects as dos
r_copy = r
dos.detectObjects(r_copy)
#do.saveDataToImageFile(image_data, "out.png")
#r = do.prova(image_data)
fig = plt.figure()
ax = fig.add_subplot(121)
ax.set_title("Original")
ax.imshow(image_data)
ax1 = fig.add_subplot(122)
ax1.set_title("Result")
ax1.imshow(r)
plt.show()
'''
f = []
for (dirpath, dirnames, filenames) in walk("imgs"):
for filename in filenames:
print filename
image_data = do.imgFileToData("imgs/" + filename)
boundingBox = do.detectObj(image_data)
print boundingBox
'''

2
other/imagesToDataset/.gitignore vendored Normal file
View File

@@ -0,0 +1,2 @@
object
noobject

View File

@@ -0,0 +1,37 @@
# imagesToDataset
Gets all the images from the directories 'object' and 'noobject', and puts in a dataset file.
The dataset file is a dataset.data file that contains 2 columns:
- images arrays of pixels
- 0 or 1, depending if is from the 'noobject' or 'object' directory
First, install the libraries.
### install scikit-learn
http://scikit-learn.org/stable/install.html
pip install -U scikit-learn
### install scikit-image
http://scikit-image.org/download
pip install -U scikit-image
### install numpy
https://www.scipy.org/install.html
python -m pip install --upgrade pip
pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose
### install Pillow
http://pillow.readthedocs.io/en/3.0.x/installation.html
(sudo) pip install Pillow
### install matplotlib
https://matplotlib.org/users/installing.html
python -mpip install -U pip
python -mpip install -U matplotlib
may need to install python-tk:
sudo apt-get install python-tk
## to run
python readDataset.py

Binary file not shown.

View File

@@ -0,0 +1,54 @@
from os import walk
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageOps
import pandas as pd
#pixels, pixels of the output resizing images
size = 100, 100
def imgFileToData(path):
image = Image.open(path)
#resize the image
thumb = ImageOps.fit(image, size, Image.ANTIALIAS)
image_data = np.asarray(thumb)
#.flatten()
#check if the image had been resized to 100x100. 3pixels * 100width + 100 height = 30000
if len(image_data)!=100:
print("possible future ERROR!")
print("len: " + str(len(image_data)))
print("please, delete: " + path)
return np.array(list(image_data))
def getDirectoryFiles(path, imgClass):
images = []
for (dirpath, dirnames, filenames) in walk(path):
for filename in filenames:
#print(filename)
image_data = imgFileToData(path + "/" + filename)
images.append([image_data, imgClass])
print(path + "/" + filename)
return images
objects = getDirectoryFiles("object", 1)
noobjects = getDirectoryFiles("noobject", 0)
dataset = np.concatenate((objects, noobjects), axis=0)
#print(dataset[0])
np.save('dataset.npy', dataset)
'''
print(dataset)
np.savetxt('dataset.csv', dataset, delimiter=",", fmt='%d')
pd.set_option('display.max_colwidth', -1)
df = pd.DataFrame(dataset)
print(df.head())
print("aaa")
print(df[0][0])
print("aaa")
pd.set_option('display.max_colwidth', -1)
pd.set_option('display.max_columns', None)
df.to_csv("dataset.csv", encoding='utf-8', index=False, header=False)
'''

View File

@@ -0,0 +1,16 @@
import matplotlib.pyplot as plt
import numpy as np
from random import randint
dataset = np.load('dataset.npy')
n = randint(0, len(dataset))
plt.plot(111)
plt.axis('off')
plt.imshow(dataset[n][0])
plt.title('class: ' + str(dataset[n][1]))
plt.show()

1
other/serverPredictorOLD/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
currentimage.png

View File

View File

@@ -0,0 +1,63 @@
from flask import Flask
from flask_restful import Resource, Api, request
import matplotlib.pyplot as plt
import numpy as np
import cv2
import io
from PIL import Image, ImageOps
import pickle
app = Flask(__name__)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16 MB
api = Api(app)
size = 100, 100
#load Neural Network, generated with nnTrain
nn = pickle.load(open('nn.pkl', 'rb'))
class Predict(Resource):
def get(self):
message = {'message': 'getted route1'}
return message
def post(self):
filer = request.files['file']
#open the uploaded image, and transform to the numpy array
filer.save("currentimage.png")
image = Image.open("currentimage.png")
thumb = ImageOps.fit(image, size, Image.ANTIALIAS)
image_data = np.asarray(thumb).flatten()
imagetopredict = np.array([image_data])
#predict the class of the image with the neural network
prediction = nn.predict(imagetopredict)
print "prediction"
print prediction[0][0]
if prediction[0][0]==0:
result = "noobject"
else:
result = "object"
message = {'class': result}
return message
class Route2(Resource):
def get(self):
return {'message': 'getted route2'}
class Route3(Resource):
def get(self):
return {'message': 'getted route3'}
api.add_resource(Predict, '/predict')
api.add_resource(Route2, '/route2')
api.add_resource(Route3, '/route3')
if __name__ == '__main__':
app.run(port='3045')

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,10 @@
echo "sending img1 to server"
echo "server response:"
curl -F file=@./test1.png http://127.0.0.1:3045/predict
echo ""
echo "sending img2 to server"
echo "server response:"
curl -F file=@./test2.png http://127.0.0.1:3045/predict
echo ""

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB