# objectImageIdentifierAI - imagesToDataset - From two directories ('object' and 'noobject'), gets all the images inside the directories and generates the dataset - nnTrain - From the dataset file generated in the previous step, train the Neural Network - serverPredictor - Runs a server API, that with the Neural Network classifies the incoming images - smartphoneApp - Take photo and upload to the server, to get the response (object or no object) ![hotdognohotdog](https://raw.githubusercontent.com/arnaucode/objectImageIdentifierAI/master/hotdognohotdog.png "hotdognohotdog") ## Real steps - download images - for example, can be done with https://github.com/arnaucode/imgDownloader.git - In /serverPredictor directory ``` python classifierChooser.py ``` This will generate the model.pkl. Then, run the serverPredictor.py ``` python serverPredictor.py ```