You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

47 lines
1.3 KiB

from os import walk
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageOps
#pixels, pixels of the output resizing images
size = 100, 100
def imgFileToData(path):
image = Image.open(path)
#resize the image
thumb = ImageOps.fit(image, size, Image.ANTIALIAS)
image_data = np.asarray(thumb).flatten()
'''
plt.plot(111)
plt.imshow(thumb)
plt.show()
'''
if len(image_data)!=30000:
print "possible future ERROR!"
print "len: " + str(len(image_data))
print "please, delete: " + path
return image_data
def getDirectoryFiles(path, imgClass):
images = []
for (dirpath, dirnames, filenames) in walk(path):
for filename in filenames:
#print filename
image_data = imgFileToData(path + "/" + filename)
images.append([image_data, imgClass])
return images
def asdf():
for index, (image, prediction) in enumerate(images_and_predictions[:4]):
plt.subplot(2, 4, index + 5)
plt.axis('off')
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
plt.title('Prediction: %i' % prediction)
objects = getDirectoryFiles("object", 1)
noobjects = getDirectoryFiles("noobject", 0)
dataset = np.concatenate((objects, noobjects), axis=0)
np.save('dataset.npy', dataset)