from os import walk
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from PIL import Image, ImageOps
|
|
|
|
#pixels, pixels of the output resizing images
|
|
size = 100, 100
|
|
def imgFileToData(path):
|
|
image = Image.open(path)
|
|
#resize the image
|
|
thumb = ImageOps.fit(image, size, Image.ANTIALIAS)
|
|
image_data = np.asarray(thumb).flatten()
|
|
'''
|
|
plt.plot(111)
|
|
plt.imshow(thumb)
|
|
plt.show()
|
|
'''
|
|
if len(image_data)!=30000:
|
|
print "possible future ERROR!"
|
|
print "len: " + str(len(image_data))
|
|
print "please, delete: " + path
|
|
return image_data
|
|
|
|
def getDirectoryFiles(path, imgClass):
|
|
images = []
|
|
for (dirpath, dirnames, filenames) in walk(path):
|
|
for filename in filenames:
|
|
#print filename
|
|
image_data = imgFileToData(path + "/" + filename)
|
|
images.append([image_data, imgClass])
|
|
return images
|
|
|
|
|
|
def asdf():
|
|
for index, (image, prediction) in enumerate(images_and_predictions[:4]):
|
|
plt.subplot(2, 4, index + 5)
|
|
plt.axis('off')
|
|
plt.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
|
|
plt.title('Prediction: %i' % prediction)
|
|
|
|
|
|
objects = getDirectoryFiles("object", 1)
|
|
noobjects = getDirectoryFiles("noobject", 0)
|
|
|
|
dataset = np.concatenate((objects, noobjects), axis=0)
|
|
|
|
np.save('dataset.npy', dataset)
|