from os import walk
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
from PIL import Image, ImageOps
|
|
import pandas as pd
|
|
|
|
#pixels, pixels of the output resizing images
|
|
size = 100, 100
|
|
def imgFileToData(path):
|
|
image = Image.open(path)
|
|
#resize the image
|
|
thumb = ImageOps.fit(image, size, Image.ANTIALIAS)
|
|
image_data = np.asarray(thumb)
|
|
#.flatten()
|
|
|
|
#check if the image had been resized to 100x100. 3pixels * 100width + 100 height = 30000
|
|
if len(image_data)!=100:
|
|
print("possible future ERROR!")
|
|
print("len: " + str(len(image_data)))
|
|
print("please, delete: " + path)
|
|
return np.array(list(image_data))
|
|
|
|
def getDirectoryFiles(path, imgClass):
|
|
images = []
|
|
for (dirpath, dirnames, filenames) in walk(path):
|
|
for filename in filenames:
|
|
#print(filename)
|
|
image_data = imgFileToData(path + "/" + filename)
|
|
images.append([image_data, imgClass])
|
|
print(path + "/" + filename)
|
|
return images
|
|
|
|
|
|
objects = getDirectoryFiles("object", 1)
|
|
noobjects = getDirectoryFiles("noobject", 0)
|
|
|
|
dataset = np.concatenate((objects, noobjects), axis=0)
|
|
#print(dataset[0])
|
|
|
|
np.save('dataset.npy', dataset)
|
|
'''
|
|
print(dataset)
|
|
np.savetxt('dataset.csv', dataset, delimiter=",", fmt='%d')
|
|
|
|
pd.set_option('display.max_colwidth', -1)
|
|
df = pd.DataFrame(dataset)
|
|
print(df.head())
|
|
print("aaa")
|
|
print(df[0][0])
|
|
print("aaa")
|
|
pd.set_option('display.max_colwidth', -1)
|
|
pd.set_option('display.max_columns', None)
|
|
df.to_csv("dataset.csv", encoding='utf-8', index=False, header=False)
|
|
'''
|