Browse Source

add galois_auto_shoup

par-agg-key-shares
Janmajaya Mall 1 year ago
parent
commit
2c1c0687bc
6 changed files with 207 additions and 53 deletions
  1. +4
    -7
      src/backend/mod.rs
  2. +5
    -24
      src/backend/modulus_u64.rs
  3. +15
    -3
      src/ntt.rs
  4. +43
    -17
      src/rgsw/mod.rs
  5. +129
    -1
      src/rgsw/runtime.rs
  6. +11
    -1
      src/utils.rs

+ 4
- 7
src/backend/mod.rs

@ -1,6 +1,6 @@
use num_traits::ToPrimitive; use num_traits::ToPrimitive;
use crate::{Matrix, RowMut};
use crate::{Matrix, Row, RowMut};
mod modulus_u64; mod modulus_u64;
mod word_size; mod word_size;
@ -126,10 +126,7 @@ pub trait ArithmeticLazyOps {
fn add_lazy(&self, a: &Self::Element, b: &Self::Element) -> Self::Element; fn add_lazy(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
} }
pub trait ShoupMatrixFMA<M: Matrix>
where
M::R: RowMut,
{
/// Returns summation of row-wise product of matrix a and b.
fn shoup_matrix_fma(&self, out: &mut M::R, a: &M, a_shoup: &M, b: &M);
pub trait ShoupMatrixFMA<R: Row> {
/// Returns summation of `row-wise product of matrix a and b` + out.
fn shoup_matrix_fma(&self, out: &mut [R::Element], a: &[R], a_shoup: &[R], b: &[R]);
} }

+ 5
- 24
src/backend/modulus_u64.rs

@ -230,34 +230,15 @@ impl VectorOps for ModularOpsU64 {
// } // }
} }
impl<M: Matrix<MatElement = u64>, T> ShoupMatrixFMA<M> for ModularOpsU64<T>
where
M::R: RowMut,
{
fn shoup_matrix_fma(&self, out: &mut <M as Matrix>::R, a: &M, a_shoup: &M, b: &M) {
assert!(a.dimension() == a_shoup.dimension());
assert!(a.dimension() == b.dimension());
impl<R: RowMut<Element = u64>, T> ShoupMatrixFMA<R> for ModularOpsU64<T> {
fn shoup_matrix_fma(&self, out: &mut [R::Element], a: &[R], a_shoup: &[R], b: &[R]) {
assert!(a.len() == a_shoup.len());
assert!(a.len() == b.len());
let q = self.q; let q = self.q;
let q_twice = self.q << 1; let q_twice = self.q << 1;
// first row (without summation)
izip!(
out.as_mut().iter_mut(),
a.get_row(0),
a_shoup.get_row(0),
b.get_row(0)
)
.for_each(|(o, a, a_shoup, b)| {
*o = ShoupMul::mul(*b, *a, *a_shoup, q);
});
izip!(
a.iter_rows().skip(1),
a_shoup.iter_rows().skip(1),
b.iter_rows().skip(1)
)
.for_each(|(a_row, a_shoup_row, b_row)| {
izip!(a.iter(), a_shoup.iter(), b.iter()).for_each(|(a_row, a_shoup_row, b_row)| {
izip!( izip!(
out.as_mut().iter_mut(), out.as_mut().iter_mut(),
a_row.as_ref().iter(), a_row.as_ref().iter(),

+ 15
- 3
src/ntt.rs

@ -158,8 +158,9 @@ pub fn ntt(a: &mut [u64], psi: &[u64], psi_shoup: &[u64], q: u64, q_twice: u64)
if t == 1 { if t == 1 {
for (a, w, w_shoup) in izip!(a.chunks_mut(2), w.iter(), w_shoup.iter()) { for (a, w, w_shoup) in izip!(a.chunks_mut(2), w.iter(), w_shoup.iter()) {
let (ox, oy) = forward_butterly_0_to_2q(a[0], a[1], *w, *w_shoup, q, q_twice); let (ox, oy) = forward_butterly_0_to_2q(a[0], a[1], *w, *w_shoup, q, q_twice);
a[0] = ox.min(ox.wrapping_sub(q_twice));
a[1] = oy.min(oy.wrapping_sub(q_twice));
// reduce from range [0, 2q) to [0, q)
a[0] = ox.min(ox.wrapping_sub(q));
a[1] = oy.min(oy.wrapping_sub(q));
} }
} else { } else {
for i in 0..m { for i in 0..m {
@ -476,6 +477,11 @@ mod tests {
.collect_vec() .collect_vec()
} }
fn assert_output_range(a: &[u64], max_val: u64) {
a.iter()
.for_each(|v| assert!(v <= &max_val, "{v} > {max_val}"));
}
#[test] #[test]
fn native_ntt_backend_works() { fn native_ntt_backend_works() {
// TODO(Jay): Improve tests. Add tests for different primes and ring size. // TODO(Jay): Improve tests. Add tests for different primes and ring size.
@ -485,20 +491,26 @@ mod tests {
let a_clone = a.clone(); let a_clone = a.clone();
ntt_backend.forward(&mut a); ntt_backend.forward(&mut a);
assert_output_range(a.as_ref(), Q_60_BITS - 1);
assert_ne!(a, a_clone); assert_ne!(a, a_clone);
ntt_backend.backward(&mut a); ntt_backend.backward(&mut a);
assert_output_range(a.as_ref(), Q_60_BITS - 1);
assert_eq!(a, a_clone); assert_eq!(a, a_clone);
ntt_backend.forward_lazy(&mut a); ntt_backend.forward_lazy(&mut a);
assert_output_range(a.as_ref(), (2 * Q_60_BITS) - 1);
assert_ne!(a, a_clone); assert_ne!(a, a_clone);
ntt_backend.backward(&mut a); ntt_backend.backward(&mut a);
assert_output_range(a.as_ref(), Q_60_BITS - 1);
assert_eq!(a, a_clone); assert_eq!(a, a_clone);
ntt_backend.forward(&mut a); ntt_backend.forward(&mut a);
assert_output_range(a.as_ref(), Q_60_BITS - 1);
ntt_backend.backward_lazy(&mut a); ntt_backend.backward_lazy(&mut a);
assert_output_range(a.as_ref(), (2 * Q_60_BITS) - 1);
// reduce // reduce
a.iter_mut().for_each(|a0| { a.iter_mut().for_each(|a0| {
if *a0 > Q_60_BITS {
if *a0 >= Q_60_BITS {
*a0 -= *a0 - Q_60_BITS; *a0 -= *a0 - Q_60_BITS;
} }
}); });

+ 43
- 17
src/rgsw/mod.rs

@ -16,7 +16,7 @@ use crate::{
DefaultSecureRng, NewWithSeed, RandomElementInModulus, RandomFill, DefaultSecureRng, NewWithSeed, RandomElementInModulus, RandomFill,
RandomFillGaussianInModulus, RandomFillUniformInModulus, RandomFillGaussianInModulus, RandomFillUniformInModulus,
}, },
utils::{fill_random_ternary_secret_with_hamming_weight, TryConvertFrom1, WithLocal},
utils::{fill_random_ternary_secret_with_hamming_weight, ToShoup, TryConvertFrom1, WithLocal},
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret, Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
}; };
@ -91,21 +91,17 @@ where
} }
} }
pub(crate) trait ToShoup {
fn to_shoup(value: Self, modulus: Self) -> Self;
}
pub struct ShoupAutoKeyEvaluationDomain<M> { pub struct ShoupAutoKeyEvaluationDomain<M> {
data: M, data: M,
} }
impl<M: MatrixMut + MatrixEntity, Mod: Modulus<Element = M::MatElement>, R, N> impl<M: MatrixMut + MatrixEntity, Mod: Modulus<Element = M::MatElement>, R, N>
From<AutoKeyEvaluationDomain<M, Mod, R, N>> for ShoupAutoKeyEvaluationDomain<M>
From<&AutoKeyEvaluationDomain<M, Mod, R, N>> for ShoupAutoKeyEvaluationDomain<M>
where where
M::R: RowMut, M::R: RowMut,
M::MatElement: ToShoup + Copy, M::MatElement: ToShoup + Copy,
{ {
fn from(value: AutoKeyEvaluationDomain<M, Mod, R, N>) -> Self {
fn from(value: &AutoKeyEvaluationDomain<M, Mod, R, N>) -> Self {
let (row, col) = value.data.dimension(); let (row, col) = value.data.dimension();
let mut shoup_data = M::zeros(row, col); let mut shoup_data = M::zeros(row, col);
@ -538,6 +534,7 @@ pub(crate) mod tests {
decomposer::{Decomposer, DefaultDecomposer, RlweDecomposer}, decomposer::{Decomposer, DefaultDecomposer, RlweDecomposer},
ntt::{self, Ntt, NttBackendU64, NttInit}, ntt::{self, Ntt, NttBackendU64, NttInit},
random::{DefaultSecureRng, NewWithSeed, RandomFillUniformInModulus}, random::{DefaultSecureRng, NewWithSeed, RandomFillUniformInModulus},
rgsw::{galois_auto_shoup, ShoupAutoKeyEvaluationDomain},
utils::{generate_prime, negacyclic_mul, Stats, TryConvertFrom1}, utils::{generate_prime, negacyclic_mul, Stats, TryConvertFrom1},
Matrix, Secret, Matrix, Secret,
}; };
@ -961,16 +958,45 @@ pub(crate) mod tests {
// Send RLWE_{s}(m) -> RLWE_{s}(m^k) // Send RLWE_{s}(m) -> RLWE_{s}(m^k)
let mut scratch_space = vec![vec![0u64; ring_size as usize]; d_rgsw + 2]; let mut scratch_space = vec![vec![0u64; ring_size as usize]; d_rgsw + 2];
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size as usize, auto_k); let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size as usize, auto_k);
galois_auto(
&mut rlwe_m,
&auto_key.data,
&mut scratch_space,
&auto_map_index,
&auto_map_sign,
&mod_op,
&ntt_op,
&decomposer,
);
// galois auto with additional auto key in shoup repr
let rlwe_m_shoup = {
let auto_key_shoup = ShoupAutoKeyEvaluationDomain::from(&auto_key);
let mut rlwe_m_shoup = RlweCiphertext::<_, DefaultSecureRng> {
data: rlwe_m.data.clone(),
is_trivial: rlwe_m.is_trivial,
_phatom: PhantomData::default(),
};
galois_auto_shoup(
&mut rlwe_m_shoup,
&auto_key.data,
&auto_key_shoup.data,
&mut scratch_space,
&auto_map_index,
&auto_map_sign,
&mod_op,
&ntt_op,
&decomposer,
);
rlwe_m_shoup
};
// normal galois auto
{
galois_auto(
&mut rlwe_m,
&auto_key.data,
&mut scratch_space,
&auto_map_index,
&auto_map_sign,
&mod_op,
&ntt_op,
&decomposer,
);
}
// rlwe out from both functions must be same
assert_eq!(rlwe_m.data, rlwe_m_shoup.data);
let rlwe_m_k = rlwe_m; let rlwe_m_k = rlwe_m;

+ 129
- 1
src/rgsw/runtime.rs

@ -2,7 +2,7 @@ use itertools::izip;
use num_traits::Zero; use num_traits::Zero;
use crate::{ use crate::{
backend::{ArithmeticOps, GetModulus, Modulus, VectorOps},
backend::{ArithmeticOps, GetModulus, Modulus, ShoupMatrixFMA, VectorOps},
decomposer::{Decomposer, RlweDecomposer}, decomposer::{Decomposer, RlweDecomposer},
ntt::Ntt, ntt::Ntt,
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret, Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
@ -181,6 +181,134 @@ pub(crate) fn galois_auto<
.copy_from_slice(tmp_rlwe_out[1].as_ref()); .copy_from_slice(tmp_rlwe_out[1].as_ref());
} }
pub(crate) fn galois_auto_shoup<
MT: Matrix + IsTrivial + MatrixMut,
Mmut: MatrixMut<MatElement = MT::MatElement>,
ModOp: ArithmeticOps<Element = MT::MatElement>
+ VectorOps<Element = MT::MatElement>
+ ShoupMatrixFMA<Mmut::R>,
NttOp: Ntt<Element = MT::MatElement>,
D: Decomposer<Element = MT::MatElement>,
>(
rlwe_in: &mut MT,
ksk: &Mmut,
ksk_shoup: &Mmut,
scratch_matrix: &mut Mmut,
auto_map_index: &[usize],
auto_map_sign: &[bool],
mod_op: &ModOp,
ntt_op: &NttOp,
decomposer: &D,
) where
<Mmut as Matrix>::R: RowMut,
<MT as Matrix>::R: RowMut,
MT::MatElement: Copy + Zero,
{
let d = decomposer.decomposition_count();
let ring_size = rlwe_in.dimension().1;
assert!(rlwe_in.dimension().0 == 2);
assert!(scratch_matrix.fits(d + 2, ring_size));
let (scratch_matrix_d_ring, other_half) = scratch_matrix.split_at_row_mut(d);
let (tmp_rlwe_out, _) = other_half.split_at_mut(2);
debug_assert!(tmp_rlwe_out.len() == 2);
debug_assert!(scratch_matrix_d_ring.len() == d);
if !rlwe_in.is_trivial() {
tmp_rlwe_out.iter_mut().for_each(|r| {
r.as_mut().fill(Mmut::MatElement::zero());
});
// send a(X) -> a(X^k) and decompose a(X^k)
izip!(
rlwe_in.get_row(0),
auto_map_index.iter(),
auto_map_sign.iter()
)
.for_each(|(el_in, to_index, sign)| {
let el_out = if !*sign { mod_op.neg(el_in) } else { *el_in };
decomposer
.decompose_iter(&el_out)
.enumerate()
.for_each(|(index, el)| {
scratch_matrix_d_ring[index].as_mut()[*to_index] = el;
});
});
// transform decomposed a(X^k) to evaluation domain
scratch_matrix_d_ring.iter_mut().for_each(|r| {
ntt_op.forward_lazy(r.as_mut());
});
// RLWE(m^k) = a', b'; RLWE(m) = a, b
// key switch: (a * RLWE'(s(X^k)))
let (ksk_a, ksk_b) = ksk.split_at_row(d);
let (ksk_a_shoup, ksk_b_shoup) = ksk_shoup.split_at_row(d);
// a' = decomp<a> * RLWE'_A(s(X^k))
mod_op.shoup_matrix_fma(
tmp_rlwe_out[0].as_mut(),
ksk_a,
ksk_a_shoup,
scratch_matrix_d_ring,
);
// b'= decomp<a(X^k)> * RLWE'_B(s(X^k))
mod_op.shoup_matrix_fma(
tmp_rlwe_out[1].as_mut(),
ksk_b,
ksk_b_shoup,
scratch_matrix_d_ring,
);
// transform RLWE(m^k) to coefficient domain
tmp_rlwe_out
.iter_mut()
.for_each(|r| ntt_op.backward(r.as_mut()));
// send b(X) -> b(X^k) and then b'(X) += b(X^k)
izip!(
rlwe_in.get_row(1),
auto_map_index.iter(),
auto_map_sign.iter()
)
.for_each(|(el_in, to_index, sign)| {
let row = tmp_rlwe_out[1].as_mut();
if !*sign {
row[*to_index] = mod_op.sub(&row[*to_index], el_in);
} else {
row[*to_index] = mod_op.add(&row[*to_index], el_in);
}
});
// copy over A; Leave B for later
rlwe_in
.get_row_mut(0)
.copy_from_slice(tmp_rlwe_out[0].as_ref());
} else {
// RLWE is trivial, a(X) is 0.
// send b(X) -> b(X^k)
izip!(
rlwe_in.get_row(1),
auto_map_index.iter(),
auto_map_sign.iter()
)
.for_each(|(el_in, to_index, sign)| {
if !*sign {
tmp_rlwe_out[1].as_mut()[*to_index] = mod_op.neg(el_in);
} else {
tmp_rlwe_out[1].as_mut()[*to_index] = *el_in;
}
});
}
// Copy over B
rlwe_in
.get_row_mut(1)
.copy_from_slice(tmp_rlwe_out[1].as_ref());
}
/// Returns RLWE(m0m1) = RLWE(m0) x RGSW(m1). Mutates rlwe_in inplace to equal /// Returns RLWE(m0m1) = RLWE(m0) x RGSW(m1). Mutates rlwe_in inplace to equal
/// RLWE(m0m1) /// RLWE(m0m1)
/// ///

+ 11
- 1
src/utils.rs

@ -25,11 +25,15 @@ pub trait Global {
fn global() -> &'static Self; fn global() -> &'static Self;
} }
pub trait ShoupMul {
pub(crate) trait ShoupMul {
fn representation(value: Self, q: Self) -> Self; fn representation(value: Self, q: Self) -> Self;
fn mul(a: Self, b: Self, b_shoup: Self, q: Self) -> Self; fn mul(a: Self, b: Self, b_shoup: Self, q: Self) -> Self;
} }
pub(crate) trait ToShoup {
fn to_shoup(value: Self, modulus: Self) -> Self;
}
impl ShoupMul for u64 { impl ShoupMul for u64 {
#[inline] #[inline]
fn representation(value: Self, q: Self) -> Self { fn representation(value: Self, q: Self) -> Self {
@ -44,6 +48,12 @@ impl ShoupMul for u64 {
} }
} }
impl ToShoup for u64 {
fn to_shoup(value: Self, modulus: Self) -> Self {
((value as u128 * (1u128 << 64)) / modulus as u128) as u64
}
}
pub fn fill_random_ternary_secret_with_hamming_weight< pub fn fill_random_ternary_secret_with_hamming_weight<
T: Signed, T: Signed,
R: RandomFill<[u8]> + RandomElementInModulus<usize, usize>, R: RandomFill<[u8]> + RandomElementInModulus<usize, usize>,

Loading…
Cancel
Save