add non-interactive

This commit is contained in:
Janmajaya Mall
2024-06-12 16:43:42 +05:30
parent eab9cd90c1
commit 41fab75713

View File

@@ -1,261 +1,292 @@
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use itertools::{izip, Itertools};
use num_traits::zero;
use rand::{thread_rng, Rng}; use rand::{thread_rng, Rng};
// use crate::{ use crate::{
// backend::{ArithmeticOps, ModInit, ModularOpsU64}, bool::keys::ClientKey,
// decomposer::{Decomposer, DefaultDecomposer}, ntt,
// ntt::{Ntt, NttBackendU64, NttInit}, random::{
// random::{DefaultSecureRng, RandomGaussianDist, RandomUniformDist}, DefaultSecureRng, RandomFill, RandomFillGaussianInModulus, RandomFillUniformInModulus,
// rgsw::{ },
// less1_rlwe_by_rgsw, measure_noise, rgsw_by_rgsw_inplace, utils::{
// rlwe_by_rgsw, secret_key_encrypt_rgsw, fill_random_ternary_secret_with_hamming_weight, generate_prime, Stats, TryConvertFrom1,
// secret_key_encrypt_rlwe, RgswCiphertext, },
// RgswCiphertextEvaluationDomain, RlweCiphertext, RlweSecret, ArithmeticOps, Decomposer, DefaultDecomposer, ModInit, ModularOpsU64, Ntt, NttBackendU64,
// SeededRgswCiphertext, SeededRlweCiphertext, NttInit, VectorOps,
// }, };
// utils::{generate_prime, negacyclic_mul},
// Matrix, Row, Secret,
// };
// // Test B part with limbd -1 when variance of m is 1 #[test]
// #[test] fn non_interactive_multi_party() {
// fn trial() { let logq = 56;
// let logq = 28; let ring_size = 1usize << 11;
// let ring_size = 1 << 10; let q = generate_prime(logq, 2 * ring_size as u64, 1 << logq).unwrap();
// let q = generate_prime(logq, (ring_size as u64) << 1, 1 << let logb = 1;
// logq).unwrap(); let logb = 7; let d = 56;
// let d0 = 3; let decomposer = DefaultDecomposer::new(q, logb, d);
// let d1 = d0 - 1; let gadget_vec = decomposer.gadget_vector();
let mut rng = DefaultSecureRng::new();
// let sk = RlweSecret::random((ring_size >> 1) as usize, ring_size as let modop = ModularOpsU64::new(q);
// usize); let nttop = NttBackendU64::new(&q, ring_size);
// let mut rng = DefaultSecureRng::new(); let no_of_parties = 16;
// let decomposer = DefaultDecomposer::new(q, logb, d0); let client_secrets = (0..no_of_parties)
// let gadget_vector = decomposer.gadget_vector(); .into_iter()
.map(|_| {
let mut sk = vec![0i64; ring_size];
fill_random_ternary_secret_with_hamming_weight(&mut sk, ring_size >> 1, &mut rng);
sk
})
.collect_vec();
// for i in 0..100 { let mut s_ideal = vec![0i64; ring_size];
// // m should have norm 1 client_secrets.iter().for_each(|s| {
// let mut m0 = vec![0u64; ring_size as usize]; izip!(s_ideal.iter_mut(), s.iter()).for_each(|(add_to, v)| {
// m0[thread_rng().gen_range(0..ring_size)] = 1; *add_to = *add_to + *v;
});
});
// let modq_op = ModularOpsU64::new(q); let sk_poly_ideal = Vec::<u64>::try_convert_from(s_ideal.as_slice(), &q);
// let nttq_op = NttBackendU64::new(q, ring_size); let mut sk_poly_ideal_eval = sk_poly_ideal.clone();
nttop.forward(&mut sk_poly_ideal_eval);
// // Encrypt RGSW(m0) let mut ksk_seed = [0u8; 32];
// let mut rgsw_seed = [0u8; 32]; rng.fill_bytes(&mut ksk_seed);
// rng.fill_bytes(&mut rgsw_seed);
// let mut seeded_rgsw =
// SeededRgswCiphertext::<Vec<Vec<u64>>, _>::empty(ring_size,
// d0, rgsw_seed, q); let mut p_rng =
// DefaultSecureRng::new_seeded(rgsw_seed);
// secret_key_encrypt_rgsw(
// &mut seeded_rgsw.data,
// &m0,
// &gadget_vector,
// &gadget_vector,
// sk.values(),
// &modq_op,
// &nttq_op,
// &mut p_rng,
// &mut rng,
// );
// // Encrypt RLWE(m1) // zero encryptions for each party for ksk(u)
// let mut m1 = vec![0u64; ring_size]; let client_zero_encs = {
// RandomUniformDist::random_fill(&mut rng, &q, m1.as_mut_slice()); client_secrets
// let mut rlwe_seed = [0u8; 32]; .iter()
// rng.fill_bytes(&mut rlwe_seed); .map(|sk| {
// let mut seeded_rlwe: SeededRlweCiphertext<Vec<u64>, [u8; 32]> = let sk_poly = Vec::<u64>::try_convert_from(sk.as_slice(), &q);
// SeededRlweCiphertext::<Vec<u64>, _>::empty(ring_size, let mut sk_poly_eval = sk_poly.clone();
// rlwe_seed, q); let mut p_rng = nttop.forward(sk_poly_eval.as_mut_slice());
// DefaultSecureRng::new_seeded(rlwe_seed);
// secret_key_encrypt_rlwe(
// &m1,
// &mut seeded_rlwe.data,
// sk.values(),
// &modq_op,
// &nttq_op,
// &mut p_rng,
// &mut rng,
// );
// let mut rlwe = RlweCiphertext::<Vec<Vec<u64>>, let mut zero_encs =
// DefaultSecureRng>::from(&seeded_rlwe); let rgsw = vec![vec![0u64; ring_size]; decomposer.decomposition_count()];
// RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, let mut ksk_prng = DefaultSecureRng::new_seeded(ksk_seed);
// NttBackendU64>::from( &seeded_rgsw, zero_encs.iter_mut().for_each(|out| {
// ); RandomFillUniformInModulus::random_fill(
&mut ksk_prng,
&q,
out.as_mut_slice(),
);
nttop.forward(out.as_mut_slice());
modop.elwise_mul_mut(out.as_mut_slice(), &sk_poly_eval);
nttop.backward(out.as_mut_slice());
// // RLWE(m0m1) = RLWE(m1) x RGSW(m0) let mut error = vec![0u64; ring_size];
// let mut scratch = vec![vec![0u64; ring_size]; d0 + 2]; RandomFillGaussianInModulus::random_fill(&mut rng, &q, &mut error);
// less1_rlwe_by_rgsw(
// &mut rlwe,
// &rgsw.data,
// &mut scratch,
// &decomposer,
// &nttq_op,
// &modq_op,
// 0,
// 1,
// );
// // rlwe_by_rgsw(
// // &mut rlwe,
// // &rgsw.data,
// // &mut scratch,
// // &decomposer,
// // &nttq_op,
// // &modq_op,
// // );
// // measure noise modop.elwise_add_mut(out.as_mut_slice(), &error);
// let mul_mod = |v0: &u64, v1: &u64| ((*v0 as u128 * *v1 as u128) % });
// q as u128) as u64; let m0m1 = negacyclic_mul(&m0, &m1, zero_encs
// mul_mod, q); let noise = measure_noise(&rlwe, &m0m1, })
// &nttq_op, &modq_op, sk.values()); println!("Noise: {noise}"); .collect_vec()
// } };
// }
// // Test B part with limbd -1 when variance of m is 1 // main values
// #[test] let main_a = {
// fn rgsw_saver() { let mut a = vec![0u64; ring_size];
// let logq = 60; RandomFillUniformInModulus::random_fill(&mut rng, &q, &mut a);
// let ring_size = 1 << 11; a
// let q = generate_prime(logq, (ring_size as u64) << 1, 1 << };
// logq).unwrap(); let logb = 12; let main_m = {
// let d0 = 4; let mut main_m = vec![0u64; ring_size];
RandomFillUniformInModulus::random_fill(&mut rng, &q, &mut main_m);
main_m
};
// let sk = RlweSecret::random((ring_size >> 1) as usize, ring_size as let mut main_u = vec![0i64; ring_size];
// usize); fill_random_ternary_secret_with_hamming_weight(&mut main_u, ring_size >> 1, &mut rng);
let u_main_poly = Vec::<u64>::try_convert_from(main_u.as_slice(), &q);
let mut u_main_poly_eval = u_main_poly.clone();
nttop.forward(u_main_poly_eval.as_mut_slice());
// let mut rng = DefaultSecureRng::new(); // party 0
let (mut party0_ksk_u, mut rlwe_main_m_parta) = {
// party 0's secret
let sk = client_secrets[0].clone();
let sk_poly = Vec::<u64>::try_convert_from(sk.as_slice(), &q);
let mut sk_poly_eval = sk_poly.clone();
nttop.forward(sk_poly_eval.as_mut_slice());
// let decomposer = DefaultDecomposer::new(q, logb, d0); // `main_a*u + main_m` with ephemeral key u
// let gadget_vector = decomposer.gadget_vector(); let mut rlwe_main_m = main_a.clone();
nttop.forward(&mut rlwe_main_m);
modop.elwise_mul_mut(&mut rlwe_main_m, &u_main_poly_eval);
nttop.backward(&mut rlwe_main_m);
let mut error = vec![0u64; ring_size];
RandomFillGaussianInModulus::random_fill(&mut rng, &q, &mut error);
modop.elwise_add_mut(&mut rlwe_main_m, &error);
modop.elwise_add_mut(&mut rlwe_main_m, &main_m);
// for i in 0..100 { // Generate KSK(u)
// let modq_op = ModularOpsU64::new(q); let mut ksk_prng = DefaultSecureRng::new_seeded(ksk_seed);
// let nttq_op = NttBackendU64::new(q, ring_size); let mut ksk_u = vec![vec![0u64; ring_size]; 2 * decomposer.decomposition_count()];
let (ksk_u_a, ksk_u_b) = ksk_u.split_at_mut(decomposer.decomposition_count());
izip!(ksk_u_b.iter_mut(), ksk_u_a.iter_mut(), gadget_vec.iter()).for_each(
|(row_b, row_a, beta_i)| {
// sample a
RandomFillUniformInModulus::random_fill(&mut ksk_prng, &q, row_a.as_mut());
// // Encrypt RGSW(m0) // s_i * a
// let mut m0 = vec![0u64; ring_size as usize]; let mut s_i_a = row_a.clone();
// m0[thread_rng().gen_range(0..ring_size)] = 1; nttop.forward(&mut s_i_a);
// let mut rgsw_seed = [0u8; 32]; modop.elwise_mul_mut(&mut s_i_a, &sk_poly_eval);
// rng.fill_bytes(&mut rgsw_seed); nttop.backward(&mut s_i_a);
// let mut seeded_rgsw0 =
// SeededRgswCiphertext::<Vec<Vec<u64>>, _>::empty(ring_size,
// d0, rgsw_seed, q); let mut p_rng =
// DefaultSecureRng::new_seeded(rgsw_seed);
// secret_key_encrypt_rgsw(
// &mut seeded_rgsw0.data,
// &m0,
// &gadget_vector,
// &gadget_vector,
// sk.values(),
// &modq_op,
// &nttq_op,
// &mut p_rng,
// &mut rng,
// );
// // Encrypt RGSW(m1) // \beta * u
// let mut m1 = vec![0u64; ring_size as usize]; let mut beta_u = u_main_poly.clone();
// m1[thread_rng().gen_range(0..ring_size)] = 1; modop.elwise_scalar_mul_mut(beta_u.as_mut_slice(), beta_i);
// let mut rgsw_seed = [0u8; 32];
// rng.fill_bytes(&mut rgsw_seed);
// let mut seeded_rgsw1 =
// SeededRgswCiphertext::<Vec<Vec<u64>>, _>::empty(ring_size,
// d0, rgsw_seed, q); let mut p_rng =
// DefaultSecureRng::new_seeded(rgsw_seed);
// secret_key_encrypt_rgsw(
// &mut seeded_rgsw1.data,
// &m1,
// &gadget_vector,
// &gadget_vector,
// sk.values(),
// &modq_op,
// &nttq_op,
// &mut p_rng,
// &mut rng,
// );
// // TODO(Jay): Why cant you create RgswCIphertext from // e
// SeededRgswCiphertext? let mut rgsw0 = { RandomFillGaussianInModulus::random_fill(&mut rng, &q, row_b.as_mut_slice());
// let mut evl_tmp = // e + \beta * u
// RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, modop.elwise_add_mut(row_b.as_mut_slice(), &beta_u);
// NttBackendU64>::from( &seeded_rgsw0,
// );
// evl_tmp
// .data
// .iter_mut()
// .for_each(|ri| nttq_op.backward(ri.as_mut()));
// evl_tmp.data
// };
// let rgsw1 = RgswCiphertextEvaluationDomain::<_, DefaultSecureRng,
// NttBackendU64>::from( &seeded_rgsw1,
// );
// let mut scratch_matrix_d_plus_rgsw_by_ring = vec![vec![0u64;
// ring_size]; d0 + (d0 * 4)];
// // RGSW(m0m1) = RGSW(m0)xRGSW(m1) // b = e + \beta * u + a * s_i
// rgsw_by_rgsw_inplace( modop.elwise_add_mut(row_b.as_mut_slice(), &s_i_a);
// &mut rgsw0, },
// &rgsw1.data, );
// &decomposer,
// &decomposer,
// &mut scratch_matrix_d_plus_rgsw_by_ring,
// &nttq_op,
// &modq_op,
// );
// // send RGSW(m0m1) to Evaluation domain // send ksk u from s_0 to s_{ideal}
// let mut rgsw01 = rgsw0; ksk_u_b.iter_mut().enumerate().for_each(|(index, out_b)| {
// rgsw01 // note: skip zero encryption of party 0
// .iter_mut() client_zero_encs.iter().skip(1).for_each(|encs| {
// .for_each(|v| nttq_op.forward(v.as_mut_slice())); modop.elwise_add_mut(out_b, &encs[index]);
});
});
// // RLWE(m2) // // put ksk in fourier domain
// let mut m2 = vec![0u64; ring_size as usize]; // ksk_u
// RandomUniformDist::random_fill(&mut rng, &q, m2.as_mut_slice()); // .iter_mut()
// let mut rlwe_seed = [0u8; 32]; // .for_each(|r| nttop.forward(r.as_mut_slice()));
// rng.fill_bytes(&mut rlwe_seed); (ksk_u, rlwe_main_m)
// let mut seeded_rlwe = };
// SeededRlweCiphertext::<Vec<u64>, _>::empty(ring_size,
// rlwe_seed, q); let mut p_rng =
// DefaultSecureRng::new_seeded(rlwe_seed);
// secret_key_encrypt_rlwe(
// &m2,
// &mut seeded_rlwe.data,
// sk.values(),
// &modq_op,
// &nttq_op,
// &mut p_rng,
// &mut rng,
// );
// let mut rlwe = RlweCiphertext::<Vec<Vec<u64>>, // Check ksk_u is correct
// DefaultSecureRng>::from(&seeded_rlwe); // {
// let (ksk_a, ksk_b) =
// party0_ksk_u.split_at_mut(decomposer.decomposition_count());
// izip!(
// ksk_a.iter(),
// ksk_b.iter(),
// decomposer.gadget_vector().iter()
// )
// .for_each(|(row_a, row_b, beta_i)| {
// // a * s
// let mut sa = row_a.clone();
// nttop.forward(&mut sa);
// modop.elwise_mul_mut(&mut sa, &sk_poly_ideal_eval);
// nttop.backward(&mut sa);
// // RLWE(m0m1m2) = RLWE(m2) x RGSW(m0m1) // // b - a*s
// let mut scratch_matrix_dplus2_ring = vec![vec![0u64; ring_size]; // let mut out = sa;
// d0 + 2]; less1_rlwe_by_rgsw( // modop.elwise_neg_mut(&mut out);
// &mut rlwe, // modop.elwise_add_mut(&mut out, row_b);
// &rgsw01,
// &mut scratch_matrix_dplus2_ring,
// &decomposer,
// &nttq_op,
// &modq_op,
// 1,
// 2,
// );
// let mul_mod = |v0: &u64, v1: &u64| ((*v0 as u128 * *v1 as u128) % // // beta * u
// q as u128) as u64; let m0m1 = negacyclic_mul(&m0, &m1, // let mut expected = u_main_poly.clone();
// mul_mod, q); let m0m1m2 = negacyclic_mul(&m2, &m0m1, mul_mod, // modop.elwise_scalar_mul_mut(&mut expected, beta_i);
// q); let noise = measure_noise(&rlwe.data, &m0m1m2, &nttq_op, // assert_eq!(expected, out);
// &modq_op, sk.values()); // });
// }
// println!("Noise: {noise}"); // RLWE(0) = main_a * s + e = \sum main_a*s_i + e_i
// } let rlwe_to_switch = {
// } let mut sum = vec![0u64; ring_size];
client_secrets.iter().for_each(|sk| {
let sk_poly = Vec::<u64>::try_convert_from(sk.as_slice(), &q);
let mut sk_poly_eval = sk_poly.clone();
nttop.forward(sk_poly_eval.as_mut_slice());
// a * s
let mut rlwe = main_a.clone();
nttop.forward(&mut rlwe);
modop.elwise_mul_mut(rlwe.as_mut_slice(), &sk_poly_eval);
nttop.backward(&mut rlwe);
// a * s + e
let mut error = vec![0u64; ring_size];
RandomFillGaussianInModulus::random_fill(&mut rng, &q, &mut error);
modop.elwise_add_mut(&mut rlwe, &error);
modop.elwise_add_mut(&mut sum, &rlwe);
});
sum
};
// {
// let mut tmp = main_a.clone();
// nttop.forward(&mut tmp);
// modop.elwise_mul_mut(&mut tmp, &sk_poly_ideal_eval);
// nttop.backward(&mut tmp);
// assert_eq!(&rlwe_to_switch, &tmp);
// }
// Key switch \sum decomp<RLWE(0)> * KSK(i)
let mut decomp_rlwe = vec![vec![0u64; ring_size]; decomposer.decomposition_count()];
rlwe_to_switch.iter().enumerate().for_each(|(ri, el)| {
decomposer
.decompose_iter(el)
.enumerate()
.for_each(|(j, d_el)| {
decomp_rlwe[j][ri] = d_el;
});
});
// put ksk_u and decomp<RLWE(main_a*s_ideal + e)> in fourier domain
decomp_rlwe
.iter_mut()
.for_each(|r| nttop.forward(r.as_mut_slice()));
party0_ksk_u
.iter_mut()
.for_each(|r| nttop.forward(r.as_mut_slice()));
let (ksk_u_a, ksk_u_b) = party0_ksk_u.split_at(decomposer.decomposition_count());
let mut rlwe_main_m_partb_eval = vec![vec![0u64; ring_size]; 2];
izip!(decomp_rlwe.iter(), ksk_u_a.iter(), ksk_u_b.iter()).for_each(|(o, a, b)| {
// A part
// rlwe[0] += o*a
izip!(rlwe_main_m_partb_eval[0].iter_mut(), o.iter(), a.iter()).for_each(
|(r, o, a)| {
*r = modop.add(r, &modop.mul(o, a));
},
);
// B part
// rlwe[1] += o*b
izip!(rlwe_main_m_partb_eval[1].iter_mut(), o.iter(), b.iter()).for_each(
|(r, o, b)| {
*r = modop.add(r, &modop.mul(o, b));
},
);
});
// construct RLWE_{s_{ideal}}(-sm)
nttop.forward(rlwe_main_m_parta.as_mut_slice());
modop.elwise_add_mut(&mut rlwe_main_m_partb_eval[0], &rlwe_main_m_parta);
let rlwe_main_m_eval = rlwe_main_m_partb_eval;
// decrypt RLWE_{s_{ideal}}(m) and check
let mut neg_s_m_main_out = rlwe_main_m_eval[0].clone();
modop.elwise_mul_mut(&mut neg_s_m_main_out, &sk_poly_ideal_eval);
modop.elwise_neg_mut(&mut neg_s_m_main_out);
modop.elwise_add_mut(&mut neg_s_m_main_out, &rlwe_main_m_eval[1]);
nttop.backward(&mut neg_s_m_main_out);
let mut neg_s_main_m = main_m.clone();
nttop.forward(&mut neg_s_main_m);
modop.elwise_mul_mut(&mut neg_s_main_m, &sk_poly_ideal_eval);
modop.elwise_neg_mut(&mut neg_s_main_m);
nttop.backward(&mut neg_s_main_m);
let mut diff = neg_s_m_main_out.clone();
modop.elwise_sub_mut(&mut diff, &neg_s_main_m);
let mut stat = Stats::new();
stat.add_more(&Vec::<i64>::try_convert_from(&diff, &q));
println!("Log2 Std: {}", stat.std_dev().abs().log2());
}
} }