Browse Source

add window size in blind rotation

par-agg-key-shares
Janmajaya Mall 10 months ago
parent
commit
70cb18da57
3 changed files with 257 additions and 140 deletions
  1. +239
    -134
      src/bool/evaluator.rs
  2. +17
    -5
      src/bool/parameters.rs
  3. +1
    -1
      src/rgsw.rs

+ 239
- 134
src/bool/evaluator.rs

@ -9,7 +9,7 @@ use std::{
}; };
use itertools::{izip, partition, Itertools}; use itertools::{izip, partition, Itertools};
use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, WrappingSub, Zero};
use num_traits::{FromPrimitive, Num, One, Pow, PrimInt, ToPrimitive, WrappingSub, Zero};
use rand_distr::uniform::SampleUniform; use rand_distr::uniform::SampleUniform;
use crate::{ use crate::{
@ -247,8 +247,8 @@ trait PbsKey {
/// RGSW ciphertext of LWE secret elements /// RGSW ciphertext of LWE secret elements
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M; fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M;
/// Key for automorphism
fn galois_key_for_auto(&self, k: isize) -> &Self::M;
/// Key for automorphism with g^k. For -g use k = 0
fn galois_key_for_auto(&self, k: usize) -> &Self::M;
/// LWE ksk to key switch from RLWE secret to LWE secret /// LWE ksk to key switch from RLWE secret to LWE secret
fn lwe_ksk(&self) -> &Self::M; fn lwe_ksk(&self) -> &Self::M;
} }
@ -272,6 +272,8 @@ trait PbsInfo {
fn lwe_n(&self) -> usize; fn lwe_n(&self) -> usize;
/// Embedding fator for ring X^{q}+1 inside /// Embedding fator for ring X^{q}+1 inside
fn embedding_factor(&self) -> usize; fn embedding_factor(&self) -> usize;
/// Window size
fn w(&self) -> usize;
/// generator g /// generator g
fn g(&self) -> isize; fn g(&self) -> isize;
/// Decomposers /// Decomposers
@ -289,9 +291,10 @@ trait PbsInfo {
/// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k = /// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k =
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`. /// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
/// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t /// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t
/// a = -g^{k}, then k is expressed as k=k+q/2
/// a = -g^{k}, then k is expressed as k=k+q/4
fn g_k_dlog_map(&self) -> &[usize]; fn g_k_dlog_map(&self) -> &[usize];
fn rlwe_auto_map(&self, k: isize) -> &(Vec<usize>, Vec<bool>);
/// Returns auto map and index vector for g^k. For -g use k == 0.
fn rlwe_auto_map(&self, k: usize) -> &(Vec<usize>, Vec<bool>);
} }
#[derive(Clone)] #[derive(Clone)]
@ -391,7 +394,9 @@ where
struct CommonReferenceSeededMultiPartyServerKeyShare<M: Matrix, P, S> { struct CommonReferenceSeededMultiPartyServerKeyShare<M: Matrix, P, S> {
rgsw_cts: Vec<M>, rgsw_cts: Vec<M>,
auto_keys: HashMap<isize, M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R, lwe_ksk: M::R,
/// Common reference seed /// Common reference seed
cr_seed: S, cr_seed: S,
@ -399,7 +404,9 @@ struct CommonReferenceSeededMultiPartyServerKeyShare {
} }
struct SeededMultiPartyServerKey<M: Matrix, S, P> { struct SeededMultiPartyServerKey<M: Matrix, S, P> {
rgsw_cts: Vec<M>, rgsw_cts: Vec<M>,
auto_keys: HashMap<isize, M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R, lwe_ksk: M::R,
cr_seed: S, cr_seed: S,
parameters: P, parameters: P,
@ -409,8 +416,9 @@ struct SeededMultiPartyServerKey {
pub struct SeededServerKey<M: Matrix, P, S> { pub struct SeededServerKey<M: Matrix, P, S> {
/// Rgsw cts of LWE secret elements /// Rgsw cts of LWE secret elements
pub(crate) rgsw_cts: Vec<M>, pub(crate) rgsw_cts: Vec<M>,
/// Auto keys
pub(crate) auto_keys: HashMap<isize, M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
pub(crate) auto_keys: HashMap<usize, M>,
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret /// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
pub(crate) lwe_ksk: M::R, pub(crate) lwe_ksk: M::R,
/// Parameters /// Parameters
@ -421,7 +429,7 @@ pub struct SeededServerKey {
impl<M: Matrix, S> SeededServerKey<M, BoolParameters<M::MatElement>, S> { impl<M: Matrix, S> SeededServerKey<M, BoolParameters<M::MatElement>, S> {
pub(crate) fn from_raw( pub(crate) fn from_raw(
auto_keys: HashMap<isize, M>,
auto_keys: HashMap<usize, M>,
rgsw_cts: Vec<M>, rgsw_cts: Vec<M>,
lwe_ksk: M::R, lwe_ksk: M::R,
parameters: BoolParameters<M::MatElement>, parameters: BoolParameters<M::MatElement>,
@ -471,8 +479,9 @@ impl SeededServerKey>, BoolParameters, [u8; 32]> {
pub(crate) struct ServerKeyEvaluationDomain<M, R, N> { pub(crate) struct ServerKeyEvaluationDomain<M, R, N> {
/// Rgsw cts of LWE secret elements /// Rgsw cts of LWE secret elements
rgsw_cts: Vec<M>, rgsw_cts: Vec<M>,
/// Galois keys
galois_keys: HashMap<isize, M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
galois_keys: HashMap<usize, M>,
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret /// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
lwe_ksk: M, lwe_ksk: M,
_phanton: PhantomData<(R, N)>, _phanton: PhantomData<(R, N)>,
@ -503,7 +512,8 @@ where
// galois keys // galois keys
let mut auto_keys = HashMap::new(); let mut auto_keys = HashMap::new();
let auto_decomp_count = parameters.auto_decomposition_count().0; let auto_decomp_count = parameters.auto_decomposition_count().0;
for i in [g, -g] {
let auto_element_dlogs = parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
let seeded_auto_key = value.auto_keys.get(&i).unwrap(); let seeded_auto_key = value.auto_keys.get(&i).unwrap();
assert!(seeded_auto_key.dimension() == (auto_decomp_count, ring_size)); assert!(seeded_auto_key.dimension() == (auto_decomp_count, ring_size));
@ -631,7 +641,8 @@ where
// auto keys // auto keys
let mut auto_keys = HashMap::new(); let mut auto_keys = HashMap::new();
let auto_d_count = value.parameters.auto_decomposition_count().0; let auto_d_count = value.parameters.auto_decomposition_count().0;
for i in [g, -g] {
let auto_element_dlogs = value.parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
let mut key = M::zeros(auto_d_count * 2, rlwe_n); let mut key = M::zeros(auto_d_count * 2, rlwe_n);
// sample a // sample a
@ -698,12 +709,10 @@ where
} }
} }
//FIXME(Jay): Figure out a way for BoolEvaluator to have access to ServerKey
// via a pointer and implement PbsKey for BoolEvaluator instead of ServerKey
// directly
impl<M: Matrix, R, N> PbsKey for ServerKeyEvaluationDomain<M, R, N> { impl<M: Matrix, R, N> PbsKey for ServerKeyEvaluationDomain<M, R, N> {
type M = M; type M = M;
fn galois_key_for_auto(&self, k: isize) -> &Self::M {
fn galois_key_for_auto(&self, k: usize) -> &Self::M {
self.galois_keys.get(&k).unwrap() self.galois_keys.get(&k).unwrap()
} }
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M { fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M {
@ -745,15 +754,8 @@ where
type RlweModOp = RlweModOp; type RlweModOp = RlweModOp;
type LweModOp = LweModOp; type LweModOp = LweModOp;
type NttOp = NttOp; type NttOp = NttOp;
fn rlwe_auto_map(&self, k: isize) -> &(Vec<usize>, Vec<bool>) {
let g = self.parameters.g() as isize;
if k == g {
&self.rlwe_auto_maps[0]
} else if k == -g {
&self.rlwe_auto_maps[1]
} else {
panic!("RLWE auto map only supports k in [-g, g], but got k={k}");
}
fn rlwe_auto_map(&self, k: usize) -> &(Vec<usize>, Vec<bool>) {
&self.rlwe_auto_maps[k]
} }
fn br_q(&self) -> usize { fn br_q(&self) -> usize {
*self.parameters.br_q() *self.parameters.br_q()
@ -773,6 +775,9 @@ where
fn g(&self) -> isize { fn g(&self) -> isize {
self.parameters.g() as isize self.parameters.g() as isize
} }
fn w(&self) -> usize {
self.parameters.w()
}
fn g_k_dlog_map(&self) -> &[usize] { fn g_k_dlog_map(&self) -> &[usize] {
&self.g_k_dlog_map &self.g_k_dlog_map
} }
@ -839,16 +844,20 @@ where
{ {
//TODO(Jay): Run sanity checks for modulus values in parameters //TODO(Jay): Run sanity checks for modulus values in parameters
// generatr dlog map s.t. g^{k} % q = a, for all a \in Z*_{q}
// generates dlog map s.t. (+/-)g^{k} % q = a, for all a \in Z*_{q} and k \in
// [0, q/4). We store the dlog `k` at index `a`. This makes it easier to
// simply look up `k` at runtime as vec[a]. If a = g^{k} then dlog is
// stored as k. If a = -g^{k} then dlog is stored as k = q/4. This is done to
// differentiate sign.
let g = parameters.g(); let g = parameters.g();
let q = *parameters.br_q(); let q = *parameters.br_q();
let mut g_k_dlog_map = vec![0usize; q]; let mut g_k_dlog_map = vec![0usize; q];
for i in 0..q / 2 {
for i in 0..q / 4 {
let v = mod_exponent(g as u64, i as u64, q as u64) as usize; let v = mod_exponent(g as u64, i as u64, q as u64) as usize;
// g^i // g^i
g_k_dlog_map[v] = i; g_k_dlog_map[v] = i;
// -(g^i) // -(g^i)
g_k_dlog_map[q - v] = i + (q / 2);
g_k_dlog_map[q - v] = i + (q / 4);
} }
let embedding_factor = (2 * parameters.rlwe_n().0) / q; let embedding_factor = (2 * parameters.rlwe_n().0) / q;
@ -904,39 +913,21 @@ where
let xor_test_vec = init_test_vec(qby8, false_m_el, true_m_el); let xor_test_vec = init_test_vec(qby8, false_m_el, true_m_el);
let xnor_test_vec = init_test_vec(qby8, true_m_el, false_m_el); let xnor_test_vec = init_test_vec(qby8, true_m_el, false_m_el);
// // set test vectors
// let mut nand_test_vec = M::R::zeros(qby2);
// for i in 0..qby2 {
// if i < (3 * qby8) {
// nand_test_vec.as_mut()[i] = true_m_el;
// } else {
// nand_test_vec.as_mut()[i] = false_m_el;
// }
// }
// // v(X) -> v(X^{-g})
// let (auto_map_index, auto_map_sign) = generate_auto_map(qby2, -(g as isize));
// let mut nand_test_vec_autog = M::R::zeros(qby2);
// izip!(
// nand_test_vec.as_ref().iter(),
// auto_map_index.iter(),
// auto_map_sign.iter()
// )
// .for_each(|(v, to_index, to_sign)| {
// if !to_sign {
// // negate
// nand_test_vec_autog.as_mut()[*to_index] = rlwe_modop.neg(v);
// } else {
// nand_test_vec_autog.as_mut()[*to_index] = *v;
// }
// });
// auto map indices and sign // auto map indices and sign
// Auto maps are stored as [-g, g^{1}, g^{2}, ..., g^{w}]
let mut rlwe_auto_maps = vec![]; let mut rlwe_auto_maps = vec![];
let ring_size = parameters.rlwe_n().0; let ring_size = parameters.rlwe_n().0;
let g = parameters.g() as isize;
for i in [g, -g] {
rlwe_auto_maps.push(generate_auto_map(ring_size, i))
let g = parameters.g();
let br_q = parameters.br_q();
let auto_element_dlogs = parameters.auto_element_dlogs();
assert!(auto_element_dlogs[0] == 0);
for i in auto_element_dlogs.into_iter() {
let el = if i == 0 {
-(g as isize)
} else {
(g.pow(i as u32) % br_q) as isize
};
rlwe_auto_maps.push(generate_auto_map(ring_size, el))
} }
let rlwe_qby4 = parameters.rlwe_q().qby4(); let rlwe_qby4 = parameters.rlwe_q().qby4();
@ -996,16 +987,23 @@ where
let sk_rlwe = &client_key.sk_rlwe; let sk_rlwe = &client_key.sk_rlwe;
let sk_lwe = &client_key.sk_lwe; let sk_lwe = &client_key.sk_lwe;
// generate auto keys -g, g
// generate auto keys
let mut auto_keys = HashMap::new(); let mut auto_keys = HashMap::new();
let auto_gadget = self.pbs_info.auto_decomposer.gadget_vector(); let auto_gadget = self.pbs_info.auto_decomposer.gadget_vector();
let g = self.pbs_info.parameters.g() as isize;
for i in [g, -g] {
let g = self.pbs_info.parameters.g();
let br_q = self.pbs_info.parameters.br_q();
let auto_els = self.pbs_info.parameters.auto_element_dlogs();
for i in auto_els.into_iter() {
let g_pow = if i == 0 {
-(g as isize)
} else {
(g.pow(i as u32) % br_q) as isize
};
let mut gk = M::zeros(self.pbs_info.auto_decomposer.decomposition_count(), rlwe_n); let mut gk = M::zeros(self.pbs_info.auto_decomposer.decomposition_count(), rlwe_n);
galois_key_gen( galois_key_gen(
&mut gk, &mut gk,
sk_rlwe.values(), sk_rlwe.values(),
i,
g_pow,
&auto_gadget, &auto_gadget,
&self.pbs_info.rlwe_modop, &self.pbs_info.rlwe_modop,
&self.pbs_info.rlwe_nttop, &self.pbs_info.rlwe_nttop,
@ -1094,7 +1092,7 @@ where
let sk_rlwe = &client_key.sk_rlwe; let sk_rlwe = &client_key.sk_rlwe;
let sk_lwe = &client_key.sk_lwe; let sk_lwe = &client_key.sk_lwe;
let g = self.pbs_info.parameters.g() as isize;
let g = self.pbs_info.parameters.g();
let ring_size = self.pbs_info.parameters.rlwe_n().0; let ring_size = self.pbs_info.parameters.rlwe_n().0;
let rlwe_q = self.pbs_info.parameters.rlwe_q(); let rlwe_q = self.pbs_info.parameters.rlwe_q();
let lwe_q = self.pbs_info.parameters.lwe_q(); let lwe_q = self.pbs_info.parameters.lwe_q();
@ -1109,7 +1107,15 @@ where
// auto keys // auto keys
let mut auto_keys = HashMap::new(); let mut auto_keys = HashMap::new();
let auto_gadget = self.pbs_info.auto_decomposer.gadget_vector(); let auto_gadget = self.pbs_info.auto_decomposer.gadget_vector();
for i in [g, -g] {
let auto_element_dlogs = self.pbs_info.parameters.auto_element_dlogs();
let br_q = self.pbs_info.parameters.br_q();
for i in auto_element_dlogs.into_iter() {
let g_pow = if i == 0 {
-(g as isize)
} else {
(g.pow(i as u32) % br_q) as isize
};
let mut ksk_out = M::zeros( let mut ksk_out = M::zeros(
self.pbs_info.auto_decomposer.decomposition_count(), self.pbs_info.auto_decomposer.decomposition_count(),
ring_size, ring_size,
@ -1117,7 +1123,7 @@ where
galois_key_gen( galois_key_gen(
&mut ksk_out, &mut ksk_out,
sk_rlwe.values(), sk_rlwe.values(),
i,
g_pow,
&auto_gadget, &auto_gadget,
rlweq_modop, rlweq_modop,
rlweq_nttop, rlweq_nttop,
@ -1404,7 +1410,8 @@ where
// auto keys // auto keys
let mut auto_keys = HashMap::new(); let mut auto_keys = HashMap::new();
for i in [g, -g] {
let auto_elements_dlog = parameters.auto_element_dlogs();
for i in auto_elements_dlog.into_iter() {
let mut key = M::zeros(parameters.auto_decomposition_count().0, rlwe_n); let mut key = M::zeros(parameters.auto_decomposition_count().0, rlwe_n);
shares.iter().for_each(|s| { shares.iter().for_each(|s| {
@ -1827,11 +1834,15 @@ fn blind_rotation<
Mmut::MatElement: Copy + Zero, Mmut::MatElement: Copy + Zero,
<MT as Matrix>::R: RowMut, <MT as Matrix>::R: RowMut,
{ {
let q_by_2 = q / 2;
let q_by_4 = q >> 2;
let mut count = 0;
// -(g^k) // -(g^k)
for i in (1..q_by_2).rev() {
gk_to_si[q_by_2 + i].iter().for_each(|s_index| {
let mut v = 0;
for i in (1..q_by_4).rev() {
// dbg!(q_by_4 + i);
let s_indices = &gk_to_si[q_by_4 + i];
s_indices.iter().for_each(|s_index| {
rlwe_by_rgsw( rlwe_by_rgsw(
trivial_rlwe_test_poly, trivial_rlwe_test_poly,
pbs_key.rgsw_ct_lwe_si(*s_index), pbs_key.rgsw_ct_lwe_si(*s_index),
@ -1841,22 +1852,27 @@ fn blind_rotation<
mod_op, mod_op,
); );
}); });
v += 1;
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(g);
galois_auto(
trivial_rlwe_test_poly,
pbs_key.galois_key_for_auto(g),
scratch_matrix,
&auto_map_index,
&auto_map_sign,
mod_op,
ntt_op,
auto_decomposer,
);
if gk_to_si[q_by_4 + i - 1].len() != 0 || v == w || i == 1 {
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(v);
galois_auto(
trivial_rlwe_test_poly,
pbs_key.galois_key_for_auto(v),
scratch_matrix,
&auto_map_index,
&auto_map_sign,
mod_op,
ntt_op,
auto_decomposer,
);
count += 1;
v = 0;
}
} }
// -(g^0) // -(g^0)
gk_to_si[q_by_2].iter().for_each(|s_index| {
gk_to_si[q_by_4].iter().for_each(|s_index| {
rlwe_by_rgsw( rlwe_by_rgsw(
trivial_rlwe_test_poly, trivial_rlwe_test_poly,
pbs_key.rgsw_ct_lwe_si(*s_index), pbs_key.rgsw_ct_lwe_si(*s_index),
@ -1866,10 +1882,10 @@ fn blind_rotation<
mod_op, mod_op,
); );
}); });
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(-g);
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(0);
galois_auto( galois_auto(
trivial_rlwe_test_poly, trivial_rlwe_test_poly,
pbs_key.galois_key_for_auto(-g),
pbs_key.galois_key_for_auto(0),
scratch_matrix, scratch_matrix,
&auto_map_index, &auto_map_index,
&auto_map_sign, &auto_map_sign,
@ -1879,8 +1895,10 @@ fn blind_rotation<
); );
// +(g^k) // +(g^k)
for i in (1..q_by_2).rev() {
gk_to_si[i].iter().for_each(|s_index| {
let mut v = 0;
for i in (1..q_by_4).rev() {
let s_indices = &gk_to_si[i];
s_indices.iter().for_each(|s_index| {
rlwe_by_rgsw( rlwe_by_rgsw(
trivial_rlwe_test_poly, trivial_rlwe_test_poly,
pbs_key.rgsw_ct_lwe_si(*s_index), pbs_key.rgsw_ct_lwe_si(*s_index),
@ -1890,31 +1908,37 @@ fn blind_rotation<
mod_op, mod_op,
); );
}); });
v += 1;
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(g);
galois_auto(
trivial_rlwe_test_poly,
pbs_key.galois_key_for_auto(g),
scratch_matrix,
&auto_map_index,
&auto_map_sign,
mod_op,
ntt_op,
auto_decomposer,
);
if gk_to_si[i - 1].len() != 0 || v == w || i == 1 {
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(v);
galois_auto(
trivial_rlwe_test_poly,
pbs_key.galois_key_for_auto(v),
scratch_matrix,
&auto_map_index,
&auto_map_sign,
mod_op,
ntt_op,
auto_decomposer,
);
v = 0;
count += 1;
}
} }
// +(g^0) // +(g^0)
gk_to_si[0].iter().for_each(|s_index| { gk_to_si[0].iter().for_each(|s_index| {
rlwe_by_rgsw( rlwe_by_rgsw(
trivial_rlwe_test_poly, trivial_rlwe_test_poly,
pbs_key.rgsw_ct_lwe_si(gk_to_si[q_by_2][*s_index]),
pbs_key.rgsw_ct_lwe_si(*s_index),
scratch_matrix, scratch_matrix,
rlwe_rgsw_decomposer, rlwe_rgsw_decomposer,
ntt_op, ntt_op,
mod_op, mod_op,
); );
}); });
println!("Auto count: {count}");
} }
/// - Mod down /// - Mod down
@ -1985,7 +2009,7 @@ fn pbs, K: PbsK
// odd mowdown Q_ks -> q // odd mowdown Q_ks -> q
let g_k_dlog_map = pbs_info.g_k_dlog_map(); let g_k_dlog_map = pbs_info.g_k_dlog_map();
let mut g_k_si = vec![vec![]; br_q];
let mut g_k_si = vec![vec![]; br_q >> 1];
scratch_lwe_vec scratch_lwe_vec
.as_ref() .as_ref()
.iter() .iter()
@ -1993,7 +2017,10 @@ fn pbs, K: PbsK
.enumerate() .enumerate()
.for_each(|(index, v)| { .for_each(|(index, v)| {
let odd_v = mod_switch_odd(v.to_f64().unwrap(), lwe_qf64, br_qf64); let odd_v = mod_switch_odd(v.to_f64().unwrap(), lwe_qf64, br_qf64);
// dlog `k` for `odd_v` is stored as `k` if odd_v = +g^{k}. If odd_v = -g^{k},
// then `k` is stored as `q/4 + k`.
let k = g_k_dlog_map[odd_v]; let k = g_k_dlog_map[odd_v];
// assert!(k != 0);
g_k_si[k].push(index); g_k_si[k].push(index);
}); });
@ -2014,7 +2041,7 @@ fn pbs, K: PbsK
br_qf64, br_qf64,
)) % (br_q); )) % (br_q);
// v = (v(X) * X^{g*b}) mod X^{q/2}+1 // v = (v(X) * X^{g*b}) mod X^{q/2}+1
let br_qby2 = br_q / 2;
let br_qby2 = br_q >> 1;
let mut gb_monomial_sign = true; let mut gb_monomial_sign = true;
let mut gb_monomial_exp = g_times_b; let mut gb_monomial_exp = g_times_b;
// X^{g*b} mod X^{q/2}+1 // X^{g*b} mod X^{q/2}+1
@ -2065,7 +2092,7 @@ fn pbs, K: PbsK
&mut trivial_rlwe_test_poly, &mut trivial_rlwe_test_poly,
scratch_blind_rotate_matrix, scratch_blind_rotate_matrix,
pbs_info.g(), pbs_info.g(),
1,
pbs_info.w(),
br_q, br_q,
&g_k_si, &g_k_si,
pbs_info.rlwe_rgsw_decomposer(), pbs_info.rlwe_rgsw_decomposer(),
@ -2076,31 +2103,7 @@ fn pbs, K: PbsK
pbs_key, pbs_key,
); );
// ClientKey::with_local(|ck| {
// let ring_size = parameters.rlwe_n();
// let mut rlwe_ct = vec![vec![0u64; ring_size]; 2];
// izip!(
// rlwe_ct[0].iter_mut(),
// trivial_rlwe_test_poly.0.get_row_slice(0)
// )
// .for_each(|(t, f)| {
// *t = f.to_u64().unwrap();
// });
// izip!(
// rlwe_ct[1].iter_mut(),
// trivial_rlwe_test_poly.0.get_row_slice(1)
// )
// .for_each(|(t, f)| {
// *t = f.to_u64().unwrap();
// });
// let mut m_out = vec![vec![0u64; ring_size]];
// let modop = ModularOpsU64::new(rlwe_q.to_u64().unwrap());
// let nttop = NttBackendU64::new(rlwe_q.to_u64().unwrap(), ring_size);
// decrypt_rlwe(&rlwe_ct, ck.sk_rlwe.values(), &mut m_out, &nttop, &modop);
// println!("RLWE post PBS message: {:?}", m_out[0]);
// });
// sample extract // sample extract
sample_extract(lwe_in, &trivial_rlwe_test_poly, pbs_info.modop_rlweq(), 0); sample_extract(lwe_in, &trivial_rlwe_test_poly, pbs_info.modop_rlweq(), 0);
} }
@ -2261,6 +2264,98 @@ mod tests {
use super::*; use super::*;
#[test]
fn tri() {
let bool_evaluator = BoolEvaluator::<
Vec<Vec<u64>>,
NttBackendU64,
ModularOpsU64<CiphertextModulus<u64>>,
ModularOpsU64<CiphertextModulus<u64>>,
>::new(SP_BOOL_PARAMS);
let mut v = bool_evaluator.pbs_info.g_k_dlog_map.clone();
// v.sort();
println!("{:?}", v);
let client_key = bool_evaluator.client_key();
let server_key = bool_evaluator.server_key(&client_key);
let server_key_eval_domain =
ServerKeyEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(&server_key);
let ring_size = bool_evaluator.pbs_info.parameters.rlwe_n().0;
let rlwe_q = bool_evaluator.pbs_info.rlwe_q().q().unwrap();
let mut rng = DefaultSecureRng::new();
let mut m = vec![0u64; ring_size as usize];
RandomFillUniformInModulus::random_fill(&mut rng, &rlwe_q, m.as_mut_slice());
let ntt_op = &bool_evaluator.pbs_info.rlwe_nttop;
let mod_op = &bool_evaluator.pbs_info.rlwe_modop;
// RLWE_{s}(m)
let mut seed_rlwe = [0u8; 32];
rng.fill_bytes(&mut seed_rlwe);
let mut seeded_rlwe_m = SeededRlweCiphertext::empty(ring_size as usize, seed_rlwe, rlwe_q);
let mut p_rng = DefaultSecureRng::new_seeded(seed_rlwe);
secret_key_encrypt_rlwe(
&m,
&mut seeded_rlwe_m.data,
client_key.sk_rlwe.values(),
mod_op,
ntt_op,
&mut p_rng,
&mut rng,
);
let mut rlwe_m = RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_m);
let k = 1;
let auto_k = (5usize).pow(k as u32);
// let auto_k = -5;
let decomposer = bool_evaluator.pbs_info.auto_decomposer();
// Send RLWE_{s}(m) -> RLWE_{s}(m^k)
let mut scratch_space =
vec![vec![0u64; ring_size as usize]; decomposer.decomposition_count() + 2];
let (auto_map_index, auto_map_sign) = bool_evaluator.pbs_info.rlwe_auto_map(k);
galois_auto(
&mut rlwe_m,
server_key_eval_domain.galois_key_for_auto(k),
&mut scratch_space,
&auto_map_index,
&auto_map_sign,
mod_op,
ntt_op,
decomposer,
);
let rlwe_m_k = rlwe_m;
// Decrypt RLWE_{s}(m^k) and check
let mut encoded_m_k_back = vec![0u64; ring_size as usize];
decrypt_rlwe(
&rlwe_m_k,
client_key.sk_rlwe.values(),
&mut encoded_m_k_back,
ntt_op,
mod_op,
);
{
let mut m_k = vec![0u64; ring_size];
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size, auto_k as isize);
izip!(m.iter(), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|(v, to_index, sign)| {
if !*sign {
m_k[*to_index] = (rlwe_q - *v);
} else {
m_k[*to_index] = *v;
}
},
);
let noise = measure_noise(&rlwe_m_k, &m_k, ntt_op, mod_op, client_key.sk_rlwe.values());
println!("Ksk noise: {noise}");
}
}
#[test] #[test]
fn bool_encrypt_decrypt_works() { fn bool_encrypt_decrypt_works() {
let bool_evaluator = BoolEvaluator::< let bool_evaluator = BoolEvaluator::<
@ -2310,7 +2405,7 @@ mod tests {
let mut ct0 = bool_evaluator.sk_encrypt(m0, &client_key); let mut ct0 = bool_evaluator.sk_encrypt(m0, &client_key);
let mut ct1 = bool_evaluator.sk_encrypt(m1, &client_key); let mut ct1 = bool_evaluator.sk_encrypt(m1, &client_key);
for _ in 0..1000 {
for _ in 0..500 {
let ct_back = bool_evaluator.nand(&ct0, &ct1, &server_key_eval_domain); let ct_back = bool_evaluator.nand(&ct0, &ct1, &server_key_eval_domain);
let m_out = !(m0 && m1); let m_out = !(m0 && m1);
@ -2356,7 +2451,7 @@ mod tests {
(n, v) (n, v)
}; };
// // Trace PBS
// // // Trace PBS
// PBSTracer::with_local(|t| { // PBSTracer::with_local(|t| {
// t.trace( // t.trace(
// &SP_BOOL_PARAMS, // &SP_BOOL_PARAMS,
@ -3100,9 +3195,17 @@ mod tests {
rlwe_modop.elwise_neg_mut(neg_s_poly.as_mut_slice()); rlwe_modop.elwise_neg_mut(neg_s_poly.as_mut_slice());
let g = bool_evaluator.pbs_info.g(); let g = bool_evaluator.pbs_info.g();
for i in [-g, g] {
let br_q = bool_evaluator.pbs_info.br_q();
let auto_element_dlogs = bool_evaluator.pbs_info.parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
let g_pow = if i == 0 {
-g
} else {
(((g as usize).pow(i as u32)) % br_q) as isize
};
// -s[X^k] // -s[X^k]
let (auto_indices, auto_sign) = generate_auto_map(rlwe_n, i);
let (auto_indices, auto_sign) = generate_auto_map(rlwe_n, g_pow);
let mut neg_s_poly_auto_i = vec![0u64; rlwe_n]; let mut neg_s_poly_auto_i = vec![0u64; rlwe_n];
izip!(neg_s_poly.iter(), auto_indices.iter(), auto_sign.iter()).for_each( izip!(neg_s_poly.iter(), auto_indices.iter(), auto_sign.iter()).for_each(
|(v, to_i, to_sign)| { |(v, to_i, to_sign)| {
@ -3154,7 +3257,8 @@ mod tests {
let mut check = Stats { samples: vec![] }; let mut check = Stats { samples: vec![] };
let g = bool_evaluator.pbs_info.g(); let g = bool_evaluator.pbs_info.g();
for i in [-g, g] {
let auto_element_dlogs = bool_evaluator.pbs_info.parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
for _ in 0..10 { for _ in 0..10 {
let mut m = vec![0u64; rlwe_n]; let mut m = vec![0u64; rlwe_n];
RandomFillUniformInModulus::random_fill(&mut rng, rlwe_q, m.as_mut_slice()); RandomFillUniformInModulus::random_fill(&mut rng, rlwe_q, m.as_mut_slice());
@ -3184,7 +3288,8 @@ mod tests {
); );
let auto_key = server_key_eval_domain.galois_key_for_auto(i); let auto_key = server_key_eval_domain.galois_key_for_auto(i);
let (auto_map_index, auto_map_sign) = generate_auto_map(rlwe_n, i);
let g_pow = if i == 0 { -g } else { g.pow(i as u32) };
let (auto_map_index, auto_map_sign) = generate_auto_map(rlwe_n, g_pow);
let mut scratch = let mut scratch =
vec![vec![0u64; rlwe_n]; auto_decomposer.decomposition_count() + 2]; vec![vec![0u64; rlwe_n]; auto_decomposer.decomposition_count() + 2];
galois_auto( galois_auto(

+ 17
- 5
src/bool/parameters.rs

@ -145,6 +145,18 @@ impl BoolParameters {
), ),
) )
} }
/// Returns dlogs of `g` for which auto keys are required as
/// per the parameter. Given that autos are required for [-g, g, g^2, ...,
/// g^w] function returns the following [0, 1, 2, ..., w] where `w` is
/// the window size. Note that although g^0 = 1, we use 0 for -g.
pub(crate) fn auto_element_dlogs(&self) -> Vec<usize> {
let mut els = vec![0];
(1..self.w + 1).into_iter().for_each(|e| {
els.push(e);
});
els
}
} }
#[derive(Clone, Copy, PartialEq)] #[derive(Clone, Copy, PartialEq)]
@ -283,9 +295,9 @@ where
pub(crate) const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> { pub(crate) const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
rlwe_q: CiphertextModulus::new_non_native(268369921u64), rlwe_q: CiphertextModulus::new_non_native(268369921u64),
lwe_q: CiphertextModulus::new_non_native(1 << 16), lwe_q: CiphertextModulus::new_non_native(1 << 16),
br_q: 1 << 8,
rlwe_n: PolynomialSize(1 << 8),
lwe_n: LweDimension(10),
br_q: 1 << 10,
rlwe_n: PolynomialSize(1 << 10),
lwe_n: LweDimension(500),
lwe_decomposer_base: DecompostionLogBase(4), lwe_decomposer_base: DecompostionLogBase(4),
lwe_decomposer_count: DecompositionCount(4), lwe_decomposer_count: DecompositionCount(4),
rlrg_decomposer_base: DecompostionLogBase(7), rlrg_decomposer_base: DecompostionLogBase(7),
@ -295,7 +307,7 @@ pub(crate) const SP_BOOL_PARAMS: BoolParameters = BoolParameters:: {
auto_decomposer_base: DecompostionLogBase(7), auto_decomposer_base: DecompostionLogBase(7),
auto_decomposer_count: DecompositionCount(4), auto_decomposer_count: DecompositionCount(4),
g: 5, g: 5,
w: 1,
w: 10,
}; };
pub(super) const MP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> { pub(super) const MP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
@ -313,7 +325,7 @@ pub(super) const MP_BOOL_PARAMS: BoolParameters = BoolParameters:: {
auto_decomposer_base: DecompostionLogBase(12), auto_decomposer_base: DecompostionLogBase(12),
auto_decomposer_count: DecompositionCount(5), auto_decomposer_count: DecompositionCount(5),
g: 5, g: 5,
w: 1,
w: 5,
}; };
#[cfg(test)] #[cfg(test)]

+ 1
- 1
src/rgsw.rs

@ -1943,7 +1943,7 @@ pub(crate) mod tests {
); );
let mut rlwe_m = RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_m); let mut rlwe_m = RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_m);
let auto_k = -5;
let auto_k = -125;
// Generate galois key to key switch from s^k to s // Generate galois key to key switch from s^k to s
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw); let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);

Loading…
Cancel
Save