Browse Source

elaborate non-interactive mpc example

par-agg-key-shares
Janmajaya Mall 11 months ago
parent
commit
8877c4a438
1 changed files with 131 additions and 37 deletions
  1. +131
    -37
      examples/non_interactive_fheuint8.rs

+ 131
- 37
examples/non_interactive_fheuint8.rs

@ -2,77 +2,171 @@ use bin_rs::*;
use itertools::Itertools; use itertools::Itertools;
use rand::{thread_rng, Rng, RngCore}; use rand::{thread_rng, Rng, RngCore};
fn circuit(a: u8, b: u8, c: u8, d: u8) -> u8 {
fn function1(a: u8, b: u8, c: u8, d: u8) -> u8 {
((a + b) * c) * d ((a + b) * c) * d
} }
fn fhe_circuit(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
fn function1_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
&(&(a + b) * c) * d &(&(a + b) * c) * d
} }
fn function2(a: u8, b: u8, c: u8, d: u8) -> u8 {
(a * b) + (c * d)
}
fn function2_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
&(a * b) + &(c * d)
}
fn main() { fn main() {
set_parameter_set(ParameterSelector::NonInteractiveLTE2Party);
set_parameter_set(ParameterSelector::NonInteractiveLTE4Party);
// set CRS
// set application's common reference seed
let mut seed = [0u8; 32]; let mut seed = [0u8; 32];
thread_rng().fill_bytes(&mut seed); thread_rng().fill_bytes(&mut seed);
set_common_reference_seed(seed); set_common_reference_seed(seed);
let no_of_parties = 2;
let no_of_parties = 4;
// Clide side //
// Generate client keys // Generate client keys
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec(); let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
// client 0 encrypts private input
// client 0 encrypts its private inputs
let c0_a = thread_rng().gen::<u8>(); let c0_a = thread_rng().gen::<u8>();
let c0_b = thread_rng().gen::<u8>();
let c0_batched_to_send = cks[0].encrypt(vec![c0_a, c0_b].as_slice());
// Clients encrypt their private inputs in a seeded batched ciphertext
let c0_enc = cks[0].encrypt(vec![c0_a].as_slice());
// client 1 encrypts private input
// client 1 encrypts its private inputs
let c1_a = thread_rng().gen::<u8>(); let c1_a = thread_rng().gen::<u8>();
let c1_b = thread_rng().gen::<u8>();
let c1_batch_to_send = cks[1].encrypt(vec![c1_a, c1_b].as_slice());
let c1_enc = cks[1].encrypt(vec![c1_a].as_slice());
// client 2 encrypts its private inputs
let c2_a = thread_rng().gen::<u8>();
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
// Both client indenpendently generate their server key shares
// client 1 encrypts its private inputs
let c3_a = thread_rng().gen::<u8>();
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
// Clients independently generate their server key shares
//
// We assign user_id 0 to client 0, user_id 1 to client 1, user_id 2 to client
// 2, user_id 3 to client 3.
let server_key_shares = cks let server_key_shares = cks
.iter() .iter()
.enumerate() .enumerate()
.map(|(id, k)| gen_server_key_share(id, no_of_parties, k)) .map(|(id, k)| gen_server_key_share(id, no_of_parties, k))
.collect_vec(); .collect_vec();
// Server side
// Each client uploads their server key shares and encrypted private inputs to
// the server in a single shot message.
// Server side //
// aggregates shares and generates server key
// Server receives server key shares from each client and proceeds to aggregate
// them to produce server key. After this point, server can use server key share
// to evaluate any arbitrary function on encrypted private inputs from the fixed
// set of clients
// aggregate shares and generates server key
let server_key = aggregate_server_key_shares(&server_key_shares); let server_key = aggregate_server_key_shares(&server_key_shares);
server_key.set_server_key(); server_key.set_server_key();
// extract a and b from client0 inputs
// let now = std::time::Instant::now();
let (ct_c0_a, ct_c0_b) = {
let ct = c0_batched_to_send.unseed::<Vec<Vec<u64>>>().key_switch(0);
(ct.extract_at(0), ct.extract_at(1))
};
// println!(
// "Time to unseed, key switch, and extract 2 ciphertexts: {:?}",
// now.elapsed()
// );
// extract a and b from client1 inputs
let (ct_c1_a, ct_c1_b) = {
let ct = c1_batch_to_send.unseed::<Vec<Vec<u64>>>().key_switch(1);
(ct.extract_at(0), ct.extract_at(1))
};
// Server proceeds to extract private inputs sent by clients
//
// To extract client 0's (with user_id=0) private inputs we first key switch
// client 0's private inputs from thei secret to ideal secret of the mpc
// protocol. To indicate we're key switching client 0's private input we
// supply client 0's user_id i.e. we call `key_switch(0)`. Then we extract
// the first ciphertext by calling `extract_at(0)`.
//
// Since client 0 only encrypted 1 input in batched ciphertext calling
// extract_at(index) for `index` > 0 will panic. If client 0 had more private
// inputs then we can either extract them all at once by `extract_all` or first
// `many` of them by `extract_many(many)`
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
let ct_c2_a = c2_enc.unseed::<Vec<Vec<u64>>>().key_switch(2).extract_at(0);
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
// After extracting each client's private inputs, server proceeds to evaluate
// the function1
let now = std::time::Instant::now();
let ct_out_f1 = function1_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
println!("Function1 FHE evaluation time: {:?}", now.elapsed());
// Server has finished running compute. Clients can proceed to decrypt the
// output ciphertext using multi-party decryption.
// Client side //
// In multi-party decryption, each client needs to come online, download output
// ciphertext from the server, produce decryption share, and send to other
// parties (either via p2p or via server). After receving decryption shares
// for output ciphertext from other parties, client can independently decrypt
// output ciphertext.
// each client produces decryption share
let decryption_shares = cks
.iter()
.map(|k| k.gen_decryption_share(&ct_out_f1))
.collect_vec();
// With all decrytpion shares, client can aggregate the shares and decrypt the
// ciphertext
let out_f1 = cks[0].aggregate_decryption_shares(&ct_out_f1, &decryption_shares);
// we check that output is correct
let want_out_f1 = function1(c0_a, c1_a, c2_a, c3_a);
assert_eq!(out_f1, want_out_f1);
// -----------
// Server key can be re-used for different function with different private
// client inputs for same set of clients. Here we run `function2_fhe` for
// the same set of client but with new inputs. Client only have to upload their
// private inputs to the server this time.
// Each client encrypts their private input
let c0_a = thread_rng().gen::<u8>();
let c0_enc = cks[0].encrypt(vec![c0_a].as_slice());
let c1_a = thread_rng().gen::<u8>();
let c1_enc = cks[1].encrypt(vec![c1_a].as_slice());
let c2_a = thread_rng().gen::<u8>();
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
let c3_a = thread_rng().gen::<u8>();
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
// Client upload their private inputs to the server
// Server side //
// Server receives clients private inputs and extracts them
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
let ct_c2_a = c2_enc.unseed::<Vec<Vec<u64>>>().key_switch(2).extract_at(0);
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
// Server proceeds to evaluate `function2_fhe`
let now = std::time::Instant::now(); let now = std::time::Instant::now();
let c_out = fhe_circuit(&ct_c0_a, &ct_c1_a, &ct_c0_b, &ct_c1_b);
println!("Circuit Time: {:?}", now.elapsed());
let ct_out_f2 = function2_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
println!("Function2 FHE evaluation time: {:?}", now.elapsed());
// Client side //
// decrypt c_out
// Each client generates decrytion share for `ct_out_f2`
let decryption_shares = cks let decryption_shares = cks
.iter() .iter()
.map(|k| k.gen_decryption_share(&c_out))
.map(|k| k.gen_decryption_share(&ct_out_f2))
.collect_vec(); .collect_vec();
let m_out = cks[0].aggregate_decryption_shares(&c_out, &decryption_shares);
let m_expected = circuit(c0_a, c1_a, c0_b, c1_b);
assert!(m_expected == m_out);
// Client independently aggregate the shares and decrypt
let out_f2 = cks[0].aggregate_decryption_shares(&ct_out_f2, &decryption_shares);
// We check correctness of function2
let want_out_f2 = function2(c0_a, c1_a, c2_a, c3_a);
assert_eq!(out_f2, want_out_f2);
} }

Loading…
Cancel
Save