mirror of
https://github.com/arnaucube/phantom-zone.git
synced 2026-01-09 15:41:30 +01:00
elaborate non-interactive mpc example
This commit is contained in:
@@ -2,77 +2,171 @@ use bin_rs::*;
|
||||
use itertools::Itertools;
|
||||
use rand::{thread_rng, Rng, RngCore};
|
||||
|
||||
fn circuit(a: u8, b: u8, c: u8, d: u8) -> u8 {
|
||||
fn function1(a: u8, b: u8, c: u8, d: u8) -> u8 {
|
||||
((a + b) * c) * d
|
||||
}
|
||||
|
||||
fn fhe_circuit(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
|
||||
fn function1_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
|
||||
&(&(a + b) * c) * d
|
||||
}
|
||||
|
||||
fn main() {
|
||||
set_parameter_set(ParameterSelector::NonInteractiveLTE2Party);
|
||||
fn function2(a: u8, b: u8, c: u8, d: u8) -> u8 {
|
||||
(a * b) + (c * d)
|
||||
}
|
||||
|
||||
// set CRS
|
||||
fn function2_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
|
||||
&(a * b) + &(c * d)
|
||||
}
|
||||
|
||||
fn main() {
|
||||
set_parameter_set(ParameterSelector::NonInteractiveLTE4Party);
|
||||
|
||||
// set application's common reference seed
|
||||
let mut seed = [0u8; 32];
|
||||
thread_rng().fill_bytes(&mut seed);
|
||||
set_common_reference_seed(seed);
|
||||
|
||||
let no_of_parties = 2;
|
||||
let no_of_parties = 4;
|
||||
|
||||
// Clide side //
|
||||
|
||||
// Generate client keys
|
||||
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
|
||||
|
||||
// client 0 encrypts private input
|
||||
// client 0 encrypts its private inputs
|
||||
let c0_a = thread_rng().gen::<u8>();
|
||||
let c0_b = thread_rng().gen::<u8>();
|
||||
let c0_batched_to_send = cks[0].encrypt(vec![c0_a, c0_b].as_slice());
|
||||
// Clients encrypt their private inputs in a seeded batched ciphertext
|
||||
let c0_enc = cks[0].encrypt(vec![c0_a].as_slice());
|
||||
|
||||
// client 1 encrypts private input
|
||||
// client 1 encrypts its private inputs
|
||||
let c1_a = thread_rng().gen::<u8>();
|
||||
let c1_b = thread_rng().gen::<u8>();
|
||||
let c1_batch_to_send = cks[1].encrypt(vec![c1_a, c1_b].as_slice());
|
||||
let c1_enc = cks[1].encrypt(vec![c1_a].as_slice());
|
||||
|
||||
// Both client indenpendently generate their server key shares
|
||||
// client 2 encrypts its private inputs
|
||||
let c2_a = thread_rng().gen::<u8>();
|
||||
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
|
||||
|
||||
// client 1 encrypts its private inputs
|
||||
let c3_a = thread_rng().gen::<u8>();
|
||||
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
|
||||
|
||||
// Clients independently generate their server key shares
|
||||
//
|
||||
// We assign user_id 0 to client 0, user_id 1 to client 1, user_id 2 to client
|
||||
// 2, user_id 3 to client 3.
|
||||
let server_key_shares = cks
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(id, k)| gen_server_key_share(id, no_of_parties, k))
|
||||
.collect_vec();
|
||||
|
||||
// Server side
|
||||
// Each client uploads their server key shares and encrypted private inputs to
|
||||
// the server in a single shot message.
|
||||
|
||||
// aggregates shares and generates server key
|
||||
// Server side //
|
||||
|
||||
// Server receives server key shares from each client and proceeds to aggregate
|
||||
// them to produce server key. After this point, server can use server key share
|
||||
// to evaluate any arbitrary function on encrypted private inputs from the fixed
|
||||
// set of clients
|
||||
|
||||
// aggregate shares and generates server key
|
||||
let server_key = aggregate_server_key_shares(&server_key_shares);
|
||||
server_key.set_server_key();
|
||||
|
||||
// extract a and b from client0 inputs
|
||||
// let now = std::time::Instant::now();
|
||||
let (ct_c0_a, ct_c0_b) = {
|
||||
let ct = c0_batched_to_send.unseed::<Vec<Vec<u64>>>().key_switch(0);
|
||||
(ct.extract_at(0), ct.extract_at(1))
|
||||
};
|
||||
// println!(
|
||||
// "Time to unseed, key switch, and extract 2 ciphertexts: {:?}",
|
||||
// now.elapsed()
|
||||
// );
|
||||
// Server proceeds to extract private inputs sent by clients
|
||||
//
|
||||
// To extract client 0's (with user_id=0) private inputs we first key switch
|
||||
// client 0's private inputs from thei secret to ideal secret of the mpc
|
||||
// protocol. To indicate we're key switching client 0's private input we
|
||||
// supply client 0's user_id i.e. we call `key_switch(0)`. Then we extract
|
||||
// the first ciphertext by calling `extract_at(0)`.
|
||||
//
|
||||
// Since client 0 only encrypted 1 input in batched ciphertext calling
|
||||
// extract_at(index) for `index` > 0 will panic. If client 0 had more private
|
||||
// inputs then we can either extract them all at once by `extract_all` or first
|
||||
// `many` of them by `extract_many(many)`
|
||||
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
|
||||
|
||||
// extract a and b from client1 inputs
|
||||
let (ct_c1_a, ct_c1_b) = {
|
||||
let ct = c1_batch_to_send.unseed::<Vec<Vec<u64>>>().key_switch(1);
|
||||
(ct.extract_at(0), ct.extract_at(1))
|
||||
};
|
||||
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
|
||||
let ct_c2_a = c2_enc.unseed::<Vec<Vec<u64>>>().key_switch(2).extract_at(0);
|
||||
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
|
||||
|
||||
// After extracting each client's private inputs, server proceeds to evaluate
|
||||
// the function1
|
||||
let now = std::time::Instant::now();
|
||||
let c_out = fhe_circuit(&ct_c0_a, &ct_c1_a, &ct_c0_b, &ct_c1_b);
|
||||
println!("Circuit Time: {:?}", now.elapsed());
|
||||
let ct_out_f1 = function1_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
|
||||
println!("Function1 FHE evaluation time: {:?}", now.elapsed());
|
||||
|
||||
// decrypt c_out
|
||||
// Server has finished running compute. Clients can proceed to decrypt the
|
||||
// output ciphertext using multi-party decryption.
|
||||
|
||||
// Client side //
|
||||
|
||||
// In multi-party decryption, each client needs to come online, download output
|
||||
// ciphertext from the server, produce decryption share, and send to other
|
||||
// parties (either via p2p or via server). After receving decryption shares
|
||||
// for output ciphertext from other parties, client can independently decrypt
|
||||
// output ciphertext.
|
||||
|
||||
// each client produces decryption share
|
||||
let decryption_shares = cks
|
||||
.iter()
|
||||
.map(|k| k.gen_decryption_share(&c_out))
|
||||
.map(|k| k.gen_decryption_share(&ct_out_f1))
|
||||
.collect_vec();
|
||||
let m_out = cks[0].aggregate_decryption_shares(&c_out, &decryption_shares);
|
||||
let m_expected = circuit(c0_a, c1_a, c0_b, c1_b);
|
||||
assert!(m_expected == m_out);
|
||||
|
||||
// With all decrytpion shares, client can aggregate the shares and decrypt the
|
||||
// ciphertext
|
||||
let out_f1 = cks[0].aggregate_decryption_shares(&ct_out_f1, &decryption_shares);
|
||||
|
||||
// we check that output is correct
|
||||
let want_out_f1 = function1(c0_a, c1_a, c2_a, c3_a);
|
||||
assert_eq!(out_f1, want_out_f1);
|
||||
|
||||
// -----------
|
||||
|
||||
// Server key can be re-used for different function with different private
|
||||
// client inputs for same set of clients. Here we run `function2_fhe` for
|
||||
// the same set of client but with new inputs. Client only have to upload their
|
||||
// private inputs to the server this time.
|
||||
|
||||
// Each client encrypts their private input
|
||||
let c0_a = thread_rng().gen::<u8>();
|
||||
let c0_enc = cks[0].encrypt(vec![c0_a].as_slice());
|
||||
let c1_a = thread_rng().gen::<u8>();
|
||||
let c1_enc = cks[1].encrypt(vec![c1_a].as_slice());
|
||||
let c2_a = thread_rng().gen::<u8>();
|
||||
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
|
||||
let c3_a = thread_rng().gen::<u8>();
|
||||
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
|
||||
|
||||
// Client upload their private inputs to the server
|
||||
|
||||
// Server side //
|
||||
|
||||
// Server receives clients private inputs and extracts them
|
||||
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
|
||||
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
|
||||
let ct_c2_a = c2_enc.unseed::<Vec<Vec<u64>>>().key_switch(2).extract_at(0);
|
||||
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
|
||||
|
||||
// Server proceeds to evaluate `function2_fhe`
|
||||
let now = std::time::Instant::now();
|
||||
let ct_out_f2 = function2_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
|
||||
println!("Function2 FHE evaluation time: {:?}", now.elapsed());
|
||||
|
||||
// Client side //
|
||||
|
||||
// Each client generates decrytion share for `ct_out_f2`
|
||||
let decryption_shares = cks
|
||||
.iter()
|
||||
.map(|k| k.gen_decryption_share(&ct_out_f2))
|
||||
.collect_vec();
|
||||
|
||||
// Client independently aggregate the shares and decrypt
|
||||
let out_f2 = cks[0].aggregate_decryption_shares(&ct_out_f2, &decryption_shares);
|
||||
|
||||
// We check correctness of function2
|
||||
let want_out_f2 = function2(c0_a, c1_a, c2_a, c3_a);
|
||||
assert_eq!(out_f2, want_out_f2);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user