mirror of
https://github.com/arnaucube/phantom-zone.git
synced 2026-01-07 22:51:29 +01:00
add APIs for unsigned
This commit is contained in:
@@ -2,12 +2,15 @@ use std::{
|
||||
cell::{OnceCell, RefCell},
|
||||
collections::HashMap,
|
||||
fmt::{Debug, Display},
|
||||
iter::Once,
|
||||
marker::PhantomData,
|
||||
ops::Shr,
|
||||
sync::OnceLock,
|
||||
};
|
||||
|
||||
use itertools::{izip, partition, Itertools};
|
||||
use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, WrappingSub, Zero};
|
||||
use rand_distr::uniform::SampleUniform;
|
||||
|
||||
use crate::{
|
||||
backend::{ArithmeticOps, GetModulus, ModInit, ModularOpsU64, Modulus, VectorOps},
|
||||
@@ -26,22 +29,95 @@ use crate::{
|
||||
RlweCiphertext, RlweSecret,
|
||||
},
|
||||
utils::{
|
||||
fill_random_ternary_secret_with_hamming_weight, generate_prime, mod_exponent,
|
||||
fill_random_ternary_secret_with_hamming_weight, generate_prime, mod_exponent, Global,
|
||||
TryConvertFrom1, WithLocal,
|
||||
},
|
||||
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
||||
Decryptor, Encryptor, Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
||||
};
|
||||
|
||||
use super::parameters::{BoolParameters, CiphertextModulus};
|
||||
|
||||
thread_local! {
|
||||
static BOOL_EVALUATOR: RefCell<BoolEvaluator<Vec<Vec<u64>>, NttBackendU64, ModularOpsU64<CiphertextModulus<u64>>, ModularOpsU64<CiphertextModulus<u64>>>> = RefCell::new(BoolEvaluator::new(MP_BOOL_PARAMS));
|
||||
pub(crate) static BOOL_EVALUATOR: RefCell<BoolEvaluator<Vec<Vec<u64>>, NttBackendU64, ModularOpsU64<CiphertextModulus<u64>>, ModularOpsU64<CiphertextModulus<u64>>>> = RefCell::new(BoolEvaluator::new(MP_BOOL_PARAMS));
|
||||
|
||||
}
|
||||
pub(crate) static BOOL_SERVER_KEY: OnceLock<
|
||||
ServerKeyEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64>,
|
||||
> = OnceLock::new();
|
||||
|
||||
pub fn set_parameter_set(parameter: &BoolParameters<u64>) {
|
||||
BoolEvaluator::with_local_mut(|e| *e = BoolEvaluator::new(parameter.clone()))
|
||||
}
|
||||
|
||||
fn set_server_key(key: ServerKeyEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64>) {
|
||||
assert!(
|
||||
BOOL_SERVER_KEY.set(key).is_ok(),
|
||||
"Attempted to set server key twice."
|
||||
);
|
||||
}
|
||||
|
||||
pub fn gen_keys() -> (
|
||||
ClientKey,
|
||||
SeededServerKey<Vec<Vec<u64>>, BoolParameters<u64>, [u8; 32]>,
|
||||
) {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let ck = e.client_key();
|
||||
let sk = e.server_key(&ck);
|
||||
|
||||
(ck, sk)
|
||||
})
|
||||
}
|
||||
pub(crate) trait BooleanGates {
|
||||
type Ciphertext: RowEntity;
|
||||
type Key;
|
||||
|
||||
fn and_inplace(&mut self, c0: &mut Self::Ciphertext, c1: &Self::Ciphertext, key: &Self::Key);
|
||||
fn nand_inplace(&mut self, c0: &mut Self::Ciphertext, c1: &Self::Ciphertext, key: &Self::Key);
|
||||
fn or_inplace(&mut self, c0: &mut Self::Ciphertext, c1: &Self::Ciphertext, key: &Self::Key);
|
||||
fn nor_inplace(&mut self, c0: &mut Self::Ciphertext, c1: &Self::Ciphertext, key: &Self::Key);
|
||||
fn xor_inplace(&mut self, c0: &mut Self::Ciphertext, c1: &Self::Ciphertext, key: &Self::Key);
|
||||
fn xnor_inplace(&mut self, c0: &mut Self::Ciphertext, c1: &Self::Ciphertext, key: &Self::Key);
|
||||
fn not_inplace(&mut self, c: &mut Self::Ciphertext);
|
||||
|
||||
fn and(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext;
|
||||
fn nand(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext;
|
||||
fn or(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext;
|
||||
fn nor(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext;
|
||||
fn xor(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext;
|
||||
fn xnor(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext;
|
||||
fn not(&mut self, c: &Self::Ciphertext) -> Self::Ciphertext;
|
||||
}
|
||||
|
||||
impl WithLocal
|
||||
for BoolEvaluator<
|
||||
Vec<Vec<u64>>,
|
||||
@@ -63,6 +139,19 @@ impl WithLocal
|
||||
{
|
||||
BOOL_EVALUATOR.with_borrow_mut(|s| func(s))
|
||||
}
|
||||
|
||||
fn with_local_mut_mut<F, R>(func: &mut F) -> R
|
||||
where
|
||||
F: FnMut(&mut Self) -> R,
|
||||
{
|
||||
BOOL_EVALUATOR.with_borrow_mut(|s| func(s))
|
||||
}
|
||||
}
|
||||
|
||||
impl Global for ServerKeyEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64> {
|
||||
fn global() -> &'static Self {
|
||||
BOOL_SERVER_KEY.get().unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
struct ScratchMemory<M>
|
||||
@@ -206,7 +295,7 @@ trait PbsInfo {
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct ClientKey {
|
||||
pub struct ClientKey {
|
||||
sk_rlwe: RlweSecret,
|
||||
sk_lwe: LweSecret,
|
||||
}
|
||||
@@ -219,25 +308,17 @@ impl ClientKey {
|
||||
}
|
||||
}
|
||||
|
||||
// impl WithLocal for ClientKey {
|
||||
// fn with_local<F, R>(func: F) -> R
|
||||
// where
|
||||
// F: Fn(&Self) -> R,
|
||||
// {
|
||||
// CLIENT_KEY.with_borrow(|client_key| func(client_key))
|
||||
// }
|
||||
impl Encryptor<bool, Vec<u64>> for ClientKey {
|
||||
fn encrypt(&self, m: &bool) -> Vec<u64> {
|
||||
BoolEvaluator::with_local(|e| e.sk_encrypt(*m, self))
|
||||
}
|
||||
}
|
||||
|
||||
// fn with_local_mut<F, R>(func: F) -> R
|
||||
// where
|
||||
// F: Fn(&mut Self) -> R,
|
||||
// {
|
||||
// CLIENT_KEY.with_borrow_mut(|client_key| func(client_key))
|
||||
// }
|
||||
// }
|
||||
|
||||
// fn set_client_key(key: &ClientKey) {
|
||||
// ClientKey::with_local_mut(|k| *k = key.clone())
|
||||
// }
|
||||
impl Decryptor<bool, Vec<u64>> for ClientKey {
|
||||
fn decrypt(&self, c: &Vec<u64>) -> bool {
|
||||
BoolEvaluator::with_local(|e| e.sk_decrypt(c, self))
|
||||
}
|
||||
}
|
||||
|
||||
struct MultiPartyDecryptionShare<E> {
|
||||
share: E,
|
||||
@@ -325,7 +406,7 @@ struct SeededMultiPartyServerKey<M: Matrix, S, P> {
|
||||
}
|
||||
|
||||
/// Seeded single party server key
|
||||
struct SeededServerKey<M: Matrix, P, S> {
|
||||
pub struct SeededServerKey<M: Matrix, P, S> {
|
||||
/// Rgsw cts of LWE secret elements
|
||||
pub(crate) rgsw_cts: Vec<M>,
|
||||
/// Auto keys
|
||||
@@ -376,8 +457,18 @@ impl<M: Matrix, S> SeededServerKey<M, BoolParameters<M::MatElement>, S> {
|
||||
}
|
||||
}
|
||||
|
||||
impl SeededServerKey<Vec<Vec<u64>>, BoolParameters<u64>, [u8; 32]> {
|
||||
pub fn set_server_key(&self) {
|
||||
set_server_key(ServerKeyEvaluationDomain::<
|
||||
_,
|
||||
DefaultSecureRng,
|
||||
NttBackendU64,
|
||||
>::from(self));
|
||||
}
|
||||
}
|
||||
|
||||
/// Server key in evaluation domain
|
||||
struct ServerKeyEvaluationDomain<M, R, N> {
|
||||
pub(crate) struct ServerKeyEvaluationDomain<M, R, N> {
|
||||
/// Rgsw cts of LWE secret elements
|
||||
rgsw_cts: Vec<M>,
|
||||
/// Galois keys
|
||||
@@ -643,7 +734,7 @@ struct BoolPbsInfo<M: Matrix, Ntt, RlweModOp, LweModOp> {
|
||||
|
||||
impl<M: Matrix, NttOp, RlweModOp, LweModOp> PbsInfo for BoolPbsInfo<M, NttOp, RlweModOp, LweModOp>
|
||||
where
|
||||
M::MatElement: PrimInt + WrappingSub + NumInfo + Debug + FromPrimitive,
|
||||
M::MatElement: PrimInt + WrappingSub + NumInfo + FromPrimitive,
|
||||
RlweModOp: ArithmeticOps<Element = M::MatElement> + VectorOps<Element = M::MatElement>,
|
||||
LweModOp: ArithmeticOps<Element = M::MatElement> + VectorOps<Element = M::MatElement>,
|
||||
NttOp: Ntt<Element = M::MatElement>,
|
||||
@@ -708,7 +799,7 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
struct BoolEvaluator<M, Ntt, RlweModOp, LweModOp>
|
||||
pub(crate) struct BoolEvaluator<M, Ntt, RlweModOp, LweModOp>
|
||||
where
|
||||
M: Matrix,
|
||||
{
|
||||
@@ -728,7 +819,8 @@ impl<M: Matrix, NttOp, RlweModOp, LweModOp> BoolEvaluator<M, NttOp, RlweModOp, L
|
||||
impl<M: Matrix, NttOp, RlweModOp, LweModOp> BoolEvaluator<M, NttOp, RlweModOp, LweModOp>
|
||||
where
|
||||
M: MatrixEntity + MatrixMut,
|
||||
M::MatElement: PrimInt + Debug + Display + NumInfo + FromPrimitive + WrappingSub,
|
||||
M::MatElement:
|
||||
PrimInt + Debug + Display + NumInfo + FromPrimitive + WrappingSub + SampleUniform,
|
||||
NttOp: Ntt<Element = M::MatElement>,
|
||||
RlweModOp: ArithmeticOps<Element = M::MatElement>
|
||||
+ VectorOps<Element = M::MatElement>
|
||||
@@ -738,10 +830,6 @@ where
|
||||
+ GetModulus<Element = M::MatElement, M = CiphertextModulus<M::MatElement>>,
|
||||
M::R: TryConvertFrom1<[i32], CiphertextModulus<M::MatElement>> + RowEntity + Debug,
|
||||
<M as Matrix>::R: RowMut,
|
||||
DefaultSecureRng: RandomFillGaussianInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>
|
||||
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>
|
||||
+ RandomGaussianElementInModulus<M::MatElement, CiphertextModulus<M::MatElement>>
|
||||
+ NewWithSeed,
|
||||
{
|
||||
fn new(parameters: BoolParameters<M::MatElement>) -> Self
|
||||
where
|
||||
@@ -1219,7 +1307,7 @@ where
|
||||
let mut rlwe = M::zeros(2, ring_size);
|
||||
// sample error
|
||||
rlwe.iter_rows_mut().for_each(|ri| {
|
||||
RandomFillGaussianInModulus::random_fill(
|
||||
RandomFillGaussianInModulus::<[M::MatElement], CiphertextModulus<M::MatElement>>::random_fill(
|
||||
rng,
|
||||
&self.pbs_info.parameters.rlwe_q(),
|
||||
ri.as_mut(),
|
||||
@@ -1468,192 +1556,245 @@ where
|
||||
parameters: parameters,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<M, NttOp, RlweModOp, LweModOp> BoolEvaluator<M, NttOp, RlweModOp, LweModOp>
|
||||
where
|
||||
M: MatrixMut + MatrixEntity,
|
||||
M::R: RowMut + RowEntity,
|
||||
M::MatElement: PrimInt + FromPrimitive + One + Copy + Zero + Display + WrappingSub + NumInfo,
|
||||
RlweModOp: VectorOps<Element = M::MatElement>
|
||||
+ ArithmeticOps<Element = M::MatElement>
|
||||
+ GetModulus<Element = M::MatElement, M = CiphertextModulus<M::MatElement>>,
|
||||
LweModOp: VectorOps<Element = M::MatElement>
|
||||
+ ArithmeticOps<Element = M::MatElement>
|
||||
+ GetModulus<Element = M::MatElement, M = CiphertextModulus<M::MatElement>>,
|
||||
NttOp: Ntt<Element = M::MatElement>,
|
||||
{
|
||||
/// Returns c0 + c1 + Q/4
|
||||
fn _add_and_shift_lwe_cts(&self, c0: &M::R, c1: &M::R) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = M::R::zeros(c0.as_ref().len());
|
||||
fn _add_and_shift_lwe_cts(&self, c0: &mut M::R, c1: &M::R) {
|
||||
let modop = &self.pbs_info.rlwe_modop;
|
||||
izip!(
|
||||
c_out.as_mut().iter_mut(),
|
||||
c0.as_ref().iter(),
|
||||
c1.as_ref().iter()
|
||||
)
|
||||
.for_each(|(o, i0, i1)| {
|
||||
*o = modop.add(i0, i1);
|
||||
});
|
||||
modop.elwise_add_mut(c0.as_mut(), c1.as_ref());
|
||||
// +Q/4
|
||||
c_out.as_mut()[0] = modop.add(&c_out.as_ref()[0], &self.pbs_info.rlwe_qby4);
|
||||
c_out
|
||||
c0.as_mut()[0] = modop.add(&c0.as_ref()[0], &self.pbs_info.rlwe_qby4);
|
||||
}
|
||||
|
||||
/// Returns 2(c0 - c1) + Q/4
|
||||
fn _subtract_double_and_shift_lwe_cts(&self, c0: &M::R, c1: &M::R) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = c0.clone();
|
||||
fn _subtract_double_and_shift_lwe_cts(&self, c0: &mut M::R, c1: &M::R) {
|
||||
let modop = &self.pbs_info.rlwe_modop;
|
||||
// c0 - c1
|
||||
modop.elwise_sub_mut(c_out.as_mut(), c1.as_ref());
|
||||
modop.elwise_sub_mut(c0.as_mut(), c1.as_ref());
|
||||
|
||||
// double
|
||||
c_out.as_mut().iter_mut().for_each(|v| *v = modop.add(v, v));
|
||||
c_out
|
||||
c0.as_mut().iter_mut().for_each(|v| *v = modop.add(v, v));
|
||||
}
|
||||
}
|
||||
|
||||
pub fn nand(
|
||||
impl<M, NttOp, RlweModOp, LweModOp> BooleanGates for BoolEvaluator<M, NttOp, RlweModOp, LweModOp>
|
||||
where
|
||||
M: MatrixMut + MatrixEntity,
|
||||
M::R: RowMut + RowEntity + Clone,
|
||||
M::MatElement: PrimInt + FromPrimitive + One + Copy + Zero + Display + WrappingSub + NumInfo,
|
||||
RlweModOp: VectorOps<Element = M::MatElement>
|
||||
+ ArithmeticOps<Element = M::MatElement>
|
||||
+ GetModulus<Element = M::MatElement, M = CiphertextModulus<M::MatElement>>,
|
||||
LweModOp: VectorOps<Element = M::MatElement>
|
||||
+ ArithmeticOps<Element = M::MatElement>
|
||||
+ GetModulus<Element = M::MatElement, M = CiphertextModulus<M::MatElement>>,
|
||||
NttOp: Ntt<Element = M::MatElement>,
|
||||
{
|
||||
type Ciphertext = M::R;
|
||||
type Key = ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>;
|
||||
|
||||
fn nand_inplace(
|
||||
&mut self,
|
||||
c0: &M::R,
|
||||
c0: &mut M::R,
|
||||
c1: &M::R,
|
||||
server_key: &ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>,
|
||||
) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = self._add_and_shift_lwe_cts(c0, c1);
|
||||
) {
|
||||
self._add_and_shift_lwe_cts(c0, c1);
|
||||
|
||||
// PBS
|
||||
pbs(
|
||||
&self.pbs_info,
|
||||
&self.nand_test_vec,
|
||||
&mut c_out,
|
||||
c0,
|
||||
server_key,
|
||||
&mut self.scratch_memory.lwe_vector,
|
||||
&mut self.scratch_memory.decomposition_matrix,
|
||||
);
|
||||
|
||||
c_out
|
||||
}
|
||||
|
||||
pub fn and(
|
||||
fn and_inplace(
|
||||
&mut self,
|
||||
c0: &M::R,
|
||||
c0: &mut M::R,
|
||||
c1: &M::R,
|
||||
server_key: &ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>,
|
||||
) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = self._add_and_shift_lwe_cts(c0, c1);
|
||||
) {
|
||||
self._add_and_shift_lwe_cts(c0, c1);
|
||||
|
||||
// PBS
|
||||
pbs(
|
||||
&self.pbs_info,
|
||||
&self.and_test_vec,
|
||||
&mut c_out,
|
||||
c0,
|
||||
server_key,
|
||||
&mut self.scratch_memory.lwe_vector,
|
||||
&mut self.scratch_memory.decomposition_matrix,
|
||||
);
|
||||
|
||||
c_out
|
||||
}
|
||||
|
||||
pub fn or(
|
||||
fn or_inplace(
|
||||
&mut self,
|
||||
c0: &M::R,
|
||||
c0: &mut M::R,
|
||||
c1: &M::R,
|
||||
server_key: &ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>,
|
||||
) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = self._add_and_shift_lwe_cts(c0, c1);
|
||||
) {
|
||||
self._add_and_shift_lwe_cts(c0, c1);
|
||||
|
||||
// PBS
|
||||
pbs(
|
||||
&self.pbs_info,
|
||||
&self.or_test_vec,
|
||||
&mut c_out,
|
||||
c0,
|
||||
server_key,
|
||||
&mut self.scratch_memory.lwe_vector,
|
||||
&mut self.scratch_memory.decomposition_matrix,
|
||||
);
|
||||
|
||||
c_out
|
||||
}
|
||||
|
||||
pub fn nor(
|
||||
fn nor_inplace(
|
||||
&mut self,
|
||||
c0: &M::R,
|
||||
c0: &mut M::R,
|
||||
c1: &M::R,
|
||||
server_key: &ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>,
|
||||
) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = self._add_and_shift_lwe_cts(c0, c1);
|
||||
) {
|
||||
self._add_and_shift_lwe_cts(c0, c1);
|
||||
|
||||
// PBS
|
||||
pbs(
|
||||
&self.pbs_info,
|
||||
&self.nor_test_vec,
|
||||
&mut c_out,
|
||||
c0,
|
||||
server_key,
|
||||
&mut self.scratch_memory.lwe_vector,
|
||||
&mut self.scratch_memory.decomposition_matrix,
|
||||
);
|
||||
|
||||
c_out
|
||||
)
|
||||
}
|
||||
|
||||
pub fn xor(
|
||||
fn xor_inplace(
|
||||
&mut self,
|
||||
c0: &M::R,
|
||||
c0: &mut M::R,
|
||||
c1: &M::R,
|
||||
server_key: &ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>,
|
||||
) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = self._subtract_double_and_shift_lwe_cts(c0, c1);
|
||||
) {
|
||||
self._subtract_double_and_shift_lwe_cts(c0, c1);
|
||||
|
||||
// PBS
|
||||
pbs(
|
||||
&self.pbs_info,
|
||||
&self.xor_test_vec,
|
||||
&mut c_out,
|
||||
c0,
|
||||
server_key,
|
||||
&mut self.scratch_memory.lwe_vector,
|
||||
&mut self.scratch_memory.decomposition_matrix,
|
||||
);
|
||||
|
||||
c_out
|
||||
}
|
||||
|
||||
pub fn xnor(
|
||||
fn xnor_inplace(
|
||||
&mut self,
|
||||
c0: &M::R,
|
||||
c0: &mut M::R,
|
||||
c1: &M::R,
|
||||
server_key: &ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>,
|
||||
) -> M::R
|
||||
where
|
||||
M::R: Clone,
|
||||
{
|
||||
let mut c_out = self._subtract_double_and_shift_lwe_cts(c0, c1);
|
||||
) {
|
||||
self._subtract_double_and_shift_lwe_cts(c0, c1);
|
||||
|
||||
// PBS
|
||||
pbs(
|
||||
&self.pbs_info,
|
||||
&self.xnor_test_vec,
|
||||
&mut c_out,
|
||||
c0,
|
||||
server_key,
|
||||
&mut self.scratch_memory.lwe_vector,
|
||||
&mut self.scratch_memory.decomposition_matrix,
|
||||
);
|
||||
|
||||
c_out
|
||||
}
|
||||
|
||||
pub fn not(&mut self, c0: &M::R) -> M::R
|
||||
where
|
||||
<M as Matrix>::R: FromIterator<<M as Matrix>::MatElement>,
|
||||
{
|
||||
fn not_inplace(&mut self, c0: &mut M::R) {
|
||||
let modop = &self.pbs_info.rlwe_modop;
|
||||
c0.as_ref().iter().map(|v| modop.neg(v)).collect()
|
||||
c0.as_mut().iter_mut().for_each(|v| *v = modop.neg(v));
|
||||
}
|
||||
|
||||
fn and(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext {
|
||||
let mut out = c0.clone();
|
||||
self.and_inplace(&mut out, c1, key);
|
||||
out
|
||||
}
|
||||
|
||||
fn nand(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext {
|
||||
let mut out = c0.clone();
|
||||
self.nand_inplace(&mut out, c1, key);
|
||||
out
|
||||
}
|
||||
|
||||
fn or(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext {
|
||||
let mut out = c0.clone();
|
||||
self.or_inplace(&mut out, c1, key);
|
||||
out
|
||||
}
|
||||
|
||||
fn nor(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext {
|
||||
let mut out = c0.clone();
|
||||
self.nor_inplace(&mut out, c1, key);
|
||||
out
|
||||
}
|
||||
|
||||
fn xnor(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext {
|
||||
let mut out = c0.clone();
|
||||
self.xnor_inplace(&mut out, c1, key);
|
||||
out
|
||||
}
|
||||
|
||||
fn xor(
|
||||
&mut self,
|
||||
c0: &Self::Ciphertext,
|
||||
c1: &Self::Ciphertext,
|
||||
key: &Self::Key,
|
||||
) -> Self::Ciphertext {
|
||||
let mut out = c0.clone();
|
||||
self.xor_inplace(&mut out, c1, key);
|
||||
out
|
||||
}
|
||||
|
||||
fn not(&mut self, c: &Self::Ciphertext) -> Self::Ciphertext {
|
||||
let mut out = c.clone();
|
||||
self.not_inplace(&mut out);
|
||||
out
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1662,7 +1803,7 @@ where
|
||||
/// gk_to_si: [g^0, ..., g^{q/2-1}, -g^0, -g^1, .., -g^{q/2-1}]
|
||||
fn blind_rotation<
|
||||
MT: IsTrivial + MatrixMut,
|
||||
Mmut: MatrixMut<MatElement = MT::MatElement> + Matrix,
|
||||
Mmut: MatrixMut<MatElement = MT::MatElement>,
|
||||
D: Decomposer<Element = MT::MatElement>,
|
||||
NttOp: Ntt<Element = MT::MatElement>,
|
||||
ModOp: ArithmeticOps<Element = MT::MatElement> + VectorOps<Element = MT::MatElement>,
|
||||
@@ -1780,11 +1921,7 @@ fn blind_rotation<
|
||||
/// - key switching
|
||||
/// - mod down
|
||||
/// - blind rotate
|
||||
fn pbs<
|
||||
M: Matrix + MatrixMut + MatrixEntity,
|
||||
P: PbsInfo<Element = M::MatElement>,
|
||||
K: PbsKey<M = M>,
|
||||
>(
|
||||
fn pbs<M: MatrixMut + MatrixEntity, P: PbsInfo<Element = M::MatElement>, K: PbsKey<M = M>>(
|
||||
pbs_info: &P,
|
||||
test_vec: &M::R,
|
||||
lwe_in: &mut M::R,
|
||||
@@ -1793,7 +1930,7 @@ fn pbs<
|
||||
scratch_blind_rotate_matrix: &mut M,
|
||||
) where
|
||||
<M as Matrix>::R: RowMut,
|
||||
M::MatElement: PrimInt + ToPrimitive + FromPrimitive + One + Copy + Zero + Display,
|
||||
M::MatElement: PrimInt + FromPrimitive + One + Copy + Zero + Display,
|
||||
{
|
||||
let rlwe_q = pbs_info.rlwe_q();
|
||||
let lwe_q = pbs_info.lwe_q();
|
||||
@@ -2002,7 +2139,9 @@ fn sample_extract<M: Matrix + MatrixMut, ModOp: ArithmeticOps<Element = M::MatEl
|
||||
lwe_out.as_mut()[0] = *rlwe_in.get(1, index);
|
||||
}
|
||||
|
||||
/// TODO(Jay): Write tests for monomial mul
|
||||
/// Monomial multiplication (p(X)*X^{mon_exp})
|
||||
///
|
||||
/// - p_out: Output is written to p_out and independent of values in p_out
|
||||
fn monomial_mul<El, ModOp: ArithmeticOps<Element = El>>(
|
||||
p_in: &[El],
|
||||
p_out: &mut [El],
|
||||
@@ -2092,6 +2231,13 @@ impl WithLocal for PBSTracer<Vec<Vec<u64>>> {
|
||||
{
|
||||
PBS_TRACER.with_borrow_mut(|t| func(t))
|
||||
}
|
||||
|
||||
fn with_local_mut_mut<F, R>(func: &mut F) -> R
|
||||
where
|
||||
F: FnMut(&mut Self) -> R,
|
||||
{
|
||||
PBS_TRACER.with_borrow_mut(|t| func(t))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
|
||||
@@ -1,2 +1,2 @@
|
||||
mod evaluator;
|
||||
mod parameters;
|
||||
pub(crate) mod evaluator;
|
||||
pub(crate) mod parameters;
|
||||
|
||||
@@ -3,7 +3,7 @@ use num_traits::{ConstZero, FromPrimitive, PrimInt, ToPrimitive, Zero};
|
||||
use crate::{backend::Modulus, decomposer::Decomposer};
|
||||
|
||||
#[derive(Clone, PartialEq)]
|
||||
pub(super) struct BoolParameters<El> {
|
||||
pub struct BoolParameters<El> {
|
||||
rlwe_q: CiphertextModulus<El>,
|
||||
lwe_q: CiphertextModulus<El>,
|
||||
br_q: usize,
|
||||
@@ -280,12 +280,12 @@ where
|
||||
}
|
||||
}
|
||||
|
||||
pub(super) const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
|
||||
pub(crate) const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
|
||||
rlwe_q: CiphertextModulus::new_non_native(268369921u64),
|
||||
lwe_q: CiphertextModulus::new_non_native(1 << 16),
|
||||
br_q: 1 << 10,
|
||||
rlwe_n: PolynomialSize(1 << 10),
|
||||
lwe_n: LweDimension(493),
|
||||
br_q: 1 << 8,
|
||||
rlwe_n: PolynomialSize(1 << 8),
|
||||
lwe_n: LweDimension(10),
|
||||
lwe_decomposer_base: DecompostionLogBase(4),
|
||||
lwe_decomposer_count: DecompositionCount(4),
|
||||
rlrg_decomposer_base: DecompostionLogBase(7),
|
||||
|
||||
@@ -92,7 +92,7 @@ impl<T: PrimInt + NumInfo + Debug> DefaultDecomposer<T> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: PrimInt + ToPrimitive + FromPrimitive + WrappingSub + Debug + NumInfo> Decomposer
|
||||
impl<T: PrimInt + ToPrimitive + FromPrimitive + WrappingSub + NumInfo> Decomposer
|
||||
for DefaultDecomposer<T>
|
||||
{
|
||||
type Element = T;
|
||||
|
||||
12
src/lib.rs
12
src/lib.rs
@@ -144,6 +144,10 @@ impl<T> Row for Vec<T> {
|
||||
type Element = T;
|
||||
}
|
||||
|
||||
impl<T> Row for [T] {
|
||||
type Element = T;
|
||||
}
|
||||
|
||||
impl<T> RowMut for Vec<T> {}
|
||||
|
||||
impl<T: Zero + Clone> RowEntity for Vec<T> {
|
||||
@@ -151,3 +155,11 @@ impl<T: Zero + Clone> RowEntity for Vec<T> {
|
||||
vec![T::zero(); col]
|
||||
}
|
||||
}
|
||||
|
||||
trait Encryptor<M, C> {
|
||||
fn encrypt(&self, m: &M) -> C;
|
||||
}
|
||||
|
||||
trait Decryptor<M, C: ?Sized> {
|
||||
fn decrypt(&self, c: &C) -> M;
|
||||
}
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
fn main() {
|
||||
let mut v = Vec::with_capacity(10);
|
||||
v[0] = 1;
|
||||
println!("Hello, world!");
|
||||
}
|
||||
|
||||
@@ -180,4 +180,11 @@ impl WithLocal for DefaultSecureRng {
|
||||
{
|
||||
DEFAULT_RNG.with_borrow_mut(|r| func(r))
|
||||
}
|
||||
|
||||
fn with_local_mut_mut<F, R>(func: &mut F) -> R
|
||||
where
|
||||
F: FnMut(&mut Self) -> R,
|
||||
{
|
||||
DEFAULT_RNG.with_borrow_mut(|r| func(r))
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,14 +0,0 @@
|
||||
use itertools::izip;
|
||||
|
||||
use crate::Matrix;
|
||||
|
||||
struct FheUint8<M: Matrix> {
|
||||
data: M,
|
||||
}
|
||||
|
||||
fn add<M: Matrix>(a: FheUint8<M>, b: FheUint8<M>) {
|
||||
// CALL THE EVALUATOR
|
||||
izip!(a.data.iter_rows(), b.data.iter_rows()).for_each(|(a_bit, b_bit)| {
|
||||
// A ^ B
|
||||
});
|
||||
}
|
||||
262
src/shortint/mod.rs
Normal file
262
src/shortint/mod.rs
Normal file
@@ -0,0 +1,262 @@
|
||||
use itertools::Itertools;
|
||||
|
||||
use crate::{
|
||||
bool::evaluator::{BoolEvaluator, ClientKey, ServerKeyEvaluationDomain, BOOL_SERVER_KEY},
|
||||
utils::{Global, WithLocal},
|
||||
Decryptor, Encryptor,
|
||||
};
|
||||
use ops::{
|
||||
arbitrary_bit_adder, arbitrary_bit_division_for_quotient_and_rem, arbitrary_bit_subtractor,
|
||||
eight_bit_mul,
|
||||
};
|
||||
|
||||
mod ops;
|
||||
mod types;
|
||||
|
||||
type FheUint8 = types::FheUint8<Vec<u64>>;
|
||||
|
||||
fn add_mut(a: &mut FheUint8, b: &FheUint8) {
|
||||
BoolEvaluator::with_local_mut_mut(&mut |e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
arbitrary_bit_adder(e, a.data_mut(), b.data(), false, key);
|
||||
});
|
||||
}
|
||||
|
||||
fn sub(a: &FheUint8, b: &FheUint8) -> FheUint8 {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
let (out, _, _) = arbitrary_bit_subtractor(e, a.data(), b.data(), key);
|
||||
FheUint8 { data: out }
|
||||
})
|
||||
}
|
||||
|
||||
fn mul(a: &FheUint8, b: &FheUint8) -> FheUint8 {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
let out = eight_bit_mul(e, a.data(), b.data(), key);
|
||||
FheUint8 { data: out }
|
||||
})
|
||||
}
|
||||
|
||||
fn div(a: &FheUint8, b: &FheUint8) -> (FheUint8, FheUint8) {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
let (quotient, remainder) =
|
||||
arbitrary_bit_division_for_quotient_and_rem(e, a.data(), b.data(), key);
|
||||
|
||||
(FheUint8 { data: quotient }, FheUint8 { data: remainder })
|
||||
})
|
||||
}
|
||||
|
||||
impl Encryptor<u8, FheUint8> for ClientKey {
|
||||
fn encrypt(&self, m: &u8) -> FheUint8 {
|
||||
let cts = (0..8)
|
||||
.into_iter()
|
||||
.map(|i| {
|
||||
let bit = ((m >> i) & 1) == 1;
|
||||
Encryptor::<bool, Vec<u64>>::encrypt(self, &bit)
|
||||
})
|
||||
.collect_vec();
|
||||
FheUint8 { data: cts }
|
||||
}
|
||||
}
|
||||
|
||||
impl Decryptor<u8, FheUint8> for ClientKey {
|
||||
fn decrypt(&self, c: &FheUint8) -> u8 {
|
||||
let mut out = 0u8;
|
||||
c.data().iter().enumerate().for_each(|(index, bit_c)| {
|
||||
let bool = Decryptor::<bool, Vec<u64>>::decrypt(self, bit_c);
|
||||
if bool {
|
||||
out += 1 << index;
|
||||
}
|
||||
});
|
||||
out
|
||||
}
|
||||
}
|
||||
|
||||
mod frontend {
|
||||
use super::ops::{
|
||||
arbitrary_bit_adder, arbitrary_bit_division_for_quotient_and_rem, arbitrary_bit_subtractor,
|
||||
eight_bit_mul,
|
||||
};
|
||||
use crate::{
|
||||
bool::evaluator::{BoolEvaluator, ServerKeyEvaluationDomain},
|
||||
utils::{Global, WithLocal},
|
||||
};
|
||||
|
||||
use super::{add_mut, div, mul, FheUint8};
|
||||
|
||||
mod arithetic {
|
||||
use super::*;
|
||||
use std::ops::{Add, AddAssign, Div, Mul, Rem, Sub};
|
||||
|
||||
impl AddAssign<&FheUint8> for FheUint8 {
|
||||
fn add_assign(&mut self, rhs: &FheUint8) {
|
||||
BoolEvaluator::with_local_mut_mut(&mut |e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
arbitrary_bit_adder(e, self.data_mut(), rhs.data(), false, key);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
impl Add<&FheUint8> for &FheUint8 {
|
||||
type Output = FheUint8;
|
||||
fn add(self, rhs: &FheUint8) -> Self::Output {
|
||||
let mut a = self.clone();
|
||||
a += rhs;
|
||||
a
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub<&FheUint8> for &FheUint8 {
|
||||
type Output = FheUint8;
|
||||
fn sub(self, rhs: &FheUint8) -> Self::Output {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
let (out, _, _) = arbitrary_bit_subtractor(e, self.data(), self.data(), key);
|
||||
FheUint8 { data: out }
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<&FheUint8> for &FheUint8 {
|
||||
type Output = FheUint8;
|
||||
fn mul(self, rhs: &FheUint8) -> Self::Output {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
let out = eight_bit_mul(e, self.data(), rhs.data(), key);
|
||||
FheUint8 { data: out }
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<&FheUint8> for &FheUint8 {
|
||||
type Output = FheUint8;
|
||||
fn div(self, rhs: &FheUint8) -> Self::Output {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
let (quotient, _) = arbitrary_bit_division_for_quotient_and_rem(
|
||||
e,
|
||||
self.data(),
|
||||
rhs.data(),
|
||||
key,
|
||||
);
|
||||
FheUint8 { data: quotient }
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl Rem<&FheUint8> for &FheUint8 {
|
||||
type Output = FheUint8;
|
||||
fn rem(self, rhs: &FheUint8) -> Self::Output {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = ServerKeyEvaluationDomain::global();
|
||||
let (_, remainder) = arbitrary_bit_division_for_quotient_and_rem(
|
||||
e,
|
||||
self.data(),
|
||||
rhs.data(),
|
||||
key,
|
||||
);
|
||||
FheUint8 { data: remainder }
|
||||
})
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mod booleans {}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use num_traits::Euclid;
|
||||
|
||||
use crate::{
|
||||
bool::{
|
||||
evaluator::{gen_keys, set_parameter_set, BoolEvaluator},
|
||||
parameters::SP_BOOL_PARAMS,
|
||||
},
|
||||
shortint::{add_mut, div, mul, sub, types::FheUint8},
|
||||
Decryptor, Encryptor,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn qwerty() {
|
||||
set_parameter_set(&SP_BOOL_PARAMS);
|
||||
|
||||
let (ck, sk) = gen_keys();
|
||||
sk.set_server_key();
|
||||
|
||||
for i in 1..=255 {
|
||||
for j in 0..=255 {
|
||||
let m0 = i;
|
||||
let m1 = j;
|
||||
let c0 = ck.encrypt(&m0);
|
||||
let c1 = ck.encrypt(&m1);
|
||||
|
||||
assert!(ck.decrypt(&c0) == m0);
|
||||
assert!(ck.decrypt(&c1) == m1);
|
||||
|
||||
// Add
|
||||
// let mut c_m0_plus_m1 = FheUint8 {
|
||||
// data: c0.data().to_vec(),
|
||||
// };
|
||||
// add_mut(&mut c_m0_plus_m1, &c1);
|
||||
// let m0_plus_m1 = ck.decrypt(&c_m0_plus_m1);
|
||||
// assert_eq!(
|
||||
// m0_plus_m1,
|
||||
// m0.wrapping_add(m1),
|
||||
// "Expected {} but got {m0_plus_m1} for {i}+{j}",
|
||||
// m0.wrapping_add(m1)
|
||||
// );
|
||||
|
||||
// Sub
|
||||
// let c_sub = sub(&c0, &c1);
|
||||
// let m0_sub_m1 = ck.decrypt(&c_sub);
|
||||
// dbg!(m0, m1, m0_sub_m1);
|
||||
// assert_eq!(
|
||||
// m0_sub_m1,
|
||||
// m0.wrapping_sub(m1),
|
||||
// "Expected {} but got {m0_sub_m1} for {i}-{j}",
|
||||
// m0.wrapping_sub(m1)
|
||||
// );
|
||||
|
||||
// Mul
|
||||
// let c_m0m1 = mul(&c0, &c1);
|
||||
// let m0m1 = ck.decrypt(&c_m0m1);
|
||||
// assert_eq!(
|
||||
// m0m1,
|
||||
// m0.wrapping_mul(m1),
|
||||
// "Expected {} but got {m0m1} for {i}x{j}",
|
||||
// m0.wrapping_mul(m1)
|
||||
// );
|
||||
|
||||
// Div
|
||||
// let (c_quotient, c_rem) = div(&c0, &c1);
|
||||
// let m_quotient = ck.decrypt(&c_quotient);
|
||||
// let m_remainder = ck.decrypt(&c_rem);
|
||||
// if j != 0 {
|
||||
// let (q, r) = i.div_rem_euclid(&j);
|
||||
// assert_eq!(
|
||||
// m_quotient, q,
|
||||
// "Expected {} but got {m_quotient} for {i}/{j}",
|
||||
// q
|
||||
// );
|
||||
// assert_eq!(
|
||||
// m_remainder, r,
|
||||
// "Expected {} but got {m_quotient} for {i}%{j}",
|
||||
// r
|
||||
// );
|
||||
// } else {
|
||||
// assert_eq!(
|
||||
// m_quotient, 255,
|
||||
// "Expected 255 but got {m_quotient}. Case div by zero"
|
||||
// );
|
||||
// assert_eq!(
|
||||
// m_remainder, i,
|
||||
// "Expected {i} but got {m_quotient}. Case div by zero"
|
||||
// )
|
||||
// }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
362
src/shortint/ops.rs
Normal file
362
src/shortint/ops.rs
Normal file
@@ -0,0 +1,362 @@
|
||||
use std::mem::MaybeUninit;
|
||||
|
||||
use itertools::{izip, Itertools};
|
||||
use num_traits::PrimInt;
|
||||
|
||||
use crate::{
|
||||
backend::ModularOpsU64,
|
||||
bool::{
|
||||
evaluator::{BoolEvaluator, BooleanGates, ClientKey, ServerKeyEvaluationDomain},
|
||||
parameters::CiphertextModulus,
|
||||
},
|
||||
ntt::NttBackendU64,
|
||||
random::DefaultSecureRng,
|
||||
Decryptor,
|
||||
};
|
||||
|
||||
pub(super) fn half_adder<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &mut E::Ciphertext,
|
||||
b: &E::Ciphertext,
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
let carry = evaluator.and(a, b, key);
|
||||
evaluator.xor_inplace(a, b, key);
|
||||
carry
|
||||
}
|
||||
|
||||
pub(super) fn full_adder_plain_carry_in<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &mut E::Ciphertext,
|
||||
b: &E::Ciphertext,
|
||||
carry_in: bool,
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
let mut a_and_b = evaluator.and(a, b, key);
|
||||
evaluator.xor_inplace(a, b, key); //a = a ^ b
|
||||
if carry_in {
|
||||
// a_and_b = A & B | ((A^B) & C_in={True})
|
||||
evaluator.or_inplace(&mut a_and_b, &a, key);
|
||||
} else {
|
||||
// a_and_b = A & B | ((A^B) & C_in={False})
|
||||
// a_and_b = A & B
|
||||
// noop
|
||||
}
|
||||
|
||||
// In xor if a input is 0, output equals the firt variable. If input is 1 then
|
||||
// output equals !(first variable)
|
||||
if carry_in {
|
||||
// (A^B)^1 = !(A^B)
|
||||
evaluator.not_inplace(a);
|
||||
} else {
|
||||
// (A^B)^0
|
||||
// no-op
|
||||
}
|
||||
a_and_b
|
||||
}
|
||||
|
||||
pub(super) fn full_adder<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &mut E::Ciphertext,
|
||||
b: &E::Ciphertext,
|
||||
carry_in: &E::Ciphertext,
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
let mut a_and_b = evaluator.and(a, b, key);
|
||||
evaluator.xor_inplace(a, b, key); //a = a ^ b
|
||||
let a_xor_b_and_c = evaluator.and(&a, carry_in, key);
|
||||
evaluator.or_inplace(&mut a_and_b, &a_xor_b_and_c, key); // a_and_b = A & B | ((A^B) & C_in)
|
||||
evaluator.xor_inplace(a, &carry_in, key);
|
||||
a_and_b
|
||||
}
|
||||
|
||||
pub(super) fn arbitrary_bit_adder<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &mut [E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
carry_in: bool,
|
||||
key: &E::Key,
|
||||
) -> (E::Ciphertext, E::Ciphertext)
|
||||
where
|
||||
E::Ciphertext: Clone,
|
||||
{
|
||||
assert!(a.len() == b.len());
|
||||
let n = a.len();
|
||||
|
||||
let mut carry = if !carry_in {
|
||||
half_adder(evaluator, &mut a[0], &b[0], key)
|
||||
} else {
|
||||
full_adder_plain_carry_in(evaluator, &mut a[0], &b[0], true, key)
|
||||
};
|
||||
|
||||
izip!(a.iter_mut(), b.iter())
|
||||
.skip(1)
|
||||
.take(n - 3)
|
||||
.for_each(|(a_bit, b_bit)| {
|
||||
carry = full_adder(evaluator, a_bit, b_bit, &carry, key);
|
||||
});
|
||||
|
||||
let carry_last_last = full_adder(evaluator, &mut a[n - 2], &b[n - 2], &carry, key);
|
||||
let carry_last = full_adder(evaluator, &mut a[n - 1], &b[n - 1], &carry_last_last, key);
|
||||
|
||||
(carry_last, carry_last_last)
|
||||
}
|
||||
|
||||
pub(super) fn arbitrary_bit_subtractor<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &[E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
key: &E::Key,
|
||||
) -> (Vec<E::Ciphertext>, E::Ciphertext, E::Ciphertext)
|
||||
where
|
||||
E::Ciphertext: Clone,
|
||||
{
|
||||
let mut neg_b: Vec<E::Ciphertext> = b.iter().map(|v| evaluator.not(v)).collect();
|
||||
let (carry_last, carry_last_last) = arbitrary_bit_adder(evaluator, &mut neg_b, &a, true, key);
|
||||
return (neg_b, carry_last, carry_last_last);
|
||||
}
|
||||
|
||||
pub(super) fn bit_mux<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
selector: E::Ciphertext,
|
||||
if_true: &E::Ciphertext,
|
||||
if_false: &E::Ciphertext,
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
// (s&a) | ((1-s)^b)
|
||||
let not_selector = evaluator.not(&selector);
|
||||
|
||||
let s_and_a = evaluator.and(&selector, if_true, key);
|
||||
let s_and_b = evaluator.and(¬_selector, if_false, key);
|
||||
evaluator.or(&s_and_a, &s_and_b, key)
|
||||
}
|
||||
|
||||
pub(super) fn arbitrary_bit_mux<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
selector: &E::Ciphertext,
|
||||
if_true: &[E::Ciphertext],
|
||||
if_false: &[E::Ciphertext],
|
||||
key: &E::Key,
|
||||
) -> Vec<E::Ciphertext> {
|
||||
// (s&a) | ((1-s)^b)
|
||||
let not_selector = evaluator.not(&selector);
|
||||
|
||||
izip!(if_true.iter(), if_false.iter())
|
||||
.map(|(a, b)| {
|
||||
let s_and_a = evaluator.and(&selector, a, key);
|
||||
let s_and_b = evaluator.and(¬_selector, b, key);
|
||||
evaluator.or(&s_and_a, &s_and_b, key)
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
pub(super) fn eight_bit_mul<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &[E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
key: &E::Key,
|
||||
) -> Vec<E::Ciphertext> {
|
||||
assert!(a.len() == 8);
|
||||
assert!(b.len() == 8);
|
||||
let mut carries = Vec::with_capacity(7);
|
||||
let mut out = Vec::with_capacity(8);
|
||||
|
||||
for i in (0..8) {
|
||||
if i == 0 {
|
||||
let s = evaluator.and(&a[0], &b[0], key);
|
||||
out.push(s);
|
||||
} else if i == 1 {
|
||||
let mut tmp0 = evaluator.and(&a[1], &b[0], key);
|
||||
let tmp1 = evaluator.and(&a[0], &b[1], key);
|
||||
let carry = half_adder(evaluator, &mut tmp0, &tmp1, key);
|
||||
carries.push(carry);
|
||||
out.push(tmp0);
|
||||
} else {
|
||||
let mut sum = {
|
||||
let mut sum = evaluator.and(&a[i], &b[0], key);
|
||||
let tmp = evaluator.and(&a[i - 1], &b[1], key);
|
||||
carries[0] = full_adder(evaluator, &mut sum, &tmp, &carries[0], key);
|
||||
sum
|
||||
};
|
||||
|
||||
for j in 2..i {
|
||||
let tmp = evaluator.and(&a[i - j], &b[j], key);
|
||||
carries[j - 1] = full_adder(evaluator, &mut sum, &tmp, &carries[j - 1], key);
|
||||
}
|
||||
|
||||
let tmp = evaluator.and(&a[0], &b[i], key);
|
||||
let carry = half_adder(evaluator, &mut sum, &tmp, key);
|
||||
carries.push(carry);
|
||||
|
||||
out.push(sum)
|
||||
}
|
||||
debug_assert!(carries.len() <= 7);
|
||||
}
|
||||
|
||||
out
|
||||
}
|
||||
|
||||
pub(super) fn arbitrary_bit_division_for_quotient_and_rem<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &[E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
key: &E::Key,
|
||||
) -> (Vec<E::Ciphertext>, Vec<E::Ciphertext>)
|
||||
where
|
||||
E::Ciphertext: Clone,
|
||||
{
|
||||
let n = a.len();
|
||||
let neg_b = b.iter().map(|v| evaluator.not(v)).collect_vec();
|
||||
|
||||
// Both remainder and quotient are initially stored in Big-endian in contract to
|
||||
// the usual little endian we use. This is more friendly to vec pushes in
|
||||
// division. After computing remainder and quotient, we simply reverse the
|
||||
// vectors.
|
||||
let mut remainder = vec![];
|
||||
let mut quotient = vec![];
|
||||
for i in 0..n {
|
||||
// left shift
|
||||
remainder.push(a[n - 1 - i].clone());
|
||||
|
||||
let mut subtract = remainder.clone();
|
||||
|
||||
// subtraction
|
||||
// At i^th iteration remainder is only filled with i bits and the rest of the
|
||||
// bits are zero. For example, at i = 1
|
||||
// 0 0 0 0 0 0 X X => remainder
|
||||
// - Y Y Y Y Y Y Y Y => divisor .
|
||||
// --------------- .
|
||||
// Z Z Z Z Z Z Z Z => result
|
||||
// For the next iteration we only care about result if divisor is <= remainder
|
||||
// (which implies result <= remainder). Otherwise we care about remainder
|
||||
// (recall re-storing division). Hence we optimise subtraction and
|
||||
// ignore full adders for places where remainder bits are known to be false
|
||||
// bits. We instead use `ANDs` to compute the carry overs, since the
|
||||
// last carry over indicates whether the value has overflown (i.e. divisor <=
|
||||
// remainder). Last carry out is `true` if value has not overflown, otherwise
|
||||
// false.
|
||||
let mut carry =
|
||||
full_adder_plain_carry_in(evaluator, &mut subtract[i], &neg_b[0], true, key);
|
||||
for j in 1..i + 1 {
|
||||
carry = full_adder(evaluator, &mut subtract[i - j], &neg_b[j], &carry, key);
|
||||
}
|
||||
for j in i + 1..n {
|
||||
// All I care about are the carries
|
||||
evaluator.and_inplace(&mut carry, &neg_b[j], key);
|
||||
}
|
||||
|
||||
let not_carry = evaluator.not(&carry);
|
||||
// Choose `remainder` if subtraction has overflown (i.e. carry = false).
|
||||
// Otherwise choose `subtractor`.
|
||||
//
|
||||
// mux k^a | !(k)^b, where k is the selector.
|
||||
izip!(remainder.iter_mut(), subtract.iter_mut()).for_each(|(r, s)| {
|
||||
// choose `s` when carry is true, otherwise choose r
|
||||
evaluator.and_inplace(s, &carry, key);
|
||||
evaluator.and_inplace(r, ¬_carry, key);
|
||||
evaluator.or_inplace(r, s, key);
|
||||
});
|
||||
|
||||
// Set i^th MSB of quotient to 1 if carry = true, otherwise set it to 0.
|
||||
// X&1 | X&0 => X&1 => X
|
||||
quotient.push(carry);
|
||||
}
|
||||
|
||||
remainder.reverse();
|
||||
quotient.reverse();
|
||||
|
||||
(quotient, remainder)
|
||||
}
|
||||
|
||||
fn is_zero<E: BooleanGates>(evaluator: &mut E, a: &[E::Ciphertext], key: &E::Key) -> E::Ciphertext {
|
||||
let mut a = a.iter().map(|v| evaluator.not(v)).collect_vec();
|
||||
let (out, rest_a) = a.split_at_mut(1);
|
||||
rest_a.iter().for_each(|c| {
|
||||
evaluator.and_inplace(&mut out[0], c, key);
|
||||
});
|
||||
return a.remove(0);
|
||||
}
|
||||
|
||||
fn arbitrary_bit_equality<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &[E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
assert!(a.len() == b.len());
|
||||
let mut out = evaluator.and(&a[0], &b[0], key);
|
||||
izip!(a.iter(), b.iter()).skip(1).for_each(|(abit, bbit)| {
|
||||
let e = evaluator.xnor(abit, bbit, key);
|
||||
evaluator.and(&mut out, &e, key);
|
||||
});
|
||||
return out;
|
||||
}
|
||||
|
||||
/// Comaprator handle computes comparator result 2ns MSB onwards. It is
|
||||
/// separated because comparator subroutine for signed and unsgind integers
|
||||
/// differs only for 1st MSB and is common second MSB onwards
|
||||
fn _comparator_handler_from_second_msb<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &[E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
mut comp: E::Ciphertext,
|
||||
mut casc: E::Ciphertext,
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
let n = a.len();
|
||||
|
||||
// handle MSB - 1
|
||||
let mut tmp = evaluator.not(&b[n - 2]);
|
||||
evaluator.and(&mut tmp, &a[n - 2], key);
|
||||
evaluator.and(&mut tmp, &casc, key);
|
||||
evaluator.or(&mut comp, &tmp, key);
|
||||
|
||||
for i in 2..n {
|
||||
// calculate cascading bit
|
||||
let tmp_casc = evaluator.xnor(&a[n - 2 - i], &b[n - 2 - i], key);
|
||||
evaluator.and(&mut casc, &tmp_casc, key);
|
||||
|
||||
// calculate computate bit
|
||||
let mut tmp = evaluator.not(&b[n - 1 - i]);
|
||||
evaluator.and(&mut tmp, &a[n - 1 - i], key);
|
||||
evaluator.and(&mut tmp, &casc, key);
|
||||
evaluator.or(&mut comp, &tmp, key);
|
||||
}
|
||||
|
||||
return comp;
|
||||
}
|
||||
|
||||
/// Signed integer comparison is same as unsigned integer with MSB flipped.
|
||||
fn arbitrary_signed_bit_comparator<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &[E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
assert!(a.len() == b.len());
|
||||
let n = a.len();
|
||||
|
||||
// handle MSB
|
||||
let mut comp = evaluator.not(&a[n - 1]);
|
||||
evaluator.and(&mut comp, &b[n - 1], key); // comp
|
||||
let casc = evaluator.xnor(&a[n - 1], &b[n - 1], key); // casc
|
||||
|
||||
return _comparator_handler_from_second_msb(evaluator, a, b, comp, casc, key);
|
||||
}
|
||||
|
||||
fn arbitrary_bit_comparator<E: BooleanGates>(
|
||||
evaluator: &mut E,
|
||||
a: &[E::Ciphertext],
|
||||
b: &[E::Ciphertext],
|
||||
key: &E::Key,
|
||||
) -> E::Ciphertext {
|
||||
assert!(a.len() == b.len());
|
||||
let n = a.len();
|
||||
|
||||
// handle MSB
|
||||
let mut comp = evaluator.not(&b[n - 1]);
|
||||
evaluator.and(&mut comp, &a[n - 1], key);
|
||||
let casc = evaluator.xnor(&a[n - 1], &b[n - 1], key);
|
||||
|
||||
return _comparator_handler_from_second_msb(evaluator, a, b, comp, casc, key);
|
||||
}
|
||||
14
src/shortint/types.rs
Normal file
14
src/shortint/types.rs
Normal file
@@ -0,0 +1,14 @@
|
||||
#[derive(Clone)]
|
||||
pub(super) struct FheUint8<C> {
|
||||
pub(super) data: Vec<C>,
|
||||
}
|
||||
|
||||
impl<C> FheUint8<C> {
|
||||
pub(super) fn data(&self) -> &[C] {
|
||||
&self.data
|
||||
}
|
||||
|
||||
pub(super) fn data_mut(&mut self) -> &mut [C] {
|
||||
&mut self.data
|
||||
}
|
||||
}
|
||||
@@ -15,6 +15,14 @@ pub trait WithLocal {
|
||||
fn with_local_mut<F, R>(func: F) -> R
|
||||
where
|
||||
F: Fn(&mut Self) -> R;
|
||||
|
||||
fn with_local_mut_mut<F, R>(func: &mut F) -> R
|
||||
where
|
||||
F: FnMut(&mut Self) -> R;
|
||||
}
|
||||
|
||||
pub trait Global {
|
||||
fn global() -> &'static Self;
|
||||
}
|
||||
|
||||
pub fn fill_random_ternary_secret_with_hamming_weight<
|
||||
|
||||
Reference in New Issue
Block a user