Browse Source

multi-party NAND gate works

par-agg-key-shares
Janmajaya Mall 11 months ago
parent
commit
9b86d5d14c
3 changed files with 255 additions and 173 deletions
  1. +122
    -108
      src/bool/evaluator.rs
  2. +8
    -8
      src/bool/parameters.rs
  3. +125
    -57
      src/rgsw.rs

+ 122
- 108
src/bool/evaluator.rs

@ -192,7 +192,11 @@ fn aggregate_multi_party_server_key_shares<
ModOp: VectorOps<Element = M::MatElement> + ModInit<Element = M::MatElement>, ModOp: VectorOps<Element = M::MatElement> + ModInit<Element = M::MatElement>,
NttOp: Ntt<Element = M::MatElement> + NttInit<Element = M::MatElement>, NttOp: Ntt<Element = M::MatElement> + NttInit<Element = M::MatElement>,
>( >(
shares: &[CommonReferenceSeededMultiPartyServerKeyShare<M, BoolParameters<M::MatElement>, S>],
mut shares: &[CommonReferenceSeededMultiPartyServerKeyShare<
M,
BoolParameters<M::MatElement>,
S,
>],
d_rgsw_decomposer: &D, d_rgsw_decomposer: &D,
) -> SeededMultiPartyServerKey<M, S, BoolParameters<M::MatElement>> ) -> SeededMultiPartyServerKey<M, S, BoolParameters<M::MatElement>>
where where
@ -241,20 +245,26 @@ where
// rgsw ciphertext (most expensive part!) // rgsw ciphertext (most expensive part!)
let lwe_n = parameters.lwe_n; let lwe_n = parameters.lwe_n;
let mut scratch_d_plus_rgsw_by_ring = M::zeros(d_rgsw + (d_rgsw * 4), rlwe_n); let mut scratch_d_plus_rgsw_by_ring = M::zeros(d_rgsw + (d_rgsw * 4), rlwe_n);
let mut tmp_rgsw = M::zeros(d_rgsw * 2 * 2, rlwe_n);
let rgsw_cts = (0..lwe_n) let rgsw_cts = (0..lwe_n)
.into_iter() .into_iter()
.map(|index| { .map(|index| {
// copy over rgsw ciphertext for index^th secret element from first share and // copy over rgsw ciphertext for index^th secret element from first share and
// send it to evaluation domain
// treat it as accumulating rgsw ciphertext
let mut rgsw_i = shares[0].rgsw_cts[index].clone(); let mut rgsw_i = shares[0].rgsw_cts[index].clone();
rgsw_i
.iter_rows_mut()
.for_each(|ri| rlweq_nttop.forward(ri.as_mut()));
shares.iter().skip(1).for_each(|si| { shares.iter().skip(1).for_each(|si| {
// copy over si's RGSW[index] ciphertext and send to evaluation domain
izip!(tmp_rgsw.iter_rows_mut(), si.rgsw_cts[index].iter_rows()).for_each(
|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
rlweq_nttop.forward(to_ri.as_mut())
},
);
rgsw_by_rgsw_inplace( rgsw_by_rgsw_inplace(
&mut rgsw_i, &mut rgsw_i,
&si.rgsw_cts[index],
&tmp_rgsw,
d_rgsw_decomposer, d_rgsw_decomposer,
&mut scratch_d_plus_rgsw_by_ring, &mut scratch_d_plus_rgsw_by_ring,
&rlweq_nttop, &rlweq_nttop,
@ -262,10 +272,6 @@ where
); );
}); });
// send final rgsw ciphertext of secret element at index to coefficient domain
rgsw_i
.iter_rows_mut()
.for_each(|ri| rlweq_nttop.backward(ri.as_mut()));
rgsw_i rgsw_i
}) })
.collect_vec(); .collect_vec();
@ -1629,14 +1635,17 @@ impl WithLocal for PBSTracer>> {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use rand::{thread_rng, Rng};
use crate::{ use crate::{
backend::ModularOpsU64, backend::ModularOpsU64,
bool, bool,
ntt::NttBackendU64, ntt::NttBackendU64,
random::DEFAULT_RNG, random::DEFAULT_RNG,
rgsw::{ rgsw::{
self, measure_noise, secret_key_encrypt_rlwe, tests::_measure_noise_rgsw,
RgswCiphertextEvaluationDomain, SeededRgswCiphertext, SeededRlweCiphertext,
self, measure_noise, public_key_encrypt_rlwe, secret_key_encrypt_rlwe,
tests::_measure_noise_rgsw, RgswCiphertext, RgswCiphertextEvaluationDomain,
SeededRgswCiphertext, SeededRlweCiphertext,
}, },
utils::negacyclic_mul, utils::negacyclic_mul,
}; };
@ -1807,7 +1816,7 @@ mod tests {
let bool_evaluator = let bool_evaluator =
BoolEvaluator::<Vec<Vec<u64>>, u64, NttBackendU64, ModularOpsU64>::new(MP_BOOL_PARAMS); BoolEvaluator::<Vec<Vec<u64>>, u64, NttBackendU64, ModularOpsU64>::new(MP_BOOL_PARAMS);
let no_of_parties = 5;
let no_of_parties = 10;
let parties = (0..no_of_parties) let parties = (0..no_of_parties)
.map(|_| bool_evaluator.client_key()) .map(|_| bool_evaluator.client_key())
.collect_vec(); .collect_vec();
@ -1862,14 +1871,20 @@ mod tests {
} }
}; };
let lwe_q = bool_evaluator.parameters.lwe_q;
let rlwe_q = bool_evaluator.parameters.rlwe_q;
let d_rgsw = bool_evaluator.parameters.d_rgsw;
let lwe_logq = bool_evaluator.parameters.lwe_logq;
let lwe_n = bool_evaluator.parameters.lwe_n;
let rlwe_n = bool_evaluator.parameters.rlwe_n;
let lwe_modop = &bool_evaluator.lwe_modop;
let rlwe_nttop = &bool_evaluator.rlwe_nttop;
let rlwe_modop = &bool_evaluator.rlwe_modop;
let rlwe_decomposer = &bool_evaluator.decomposer_rlwe;
// test LWE ksk from RLWE -> LWE // test LWE ksk from RLWE -> LWE
if false {
let lwe_q = bool_evaluator.parameters.lwe_q;
let lwe_logq = bool_evaluator.parameters.lwe_logq;
let lwe_n = bool_evaluator.parameters.lwe_n;
let rlwe_n = bool_evaluator.parameters.rlwe_n;
if true {
let logp = 2; let logp = 2;
let lwe_modop = &bool_evaluator.lwe_modop;
let mut rng = DefaultSecureRng::new(); let mut rng = DefaultSecureRng::new();
let m = 1; let m = 1;
@ -1911,15 +1926,13 @@ mod tests {
println!("Noise: {noise}"); println!("Noise: {noise}");
} }
{
let rlwe_n = bool_evaluator.parameters.rlwe_n;
let rlwe_q = bool_evaluator.parameters.rlwe_q;
// Measure noise in RGSW ciphertexts of ideal LWE secrets
if false {
let gadget_vec = gadget_vector( let gadget_vec = gadget_vector(
bool_evaluator.parameters.rlwe_logq, bool_evaluator.parameters.rlwe_logq,
bool_evaluator.parameters.logb_rgsw, bool_evaluator.parameters.logb_rgsw,
bool_evaluator.parameters.d_rgsw, bool_evaluator.parameters.d_rgsw,
); );
let rlwe_nttop = &bool_evaluator.rlwe_nttop;
for i in 0..20 { for i in 0..20 {
// measure noise in RGSW(s[i]) // measure noise in RGSW(s[i])
@ -1937,7 +1950,7 @@ mod tests {
.for_each(|ri| rlwe_nttop.backward(ri.as_mut())); .for_each(|ri| rlwe_nttop.backward(ri.as_mut()));
println!("####### Noise in RGSW(X^s_{i}) #######"); println!("####### Noise in RGSW(X^s_{i}) #######");
let noise = _measure_noise_rgsw(
_measure_noise_rgsw(
&rgsw_si, &rgsw_si,
&si_poly, &si_poly,
ideal_client_key.sk_rlwe.values(), ideal_client_key.sk_rlwe.values(),
@ -1948,106 +1961,107 @@ mod tests {
} }
} }
// measure noise grwoth in RLWExRGSW
if false { if false {
let rlwe_q = bool_evaluator.parameters.rlwe_q;
let rlwe_n = bool_evaluator.parameters.rlwe_n;
let logp = 3;
let p = 1 << logp;
let rlwe_modop = &bool_evaluator.rlwe_modop;
let rlwe_nttop = &bool_evaluator.rlwe_nttop;
let d_rgsw = bool_evaluator.parameters.d_rgsw;
let mut rng = DefaultSecureRng::new(); let mut rng = DefaultSecureRng::new();
let mut m = vec![0u64; rlwe_n];
RandomUniformDist::random_fill(&mut rng, &p, m.as_mut_slice());
let mut carry_m = vec![0u64; rlwe_n];
RandomUniformDist::random_fill(&mut rng, &rlwe_q, carry_m.as_mut_slice());
// Encode message m
let encoded_m = m
.iter()
.map(|el| ((*el as f64 * rlwe_q as f64) / (p as f64)).round() as u64)
.collect_vec();
// RGSW(carrym)
let trivial_rlwect = vec![vec![0u64; rlwe_n], carry_m.clone()];
let mut rlwe_ct = RlweCiphertext::<_, DefaultSecureRng>::from_raw(trivial_rlwect, true);
// Encrypt encoded m -> RLWE(m)
let mut rlwe_seed = [0u8; 32];
rng.fill_bytes(&mut rlwe_seed);
let mut seeded_rlwe_ct = SeededRlweCiphertext::empty(rlwe_n, rlwe_seed, rlwe_q);
let mut rlwe_prng = DefaultSecureRng::new_seeded(rlwe_seed);
secret_key_encrypt_rlwe(
&encoded_m,
&mut seeded_rlwe_ct.data,
ideal_client_key.sk_rlwe.values(),
rlwe_modop,
rlwe_nttop,
&mut rlwe_prng,
&mut rng,
);
// public_key_encrypt_rgsw(out_rgsw, m, public_key, gadget_vector, mod_op,
// ntt_op, rng);
let mut rlwe_ct =
RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_ct);
for index in 0..200 {
// RLWE(m*X^{s[i]}) = RLWE(m) x RGSW(X^{s[i]})
let mut scratch_matrix_dplus2_ring = vec![vec![0u64; rlwe_n]; d_rgsw + 2];
let rlwe_decomposer = &bool_evaluator.decomposer_rlwe;
let mut scratch_matrix_dplus2_ring = vec![vec![0u64; rlwe_n]; d_rgsw + 2];
let mul_mod =
|v0: &u64, v1: &u64| (((*v0 as u128 * *v1 as u128) % (rlwe_q as u128)) as u64);
for i in 0..450 {
rlwe_by_rgsw( rlwe_by_rgsw(
&mut rlwe_ct, &mut rlwe_ct,
server_key_eval.rgsw_ct_lwe_si(index),
// &rgsw_ct.data,
server_key_eval.rgsw_ct_lwe_si(i),
&mut scratch_matrix_dplus2_ring, &mut scratch_matrix_dplus2_ring,
rlwe_decomposer, rlwe_decomposer,
rlwe_nttop, rlwe_nttop,
rlwe_modop, rlwe_modop,
); );
// decrypt RLWE(m*X^{s[i]}) to get encoded m[X]*X^{s[i]}
let mut encoded_m_back = vec![0u64; rlwe_n];
decrypt_rlwe(
// carry_m[X] * s_i[X]
let si = ideal_client_key.sk_lwe.values[i];
let mut si_poly = vec![0u64; rlwe_n];
if si < 0 {
si_poly[rlwe_n - (si.abs() as usize)] = rlwe_q - 1;
} else {
si_poly[(si.abs() as usize)] = 1;
}
carry_m = negacyclic_mul(&carry_m, &si_poly, mul_mod, rlwe_q);
let noise = measure_noise(
&rlwe_ct, &rlwe_ct,
ideal_client_key.sk_rlwe.values(),
&mut encoded_m_back,
&carry_m,
rlwe_nttop, rlwe_nttop,
rlwe_modop, rlwe_modop,
ideal_client_key.sk_rlwe.values(),
); );
let m_back = encoded_m_back
.iter()
.map(|el| (((*el as f64 * p as f64) / (rlwe_q as f64)).round() as u64) % p)
.collect_vec();
// calculate m[X]X^{s[i]} in plain
let mut si_poly = vec![0u64; rlwe_n];
// dbg!(ideal_client_key.sk_lwe.values());
let secret_el_i = ideal_client_key.sk_lwe.values[index];
dbg!(secret_el_i);
if secret_el_i < 0 {
si_poly[rlwe_n - secret_el_i.abs() as usize] = p - 1;
} else {
si_poly[secret_el_i.abs() as usize] = 1;
}
let mul = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % p as u128) as u64;
let expected_m = negacyclic_mul(&m, &si_poly, mul, p);
println!("Noise RLWE(carry_m) accumulating {i}^th secret monomial: {noise}");
}
}
// measure noise
{
let encoded_m_ideal = expected_m
.iter()
.map(|el| ((*el as f64 * rlwe_q as f64) / (p as f64)).round() as u64)
.collect_vec();
let noise = measure_noise(
&rlwe_ct,
&encoded_m_ideal,
rlwe_nttop,
// Check galois keys
if false {
let g = bool_evaluator.g() as isize;
let mut rng = DefaultSecureRng::new();
let mut scratch_matrix_dplus2_ring = vec![vec![0u64; rlwe_n]; d_rgsw + 2];
for i in [g, -g] {
let mut m = vec![0u64; rlwe_n];
RandomUniformDist::random_fill(&mut rng, &rlwe_q, m.as_mut_slice());
let mut rlwe_ct = {
let mut data = vec![vec![0u64; rlwe_n]; 2];
public_key_encrypt_rlwe(
&mut data,
&collective_pk.key,
&m,
rlwe_modop, rlwe_modop,
ideal_client_key.sk_rlwe.values(),
rlwe_nttop,
&mut rng,
); );
println!("Noise RLWE(m X^s_{index}) = RLWE(m) x RGSW(X^s_{index}): {noise}")
}
// println!("M:{:?}", m);
// assert_eq!(expected_m, m_back);
RlweCiphertext::<_, DefaultSecureRng>::from_raw(data, false)
};
let auto_key = server_key_eval.galois_key_for_auto(i);
let (auto_map_index, auto_map_sign) = generate_auto_map(rlwe_n, i);
galois_auto(
&mut rlwe_ct,
auto_key,
&mut scratch_matrix_dplus2_ring,
&auto_map_index,
&auto_map_sign,
rlwe_modop,
rlwe_nttop,
rlwe_decomposer,
);
// send m(X) -> m(X^i)
let mut m_k = vec![0u64; rlwe_n];
izip!(m.iter(), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|(mi, to_index, to_sign)| {
if !to_sign {
m_k[*to_index] = rlwe_q - *mi;
} else {
m_k[*to_index] = *mi;
}
},
);
// measure noise
let noise = measure_noise(
&rlwe_ct,
&m_k,
rlwe_nttop,
rlwe_modop,
ideal_client_key.sk_rlwe.values(),
);
// println!("M_back:{:?} \n Expected_m:{:?}", m_back,
// expected_m);
println!("Noise after auto k={i}: {noise}");
} }
} }
} }
@ -2122,7 +2136,7 @@ mod tests {
let mut m0 = true; let mut m0 = true;
let mut m1 = false; let mut m1 = false;
for _ in 0..100 {
for _ in 0..500 {
let lwe0 = bool_evaluator.pk_encrypt(&collective_pk.key, m0); let lwe0 = bool_evaluator.pk_encrypt(&collective_pk.key, m0);
let lwe1 = bool_evaluator.pk_encrypt(&collective_pk.key, m1); let lwe1 = bool_evaluator.pk_encrypt(&collective_pk.key, m1);
@ -2168,11 +2182,11 @@ mod tests {
.collect_vec(); .collect_vec();
let m_back = bool_evaluator.multi_party_decrypt(&decryption_shares, &lwe_out); let m_back = bool_evaluator.multi_party_decrypt(&decryption_shares, &lwe_out);
let m_back = bool_evaluator.sk_decrypt(&lwe_out, &ideal_client_key);
// let m_back = bool_evaluator.sk_decrypt(&lwe_out, &ideal_client_key);
dbg!(m_expected, m_back);
assert_eq!(m_expected, m_back);
m1 = m0; m1 = m0;
m0 = m_back;
m0 = m_expected;
} }
} }
} }

+ 8
- 8
src/bool/parameters.rs

@ -28,10 +28,10 @@ pub(super) const SP_BOOL_PARAMS: BoolParameters = BoolParameters:: {
lwe_logq: 16, lwe_logq: 16,
br_q: 1 << 10, br_q: 1 << 10,
rlwe_n: 1 << 10, rlwe_n: 1 << 10,
lwe_n: 200,
d_rgsw: 3,
logb_rgsw: 8,
d_lwe: 3,
lwe_n: 493,
d_rgsw: 4,
logb_rgsw: 7,
d_lwe: 4,
logb_lwe: 4, logb_lwe: 4,
g: 5, g: 5,
w: 1, w: 1,
@ -40,15 +40,15 @@ pub(super) const SP_BOOL_PARAMS: BoolParameters = BoolParameters:: {
pub(super) const MP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> { pub(super) const MP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
rlwe_q: 1152921504606830593, rlwe_q: 1152921504606830593,
rlwe_logq: 60, rlwe_logq: 60,
lwe_q: 1 << 25,
lwe_logq: 25,
br_q: 1 << 11,
lwe_q: 1 << 20,
lwe_logq: 20,
br_q: 1 << 12,
rlwe_n: 1 << 11, rlwe_n: 1 << 11,
lwe_n: 500, lwe_n: 500,
d_rgsw: 10, d_rgsw: 10,
logb_rgsw: 6, logb_rgsw: 6,
d_lwe: 5, d_lwe: 5,
logb_lwe: 5,
logb_lwe: 4,
g: 5, g: 5,
w: 1, w: 1,
}; };

+ 125
- 57
src/rgsw.rs

@ -6,7 +6,7 @@ use std::{
}; };
use itertools::{izip, Itertools}; use itertools::{izip, Itertools};
use num_traits::{PrimInt, ToPrimitive, Zero};
use num_traits::{PrimInt, Signed, ToPrimitive, Zero};
use crate::{ use crate::{
backend::{ArithmeticOps, VectorOps}, backend::{ArithmeticOps, VectorOps},
@ -103,7 +103,7 @@ where
} }
impl<M: Matrix + MatrixEntity, S> SeededRgswCiphertext<M, S> { impl<M: Matrix + MatrixEntity, S> SeededRgswCiphertext<M, S> {
fn from_raw(data: M, seed: S, modulus: M::MatElement) -> SeededRgswCiphertext<M, S> {
pub(crate) fn from_raw(data: M, seed: S, modulus: M::MatElement) -> SeededRgswCiphertext<M, S> {
assert!(data.dimension().0 % 3 == 0); assert!(data.dimension().0 % 3 == 0);
SeededRgswCiphertext { SeededRgswCiphertext {
@ -814,11 +814,22 @@ pub(crate) fn rlwe_by_rgsw<
rlwe_in.set_not_trivial(); rlwe_in.set_not_trivial();
} }
/// Inplace mutates rlwe_0_eval_domain to equal RGSW(m0m1) = RGSW(m0)xRGSW(m1)
/// Inplace mutates rlwe_0 to equal RGSW(m0m1) = RGSW(m0)xRGSW(m1)
/// in evaluation domain /// in evaluation domain
/// ///
/// - rgsw_0_eval_domain: RGSW(m0) in evaluation domain
/// - rgsw_1: RGSW(m1)
/// Warning -
/// Pass a fresh RGSW ciphertext as the second operand, i.e. as `rgsw_1`.
/// This is to assure minimal error growth in the resulting RGSW ciphertext.
/// RGSWxRGSW boils down to d_rgsw*2 RLWExRGSW multiplications. Hence, the noise
/// growth in resulting ciphertext depends on the norm of second RGSW
/// ciphertext, not the first. This is useful in cases where one is accumulating
/// multiple RGSW ciphertexts into 1. In which case, pass the accumulating RGSW
/// ciphertext as rlwe_0 (the one with higher noise) and subsequent RGSW
/// ciphertexts, with lower noise, to be accumulated as second
/// operand.
///
/// - rgsw_0: RGSW(m0)
/// - rgsw_1_eval: RGSW(m1) in Evaluation domain
/// - scratch_matrix_d_plus_rgsw_by_ring: scratch space matrix of size /// - scratch_matrix_d_plus_rgsw_by_ring: scratch space matrix of size
/// (d+(d*4))xring_size, where d equals d_rgsw /// (d+(d*4))xring_size, where d equals d_rgsw
pub(crate) fn rgsw_by_rgsw_inplace< pub(crate) fn rgsw_by_rgsw_inplace<
@ -827,8 +838,8 @@ pub(crate) fn rgsw_by_rgsw_inplace<
ModOp: VectorOps<Element = Mmut::MatElement>, ModOp: VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>, NttOp: Ntt<Element = Mmut::MatElement>,
>( >(
rgsw_0_eval_domain: &mut Mmut,
rgsw_1: &Mmut,
rgsw_0: &mut Mmut,
rgsw_1_eval: &Mmut,
decomposer: &D, decomposer: &D,
scratch_matrix_d_plus_rgsw_by_ring: &mut Mmut, scratch_matrix_d_plus_rgsw_by_ring: &mut Mmut,
ntt_op: &NttOp, ntt_op: &NttOp,
@ -838,9 +849,9 @@ pub(crate) fn rgsw_by_rgsw_inplace<
Mmut::MatElement: Copy + Zero, Mmut::MatElement: Copy + Zero,
{ {
let d_rgsw = decomposer.d(); let d_rgsw = decomposer.d();
assert!(rgsw_0_eval_domain.dimension().0 == 4 * d_rgsw);
let ring_size = rgsw_0_eval_domain.dimension().1;
assert!(rgsw_1.dimension() == (4 * d_rgsw, ring_size));
assert!(rgsw_0.dimension().0 == 4 * d_rgsw);
let ring_size = rgsw_0.dimension().1;
assert!(rgsw_1_eval.dimension() == (4 * d_rgsw, ring_size));
assert!(scratch_matrix_d_plus_rgsw_by_ring.dimension() == (d_rgsw + (d_rgsw * 4), ring_size)); assert!(scratch_matrix_d_plus_rgsw_by_ring.dimension() == (d_rgsw + (d_rgsw * 4), ring_size));
let (decomp_r_space, rgsw_space) = scratch_matrix_d_plus_rgsw_by_ring.split_at_row_mut(d_rgsw); let (decomp_r_space, rgsw_space) = scratch_matrix_d_plus_rgsw_by_ring.split_at_row_mut(d_rgsw);
@ -854,19 +865,19 @@ pub(crate) fn rgsw_by_rgsw_inplace<
rlwe_dash_space_nsm.split_at_mut(d_rgsw); rlwe_dash_space_nsm.split_at_mut(d_rgsw);
let (rlwe_dash_space_m_parta, rlwe_dash_space_m_partb) = rlwe_dash_space_m.split_at_mut(d_rgsw); let (rlwe_dash_space_m_parta, rlwe_dash_space_m_partb) = rlwe_dash_space_m.split_at_mut(d_rgsw);
let (rgsw0_nsm, rgsw0_m) = rgsw_0_eval_domain.split_at_row(d_rgsw * 2);
let (rgsw1_nsm, rgsw1_m) = rgsw_1.split_at_row(d_rgsw * 2);
let (rgsw0_nsm, rgsw0_m) = rgsw_0.split_at_row(d_rgsw * 2);
let (rgsw1_nsm, rgsw1_m) = rgsw_1_eval.split_at_row(d_rgsw * 2);
// RGSW x RGSW // RGSW x RGSW
izip!( izip!(
rgsw1_nsm
rgsw0_nsm
.iter() .iter()
.take(d_rgsw) .take(d_rgsw)
.chain(rgsw1_m.iter().take(d_rgsw)),
rgsw1_nsm
.chain(rgsw0_m.iter().take(d_rgsw)),
rgsw0_nsm
.iter() .iter()
.skip(d_rgsw) .skip(d_rgsw)
.chain(rgsw1_m.iter().skip(d_rgsw)),
.chain(rgsw0_m.iter().skip(d_rgsw)),
rlwe_dash_space_nsm_parta rlwe_dash_space_nsm_parta
.iter_mut() .iter_mut()
.chain(rlwe_dash_space_m_parta.iter_mut()), .chain(rlwe_dash_space_m_parta.iter_mut()),
@ -883,13 +894,13 @@ pub(crate) fn rgsw_by_rgsw_inplace<
routine( routine(
rlwe_out_a.as_mut(), rlwe_out_a.as_mut(),
decomp_r_space, decomp_r_space,
&rgsw0_nsm[..d_rgsw],
&rgsw1_nsm[..d_rgsw],
mod_op, mod_op,
); );
routine( routine(
rlwe_out_b.as_mut(), rlwe_out_b.as_mut(),
decomp_r_space, decomp_r_space,
&rgsw0_nsm[d_rgsw..],
&rgsw1_nsm[d_rgsw..],
mod_op, mod_op,
); );
@ -901,20 +912,25 @@ pub(crate) fn rgsw_by_rgsw_inplace<
routine( routine(
rlwe_out_a.as_mut(), rlwe_out_a.as_mut(),
decomp_r_space, decomp_r_space,
&rgsw0_m[..d_rgsw],
&rgsw1_m[..d_rgsw],
mod_op, mod_op,
); );
routine( routine(
rlwe_out_b.as_mut(), rlwe_out_b.as_mut(),
decomp_r_space, decomp_r_space,
&rgsw0_m[d_rgsw..],
&rgsw1_m[d_rgsw..],
mod_op, mod_op,
); );
}); });
// copy over RGSW(m0m1) into RGSW(m0) // copy over RGSW(m0m1) into RGSW(m0)
izip!(rgsw_0_eval_domain.iter_rows_mut(), rgsw_space.iter())
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()))
izip!(rgsw_0.iter_rows_mut(), rgsw_space.iter())
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// send back to coefficient domain
rgsw_0
.iter_rows_mut()
.for_each(|ri| ntt_op.backward(ri.as_mut()));
} }
/// Encrypts message m as a RGSW ciphertext. /// Encrypts message m as a RGSW ciphertext.
@ -1182,6 +1198,66 @@ pub(crate) fn secret_key_encrypt_rlwe<
mod_op.elwise_add_mut(b_rlwe_out.as_mut(), sa.as_ref()); mod_op.elwise_add_mut(b_rlwe_out.as_mut(), sa.as_ref());
} }
pub(crate) fn public_key_encrypt_rlwe<
M: MatrixMut,
ModOp: VectorOps<Element = M::MatElement>,
NttOp: Ntt<Element = M::MatElement>,
S,
R: RandomGaussianDist<[M::MatElement], Parameters = M::MatElement>
+ RandomUniformDist<[M::MatElement], Parameters = M::MatElement>
+ RandomUniformDist<[u8], Parameters = u8>
+ RandomUniformDist<usize, Parameters = usize>,
>(
rlwe_out: &mut M,
pk: &M,
m: &[M::MatElement],
mod_op: &ModOp,
ntt_op: &NttOp,
rng: &mut R,
) where
<M as Matrix>::R: RowMut + TryConvertFrom<[S], Parameters = M::MatElement> + RowEntity,
M::MatElement: Copy,
S: Zero + Signed + Copy,
{
let ring_size = m.len();
assert!(rlwe_out.dimension() == (2, ring_size));
let q = mod_op.modulus();
let mut u = vec![S::zero(); ring_size];
fill_random_ternary_secret_with_hamming_weight(u.as_mut(), ring_size >> 1, rng);
let mut u = M::R::try_convert_from(&u, &q);
ntt_op.forward(u.as_mut());
let mut ua = M::R::zeros(ring_size);
ua.as_mut().copy_from_slice(pk.get_row_slice(0));
let mut ub = M::R::zeros(ring_size);
ub.as_mut().copy_from_slice(pk.get_row_slice(1));
// a*u
ntt_op.forward(ua.as_mut());
mod_op.elwise_mul_mut(ua.as_mut(), u.as_ref());
ntt_op.backward(ua.as_mut());
// b*u
ntt_op.forward(ub.as_mut());
mod_op.elwise_mul_mut(ub.as_mut(), u.as_ref());
ntt_op.backward(ub.as_mut());
// sample error
rlwe_out.iter_rows_mut().for_each(|ri| {
RandomGaussianDist::random_fill(rng, &q, ri.as_mut());
});
// a*u + e0
mod_op.elwise_add_mut(rlwe_out.get_row_mut(0), ua.as_ref());
// b*u + e1
mod_op.elwise_add_mut(rlwe_out.get_row_mut(1), ub.as_ref());
// b*u + e1 + m
mod_op.elwise_add_mut(rlwe_out.get_row_mut(1), m);
}
/// Generates RLWE public key /// Generates RLWE public key
pub(crate) fn gen_rlwe_public_key< pub(crate) fn gen_rlwe_public_key<
Ro: RowMut + RowEntity, Ro: RowMut + RowEntity,
@ -1778,19 +1854,20 @@ pub(crate) mod tests {
carry_m[thread_rng().gen_range(0..ring_size) as usize] = 1; carry_m[thread_rng().gen_range(0..ring_size) as usize] = 1;
// RGSW(carry_m) // RGSW(carry_m)
let rgsw_carrym = _pk_encrypt_rgsw(&carry_m, &public_key, &gadget_vector, &mod_op, &ntt_op);
let mut rgsw_carrym = let mut rgsw_carrym =
RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
&rgsw_carrym,
);
_pk_encrypt_rgsw(&carry_m, &public_key, &gadget_vector, &mod_op, &ntt_op);
let mut scratch_matrix_d_plus_rgsw_by_ring = let mut scratch_matrix_d_plus_rgsw_by_ring =
vec![vec![0u64; ring_size as usize]; d_rgsw + (d_rgsw * 4)]; vec![vec![0u64; ring_size as usize]; d_rgsw + (d_rgsw * 4)];
for i in 0..10 {
for i in 0..100 {
let mut m = vec![0u64; ring_size as usize]; let mut m = vec![0u64; ring_size as usize];
m[thread_rng().gen_range(0..ring_size) as usize] = q - 1; m[thread_rng().gen_range(0..ring_size) as usize] = q - 1;
let rgsw_m = _pk_encrypt_rgsw(&m, &public_key, &gadget_vector, &mod_op, &ntt_op);
let rgsw_m = {
RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
&_pk_encrypt_rgsw(&m, &public_key, &gadget_vector, &mod_op, &ntt_op),
)
};
rgsw_by_rgsw_inplace( rgsw_by_rgsw_inplace(
&mut rgsw_carrym.data, &mut rgsw_carrym.data,
@ -1805,23 +1882,19 @@ pub(crate) mod tests {
let mul_mod = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % q as u128) as u64; let mul_mod = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % q as u128) as u64;
carry_m = negacyclic_mul(&carry_m, &m, mul_mod, q); carry_m = negacyclic_mul(&carry_m, &m, mul_mod, q);
println!("########### Noise RGSW(carrym) in {i}^th loop ###########"); println!("########### Noise RGSW(carrym) in {i}^th loop ###########");
let mut rgsw_carrym_clone = rgsw_carrym.data.clone();
rgsw_carrym_clone
.iter_mut()
.for_each(|ri| ntt_op.backward(ri.as_mut()));
_measure_noise_rgsw(&rgsw_carrym_clone, &carry_m, s.values(), &gadget_vector, q);
_measure_noise_rgsw(&rgsw_carrym.data, &carry_m, s.values(), &gadget_vector, q);
} }
} }
#[test] #[test]
fn sk_rgsw_by_rgsw() { fn sk_rgsw_by_rgsw() {
let logq = 60;
let logq = 31;
let logp = 2; let logp = 2;
let ring_size = 1 << 11;
let ring_size = 1 << 10;
let q = generate_prime(logq, ring_size, 1u64 << logq).unwrap(); let q = generate_prime(logq, ring_size, 1u64 << logq).unwrap();
let p = 1u64 << logp; let p = 1u64 << logp;
let d_rgsw = 15;
let logb = 4;
let d_rgsw = 4;
let logb = 7;
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize); let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
@ -1830,32 +1903,32 @@ pub(crate) mod tests {
let mod_op = ModularOpsU64::new(q); let mod_op = ModularOpsU64::new(q);
let gadget_vector = gadget_vector(logq, logb, d_rgsw); let gadget_vector = gadget_vector(logq, logb, d_rgsw);
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw); let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
let mul_mod = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % q as u128) as u64;
let mut carry_m = vec![0u64; ring_size as usize]; let mut carry_m = vec![0u64; ring_size as usize];
carry_m[thread_rng().gen_range(0..ring_size) as usize] = 1; carry_m[thread_rng().gen_range(0..ring_size) as usize] = 1;
// RGSW(carry_m) // RGSW(carry_m)
let mut rgsw_carrym =
_sk_encrypt_rgsw(&carry_m, s.values(), &gadget_vector, &mod_op, &ntt_op);
let mut rgsw_carrym = {
let mut rgsw_eval =
_sk_encrypt_rgsw(&carry_m, s.values(), &gadget_vector, &mod_op, &ntt_op);
rgsw_eval
.data
.iter_mut()
.for_each(|ri| ntt_op.backward(ri.as_mut()));
rgsw_eval.data
};
let mut scratch_matrix_d_plus_rgsw_by_ring = let mut scratch_matrix_d_plus_rgsw_by_ring =
vec![vec![0u64; ring_size as usize]; d_rgsw + (d_rgsw * 4)]; vec![vec![0u64; ring_size as usize]; d_rgsw + (d_rgsw * 4)];
for i in 0..1 {
for i in 0..1000 {
let mut m = vec![0u64; ring_size as usize]; let mut m = vec![0u64; ring_size as usize];
m[thread_rng().gen_range(0..ring_size) as usize] = if (i & 1) == 1 { q - 1 } else { 1 }; m[thread_rng().gen_range(0..ring_size) as usize] = if (i & 1) == 1 { q - 1 } else { 1 };
let rgsw_m = {
let mut rgsw_eval =
_sk_encrypt_rgsw(&m, s.values(), &gadget_vector, &mod_op, &ntt_op).data;
rgsw_eval
.iter_mut()
.for_each(|ri| ntt_op.backward(ri.as_mut()));
rgsw_eval
};
let rgsw_m = _sk_encrypt_rgsw(&m, s.values(), &gadget_vector, &mod_op, &ntt_op);
rgsw_by_rgsw_inplace( rgsw_by_rgsw_inplace(
&mut rgsw_carrym.data,
&rgsw_m,
&mut rgsw_carrym,
&rgsw_m.data,
&decomposer, &decomposer,
&mut scratch_matrix_d_plus_rgsw_by_ring, &mut scratch_matrix_d_plus_rgsw_by_ring,
&ntt_op, &ntt_op,
@ -1863,14 +1936,9 @@ pub(crate) mod tests {
); );
// measure noise // measure noise
let mul_mod = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % q as u128) as u64;
carry_m = negacyclic_mul(&carry_m, &m, mul_mod, q); carry_m = negacyclic_mul(&carry_m, &m, mul_mod, q);
println!("########### Noise RGSW(carrym) in {i}^th loop ###########"); println!("########### Noise RGSW(carrym) in {i}^th loop ###########");
let mut rgsw_carrym_clone = rgsw_carrym.data.clone();
rgsw_carrym_clone
.iter_mut()
.for_each(|ri| ntt_op.backward(ri.as_mut()));
_measure_noise_rgsw(&rgsw_carrym_clone, &carry_m, s.values(), &gadget_vector, q);
_measure_noise_rgsw(&rgsw_carrym, &carry_m, s.values(), &gadget_vector, q);
} }
} }

Loading…
Cancel
Save