@ -0,0 +1,145 @@ |
|||
use bin_rs::*;
|
|||
use itertools::Itertools;
|
|||
use rand::{thread_rng, RngCore};
|
|||
|
|||
struct Location<T>(T, T);
|
|||
|
|||
impl<T> Location<T> {
|
|||
fn new(x: T, y: T) -> Self {
|
|||
Location(x, y)
|
|||
}
|
|||
|
|||
fn x(&self) -> &T {
|
|||
&self.0
|
|||
}
|
|||
fn y(&self) -> &T {
|
|||
&self.1
|
|||
}
|
|||
}
|
|||
|
|||
fn should_meet(a: &Location<u8>, b: &Location<u8>, b_threshold: &u8) -> bool {
|
|||
let diff_x = a.x() - b.x();
|
|||
let diff_y = a.y() - b.y();
|
|||
let d_sq = &(&diff_x * &diff_x) + &(&diff_y * &diff_y);
|
|||
|
|||
d_sq.le(b_threshold)
|
|||
}
|
|||
|
|||
/// Calculates distance square between a's and b's location. Returns a boolean
|
|||
/// indicating whether diatance sqaure is <= `b_threshold`.
|
|||
fn should_meet_fhe(
|
|||
a: &Location<FheUint8>,
|
|||
b: &Location<FheUint8>,
|
|||
b_threshold: &FheUint8,
|
|||
) -> FheBool {
|
|||
let diff_x = a.x() - b.x();
|
|||
let diff_y = a.y() - b.y();
|
|||
let d_sq = &(&diff_x * &diff_x) + &(&diff_y * &diff_y);
|
|||
|
|||
d_sq.le(b_threshold)
|
|||
}
|
|||
|
|||
// Even wondered who are the long distance friends (friends of friends or
|
|||
// friends of friends of friends...) that live nearby ? But how do you find
|
|||
// them? Surely no-one will simply reveal their exact location just because
|
|||
// there's a slight chance that a long distance friend lives nearby.
|
|||
//
|
|||
// Here we write a simple application with two users `a` and `b`. User `a` wants
|
|||
// to find (long distance) friends that live in their neighbourhood. User `b` is
|
|||
// open to meeting new friends within some distance of their location. Both user
|
|||
// `a` and `b` encrypt their location and upload to the server. User `b` also
|
|||
// encrypts the distance square threshold within which they are interested in
|
|||
// meeting new friends. The server calculates the square of the distance between
|
|||
// user a's location and user b's location and returns encrypted boolean output
|
|||
// indicating whether square of distance is <= user b's supplied distance square
|
|||
// threshold. User `a` then comes online, downloads output ciphertext, produces
|
|||
// their decryption share for user `b`, and uploads the decryption share to the
|
|||
// server. User `b` comes online, downloads output ciphertext and user a's
|
|||
// decryption share, produces their own decryption share, and then decrypts the
|
|||
// encrypted boolean output. If the output is `True`, it indicates
|
|||
// user `a` is within the distance square threshold defined by user `b`.
|
|||
fn main() {
|
|||
set_parameter_set(ParameterSelector::NonInteractiveLTE2Party);
|
|||
|
|||
// set application's common reference seed
|
|||
let mut seed = [0u8; 32];
|
|||
thread_rng().fill_bytes(&mut seed);
|
|||
set_common_reference_seed(seed);
|
|||
|
|||
let no_of_parties = 2;
|
|||
|
|||
// Client Side //
|
|||
|
|||
// Generate client keys
|
|||
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
|
|||
|
|||
// We assign id 0 to client 0 and id 1 to client 1
|
|||
let a_id = 0;
|
|||
let b_id = 1;
|
|||
let user_a_secret = &cks[0];
|
|||
let user_b_secret = &cks[1];
|
|||
|
|||
// User a and b generate server key shares
|
|||
let a_server_key_share = gen_server_key_share(a_id, no_of_parties, user_a_secret);
|
|||
let b_server_key_share = gen_server_key_share(b_id, no_of_parties, user_b_secret);
|
|||
|
|||
// User a and b encrypt their locations
|
|||
let user_a_secret = &cks[0];
|
|||
let user_a_location = Location::new(50, 60);
|
|||
let user_a_enc =
|
|||
user_a_secret.encrypt(vec![*user_a_location.x(), *user_a_location.y()].as_slice());
|
|||
|
|||
let user_b_location = Location::new(50, 60);
|
|||
// User b also encrypts the distance sq threshold
|
|||
let user_b_threshold = 20;
|
|||
let user_b_enc = user_b_secret
|
|||
.encrypt(vec![*user_b_location.x(), *user_b_location.y(), user_b_threshold].as_slice());
|
|||
|
|||
// Server Side //
|
|||
|
|||
// Both user a and b upload their private inputs and server key shares to
|
|||
// the server in one shot message
|
|||
let server_key = aggregate_server_key_shares(&vec![a_server_key_share, b_server_key_share]);
|
|||
server_key.set_server_key();
|
|||
|
|||
// Server parses private inputs from user a and b
|
|||
let user_a_location_enc = {
|
|||
let c = user_a_enc.unseed::<Vec<Vec<u64>>>().key_switch(0);
|
|||
Location::new(c.extract(0), c.extract(1))
|
|||
};
|
|||
let (user_b_location_enc, user_b_threshold_enc) = {
|
|||
let c = user_b_enc.unseed::<Vec<Vec<u64>>>().key_switch(1);
|
|||
(Location::new(c.extract(0), c.extract(1)), c.extract(2))
|
|||
};
|
|||
|
|||
// run the circuit
|
|||
let out_c = should_meet_fhe(
|
|||
&user_a_location_enc,
|
|||
&user_b_location_enc,
|
|||
&user_b_threshold_enc,
|
|||
);
|
|||
|
|||
// Client Side //
|
|||
|
|||
// user a comes online, downloads out_c, produces a decryption share, and
|
|||
// uploads the decryption share to the server.
|
|||
let a_dec_share = user_a_secret.gen_decryption_share(&out_c);
|
|||
|
|||
// user b comes online downloads user a's decryption share, generates their
|
|||
// own decryption share, decrypts the output ciphertext. If the output is
|
|||
// True, they contact user a to meet.
|
|||
let b_dec_share = user_b_secret.gen_decryption_share(&out_c);
|
|||
let out_bool =
|
|||
user_b_secret.aggregate_decryption_shares(&out_c, &vec![b_dec_share, a_dec_share]);
|
|||
|
|||
assert_eq!(
|
|||
out_bool,
|
|||
should_meet(&user_a_location, &user_b_location, &user_b_threshold)
|
|||
);
|
|||
|
|||
if out_bool {
|
|||
println!("A lives nearby. B should meet A.");
|
|||
} else {
|
|||
println!("A lives too far away!")
|
|||
}
|
|||
}
|