Browse Source

add meeting long distance friends example

par-agg-key-shares
Janmajaya Mall 9 months ago
parent
commit
c5a28bd7b3
6 changed files with 193 additions and 15 deletions
  1. +6
    -0
      Cargo.toml
  2. +145
    -0
      examples/meeting_friends.rs
  3. +1
    -1
      src/lib.rs
  4. +25
    -0
      src/shortint/enc_dec.rs
  5. +16
    -14
      src/shortint/mod.rs
  6. +0
    -0
      src/shortint/types.rs

+ 6
- 0
Cargo.toml

@ -33,4 +33,10 @@ path = "./examples/interactive_fheuint8.rs"
[[example]]
name = "non_interactive_fheuint8"
path = "./examples/non_interactive_fheuint8.rs"
required-features = ["non_interactive_mp"]
[[example]]
name = "meeting_friends"
path = "./examples/meeting_friends.rs"
required-features = ["non_interactive_mp"]

+ 145
- 0
examples/meeting_friends.rs

@ -0,0 +1,145 @@
use bin_rs::*;
use itertools::Itertools;
use rand::{thread_rng, RngCore};
struct Location<T>(T, T);
impl<T> Location<T> {
fn new(x: T, y: T) -> Self {
Location(x, y)
}
fn x(&self) -> &T {
&self.0
}
fn y(&self) -> &T {
&self.1
}
}
fn should_meet(a: &Location<u8>, b: &Location<u8>, b_threshold: &u8) -> bool {
let diff_x = a.x() - b.x();
let diff_y = a.y() - b.y();
let d_sq = &(&diff_x * &diff_x) + &(&diff_y * &diff_y);
d_sq.le(b_threshold)
}
/// Calculates distance square between a's and b's location. Returns a boolean
/// indicating whether diatance sqaure is <= `b_threshold`.
fn should_meet_fhe(
a: &Location<FheUint8>,
b: &Location<FheUint8>,
b_threshold: &FheUint8,
) -> FheBool {
let diff_x = a.x() - b.x();
let diff_y = a.y() - b.y();
let d_sq = &(&diff_x * &diff_x) + &(&diff_y * &diff_y);
d_sq.le(b_threshold)
}
// Even wondered who are the long distance friends (friends of friends or
// friends of friends of friends...) that live nearby ? But how do you find
// them? Surely no-one will simply reveal their exact location just because
// there's a slight chance that a long distance friend lives nearby.
//
// Here we write a simple application with two users `a` and `b`. User `a` wants
// to find (long distance) friends that live in their neighbourhood. User `b` is
// open to meeting new friends within some distance of their location. Both user
// `a` and `b` encrypt their location and upload to the server. User `b` also
// encrypts the distance square threshold within which they are interested in
// meeting new friends. The server calculates the square of the distance between
// user a's location and user b's location and returns encrypted boolean output
// indicating whether square of distance is <= user b's supplied distance square
// threshold. User `a` then comes online, downloads output ciphertext, produces
// their decryption share for user `b`, and uploads the decryption share to the
// server. User `b` comes online, downloads output ciphertext and user a's
// decryption share, produces their own decryption share, and then decrypts the
// encrypted boolean output. If the output is `True`, it indicates
// user `a` is within the distance square threshold defined by user `b`.
fn main() {
set_parameter_set(ParameterSelector::NonInteractiveLTE2Party);
// set application's common reference seed
let mut seed = [0u8; 32];
thread_rng().fill_bytes(&mut seed);
set_common_reference_seed(seed);
let no_of_parties = 2;
// Client Side //
// Generate client keys
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
// We assign id 0 to client 0 and id 1 to client 1
let a_id = 0;
let b_id = 1;
let user_a_secret = &cks[0];
let user_b_secret = &cks[1];
// User a and b generate server key shares
let a_server_key_share = gen_server_key_share(a_id, no_of_parties, user_a_secret);
let b_server_key_share = gen_server_key_share(b_id, no_of_parties, user_b_secret);
// User a and b encrypt their locations
let user_a_secret = &cks[0];
let user_a_location = Location::new(50, 60);
let user_a_enc =
user_a_secret.encrypt(vec![*user_a_location.x(), *user_a_location.y()].as_slice());
let user_b_location = Location::new(50, 60);
// User b also encrypts the distance sq threshold
let user_b_threshold = 20;
let user_b_enc = user_b_secret
.encrypt(vec![*user_b_location.x(), *user_b_location.y(), user_b_threshold].as_slice());
// Server Side //
// Both user a and b upload their private inputs and server key shares to
// the server in one shot message
let server_key = aggregate_server_key_shares(&vec![a_server_key_share, b_server_key_share]);
server_key.set_server_key();
// Server parses private inputs from user a and b
let user_a_location_enc = {
let c = user_a_enc.unseed::<Vec<Vec<u64>>>().key_switch(0);
Location::new(c.extract(0), c.extract(1))
};
let (user_b_location_enc, user_b_threshold_enc) = {
let c = user_b_enc.unseed::<Vec<Vec<u64>>>().key_switch(1);
(Location::new(c.extract(0), c.extract(1)), c.extract(2))
};
// run the circuit
let out_c = should_meet_fhe(
&user_a_location_enc,
&user_b_location_enc,
&user_b_threshold_enc,
);
// Client Side //
// user a comes online, downloads out_c, produces a decryption share, and
// uploads the decryption share to the server.
let a_dec_share = user_a_secret.gen_decryption_share(&out_c);
// user b comes online downloads user a's decryption share, generates their
// own decryption share, decrypts the output ciphertext. If the output is
// True, they contact user a to meet.
let b_dec_share = user_b_secret.gen_decryption_share(&out_c);
let out_bool =
user_b_secret.aggregate_decryption_shares(&out_c, &vec![b_dec_share, a_dec_share]);
assert_eq!(
out_bool,
should_meet(&user_a_location, &user_b_location, &user_b_threshold)
);
if out_bool {
println!("A lives nearby. B should meet A.");
} else {
println!("A lives too far away!")
}
}

+ 1
- 1
src/lib.rs

@ -22,7 +22,7 @@ pub use backend::{
// ParameterSelector, };
pub use bool::*;
pub use ntt::{Ntt, NttBackendU64, NttInit};
pub use shortint::{div_zero_error_flag, FheUint8};
pub use shortint::{div_zero_error_flag, FheBool, FheUint8};
pub use decomposer::{Decomposer, DecomposerIter, DefaultDecomposer};

+ 25
- 0
src/shortint/enc_dec.rs

@ -8,6 +8,12 @@ use crate::{
RowMut, SampleExtractor,
};
/// Fhe Bool ciphertext
#[derive(Clone)]
pub struct FheBool<C> {
pub(super) data: C,
}
/// Fhe UInt8 type
///
/// - Stores encryptions of bits in little endian (i.e least signficant bit
@ -204,6 +210,25 @@ where
}
}
impl<C, K> MultiPartyDecryptor<bool, FheBool<C>> for K
where
K: MultiPartyDecryptor<bool, C>,
{
type DecryptionShare = <K as MultiPartyDecryptor<bool, C>>::DecryptionShare;
fn aggregate_decryption_shares(
&self,
c: &FheBool<C>,
shares: &[Self::DecryptionShare],
) -> bool {
self.aggregate_decryption_shares(&c.data, shares)
}
fn gen_decryption_share(&self, c: &FheBool<C>) -> Self::DecryptionShare {
self.gen_decryption_share(&c.data)
}
}
impl<C, K> Encryptor<u8, FheUint8<C>> for K
where
K: Encryptor<bool, C>,

+ 16
- 14
src/shortint/mod.rs

@ -1,9 +1,8 @@
mod enc_dec;
mod ops;
mod types;
pub type FheUint8 = enc_dec::FheUint8<Vec<u64>>;
pub type FheBool = Vec<u64>;
pub type FheBool = enc_dec::FheBool<Vec<u64>>;
use std::cell::RefCell;
@ -15,7 +14,7 @@ thread_local! {
/// Returns Boolean ciphertext indicating whether last division was attempeted
/// with decnomiantor set to 0.
pub fn div_zero_error_flag() -> Option<Vec<u64>> {
pub fn div_zero_error_flag() -> Option<FheBool> {
DIV_ZERO_ERROR.with_borrow(|c| c.clone())
}
@ -83,7 +82,7 @@ mod frontend {
// set div by 0 error flag
let is_zero = is_zero(e, rhs.data(), key);
DIV_ZERO_ERROR.set(Some(is_zero));
DIV_ZERO_ERROR.set(Some(FheBool { data: is_zero }));
let (quotient, _) = arbitrary_bit_division_for_quotient_and_rem(
e,
@ -118,7 +117,7 @@ mod frontend {
let key = RuntimeServerKey::global();
let (overflow, _) =
arbitrary_bit_adder(e, self.data_mut(), rhs.data(), false, key);
overflow
FheBool { data: overflow }
})
}
@ -128,7 +127,7 @@ mod frontend {
let key = RuntimeServerKey::global();
let (overflow, _) =
arbitrary_bit_adder(e, lhs.data_mut(), rhs.data(), false, key);
(lhs, overflow)
(lhs, FheBool { data: overflow })
})
}
@ -138,7 +137,7 @@ mod frontend {
let (out, mut overflow, _) =
arbitrary_bit_subtractor(e, self.data(), rhs.data(), key);
e.not_inplace(&mut overflow);
(FheUint8 { data: out }, overflow)
(FheUint8 { data: out }, FheBool { data: overflow })
})
}
@ -148,7 +147,7 @@ mod frontend {
// set div by 0 error flag
let is_zero = is_zero(e, rhs.data(), key);
DIV_ZERO_ERROR.set(Some(is_zero));
DIV_ZERO_ERROR.set(Some(FheBool { data: is_zero }));
let (quotient, remainder) = arbitrary_bit_division_for_quotient_and_rem(
e,
@ -172,7 +171,8 @@ mod frontend {
pub fn eq(&self, other: &FheUint8) -> FheBool {
BoolEvaluator::with_local_mut(|e| {
let key = RuntimeServerKey::global();
arbitrary_bit_equality(e, self.data(), other.data(), key)
let out = arbitrary_bit_equality(e, self.data(), other.data(), key);
FheBool { data: out }
})
}
@ -182,7 +182,7 @@ mod frontend {
let key = RuntimeServerKey::global();
let mut is_equal = arbitrary_bit_equality(e, self.data(), other.data(), key);
e.not_inplace(&mut is_equal);
is_equal
FheBool { data: is_equal }
})
}
@ -190,7 +190,8 @@ mod frontend {
pub fn lt(&self, other: &FheUint8) -> FheBool {
BoolEvaluator::with_local_mut(|e| {
let key = RuntimeServerKey::global();
arbitrary_bit_comparator(e, other.data(), self.data(), key)
let out = arbitrary_bit_comparator(e, other.data(), self.data(), key);
FheBool { data: out }
})
}
@ -198,7 +199,8 @@ mod frontend {
pub fn gt(&self, other: &FheUint8) -> FheBool {
BoolEvaluator::with_local_mut(|e| {
let key = RuntimeServerKey::global();
arbitrary_bit_comparator(e, self.data(), other.data(), key)
let out = arbitrary_bit_comparator(e, self.data(), other.data(), key);
FheBool { data: out }
})
}
@ -209,7 +211,7 @@ mod frontend {
let mut a_greater_b =
arbitrary_bit_comparator(e, self.data(), other.data(), key);
e.not_inplace(&mut a_greater_b);
a_greater_b
FheBool { data: a_greater_b }
})
}
@ -219,7 +221,7 @@ mod frontend {
let key = RuntimeServerKey::global();
let mut a_less_b = arbitrary_bit_comparator(e, other.data(), self.data(), key);
e.not_inplace(&mut a_less_b);
a_less_b
FheBool { data: a_less_b }
})
}
}

+ 0
- 0
src/shortint/types.rs


Loading…
Cancel
Save