mirror of
https://github.com/arnaucube/phantom-zone.git
synced 2026-01-08 23:21:29 +01:00
implement min, max, mux
This commit is contained in:
@@ -34,6 +34,8 @@ fn coordinates_is_equal(a: &Coordinates<FheUint8>, b: &Coordinates<FheUint8>) ->
|
||||
&(a.x().eq(b.x())) & &(a.y().eq(b.y()))
|
||||
}
|
||||
|
||||
/// Traverse the map with `p0` moves and check whether any of the moves equal
|
||||
/// bomb coordinates (in encrypted domain)
|
||||
fn traverse_map(p0: &[Coordinates<FheUint8>], bomb_coords: &[Coordinates<FheUint8>]) -> FheBool {
|
||||
// First move
|
||||
let mut out = coordinates_is_equal(&p0[0], &bomb_coords[0]);
|
||||
@@ -52,23 +54,23 @@ fn traverse_map(p0: &[Coordinates<FheUint8>], bomb_coords: &[Coordinates<FheUint
|
||||
}
|
||||
|
||||
// Do you recall bomberman? It's an interesting game where the bomberman has to
|
||||
// cross the map without stepping on strategically placed bombs all across the
|
||||
// cross the map without stepping on strategically placed bombs all over the
|
||||
// map. Below we implement a very basic prototype of bomberman with 4 players.
|
||||
//
|
||||
// The map has 256 tiles with bottom left-most tile labelled with coordinate
|
||||
// (0,0) and top right-most tile labelled with coordinate (255, 255). There are
|
||||
// The map has 256 tiles with bottom left-most tile labelled with coordinates
|
||||
// (0,0) and top right-most tile labelled with coordinates (255, 255). There are
|
||||
// 4 players: Player 0, Player 1, Player 2, Player 3. Player 0's task is to walk
|
||||
// across the map with fixed no. of moves while preventing itself from stepping
|
||||
// on any of the bombs placed across the map by Player 1, 2, and 3.
|
||||
// on any of the bombs placed on the map by Player 1, 2, and 3.
|
||||
//
|
||||
// The twist is that Player 0's moves and the locations of bombs placed by other
|
||||
// players are encrypted. Player 0 moves across the map in encrypted domain.
|
||||
// Only a boolean output indicating whether player 0 survived after all the
|
||||
// moves or killed itself by stepping onto a bomb is revealed at the end. If
|
||||
// player 0 survives, Player 1, 2, 3 never learn what moves did it make. If
|
||||
// player 0 kills itself by stepping onto a bomb, it only learns that bomb was
|
||||
// placed on one coordinates it moved to. Moreover, Player 1, 2, 3 never learn
|
||||
// about locations of each other bombs or even whose bomb killed Player 1.
|
||||
// player 0 survives, Player 1, 2, 3 never learn what moves did Player 0 make.
|
||||
// If Player 0 kills itself by stepping onto a bomb, it only learns that bomb
|
||||
// was placed on one of the coordinates it moved to. Moreover, Player 1, 2, 3
|
||||
// never learn locations of each other bombs or whose bomb killed Player 0.
|
||||
fn main() {
|
||||
set_parameter_set(ParameterSelector::NonInteractiveLTE4Party);
|
||||
|
||||
@@ -81,29 +83,34 @@ fn main() {
|
||||
|
||||
// Client side //
|
||||
|
||||
// Players generate client keys
|
||||
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
|
||||
|
||||
// Players generate server keys
|
||||
let server_key_shares = cks
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(index, k)| gen_server_key_share(index, no_of_parties, k))
|
||||
.collect_vec();
|
||||
|
||||
// encrypt inputs
|
||||
// Player 0 describes its moves as sequence of coordinates on the map
|
||||
let no_of_moves = 10;
|
||||
let player_0_moves = (0..no_of_moves)
|
||||
.map(|_| Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen()))
|
||||
.collect_vec();
|
||||
// Coordinates of bomb placed by Player 1
|
||||
let player_1_bomb = Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen());
|
||||
// Coordinates of bomb placed by Player 2
|
||||
let player_2_bomb = Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen());
|
||||
// Coordinates of bomb placed by Player 3
|
||||
let player_3_bomb = Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen());
|
||||
|
||||
println!("P0 moves coordinates: {:?}", &player_0_moves);
|
||||
println!("P1 bomb coordinate : {:?}", &player_1_bomb);
|
||||
println!("P2 bomb coordinate : {:?}", &player_2_bomb);
|
||||
println!("P3 bomb coordinate : {:?}", &player_3_bomb);
|
||||
println!("P1 bomb coordinates : {:?}", &player_1_bomb);
|
||||
println!("P2 bomb coordinates : {:?}", &player_2_bomb);
|
||||
println!("P3 bomb coordinates : {:?}", &player_3_bomb);
|
||||
|
||||
// Al players encrypt their private inputs
|
||||
// Players encrypt their private inputs
|
||||
let player_0_enc = cks[0].encrypt(
|
||||
player_0_moves
|
||||
.iter()
|
||||
@@ -115,14 +122,14 @@ fn main() {
|
||||
let player_2_enc = cks[2].encrypt(vec![*player_2_bomb.x(), *player_2_bomb.y()].as_slice());
|
||||
let player_3_enc = cks[3].encrypt(vec![*player_3_bomb.x(), *player_3_bomb.y()].as_slice());
|
||||
|
||||
// All player upload the encrypted inputs and server key shates to the server
|
||||
// Players upload the encrypted inputs and server key shares to the server
|
||||
|
||||
// Server side //
|
||||
|
||||
let server_key = aggregate_server_key_shares(&server_key_shares);
|
||||
server_key.set_server_key();
|
||||
|
||||
// server parses all player inputs
|
||||
// server parses Player inputs
|
||||
let player_0_moves_enc = {
|
||||
let c = player_0_enc
|
||||
.unseed::<Vec<Vec<u64>>>()
|
||||
@@ -147,17 +154,20 @@ fn main() {
|
||||
Coordinates::new(c.extract_at(0), c.extract_at(1))
|
||||
};
|
||||
|
||||
// run the game
|
||||
// Server runs the game
|
||||
let player_0_dead_ct = traverse_map(
|
||||
&player_0_moves_enc,
|
||||
&vec![player_1_bomb_enc, player_2_bomb_enc, player_3_bomb_enc],
|
||||
);
|
||||
|
||||
// All players generate decryption shares
|
||||
// Client side //
|
||||
|
||||
// Players generate decryption shares and send them to each other
|
||||
let decryption_shares = cks
|
||||
.iter()
|
||||
.map(|k| k.gen_decryption_share(&player_0_dead_ct))
|
||||
.collect_vec();
|
||||
// Players decrypt to find whether Player 0 survived
|
||||
let player_0_dead = cks[0].aggregate_decryption_shares(&player_0_dead_ct, &decryption_shares);
|
||||
|
||||
if player_0_dead {
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
use bin_rs::*;
|
||||
use itertools::Itertools;
|
||||
use rand::{thread_rng, RngCore};
|
||||
use rand::{thread_rng, Rng, RngCore};
|
||||
|
||||
struct Location<T>(T, T);
|
||||
|
||||
@@ -47,17 +47,19 @@ fn should_meet_fhe(
|
||||
// Here we write a simple application with two users `a` and `b`. User `a` wants
|
||||
// to find (long distance) friends that live in their neighbourhood. User `b` is
|
||||
// open to meeting new friends within some distance of their location. Both user
|
||||
// `a` and `b` encrypt their location and upload to the server. User `b` also
|
||||
// encrypts the distance square threshold within which they are interested in
|
||||
// meeting new friends. The server calculates the square of the distance between
|
||||
// user a's location and user b's location and returns encrypted boolean output
|
||||
// indicating whether square of distance is <= user b's supplied distance square
|
||||
// threshold. User `a` then comes online, downloads output ciphertext, produces
|
||||
// their decryption share for user `b`, and uploads the decryption share to the
|
||||
// `a` and `b` encrypt their locations and upload their encrypted locations to
|
||||
// the server. User `b` also encrypts the distance square threshold within which
|
||||
// they are interested in meeting new friends. and send encrypted distance
|
||||
// square threshold to the server.
|
||||
// The server calculates the square of the distance between user a's location
|
||||
// and user b's location and produces encrypted boolean output indicating
|
||||
// whether square of distance is <= user b's supplied distance square threshold.
|
||||
// User `a` then comes online, downloads output ciphertext, produces their
|
||||
// decryption share for user `b`, and uploads the decryption share to the
|
||||
// server. User `b` comes online, downloads output ciphertext and user a's
|
||||
// decryption share, produces their own decryption share, and then decrypts the
|
||||
// encrypted boolean output. If the output is `True`, it indicates
|
||||
// user `a` is within the distance square threshold defined by user `b`.
|
||||
// encrypted boolean output. If the output is `True`, it indicates user `a` is
|
||||
// within the distance square threshold defined by user `b`.
|
||||
fn main() {
|
||||
set_parameter_set(ParameterSelector::NonInteractiveLTE2Party);
|
||||
|
||||
@@ -73,7 +75,7 @@ fn main() {
|
||||
// Generate client keys
|
||||
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
|
||||
|
||||
// We assign id 0 to client 0 and id 1 to client 1
|
||||
// We assign user_id 0 to client 0 and user_id 1 to client 1
|
||||
let a_id = 0;
|
||||
let b_id = 1;
|
||||
let user_a_secret = &cks[0];
|
||||
@@ -85,30 +87,30 @@ fn main() {
|
||||
|
||||
// User a and b encrypt their locations
|
||||
let user_a_secret = &cks[0];
|
||||
let user_a_location = Location::new(50, 60);
|
||||
let user_a_location = Location::new(thread_rng().gen::<u8>(), thread_rng().gen::<u8>());
|
||||
let user_a_enc =
|
||||
user_a_secret.encrypt(vec![*user_a_location.x(), *user_a_location.y()].as_slice());
|
||||
|
||||
let user_b_location = Location::new(50, 60);
|
||||
// User b also encrypts the distance sq threshold
|
||||
let user_b_threshold = 20;
|
||||
let user_b_location = Location::new(thread_rng().gen::<u8>(), thread_rng().gen::<u8>());
|
||||
// User b also encrypts the distance square threshold
|
||||
let user_b_threshold = 40;
|
||||
let user_b_enc = user_b_secret
|
||||
.encrypt(vec![*user_b_location.x(), *user_b_location.y(), user_b_threshold].as_slice());
|
||||
|
||||
// Server Side //
|
||||
|
||||
// Both user a and b upload their private inputs and server key shares to
|
||||
// the server in one shot message
|
||||
// the server in single shot message
|
||||
let server_key = aggregate_server_key_shares(&vec![a_server_key_share, b_server_key_share]);
|
||||
server_key.set_server_key();
|
||||
|
||||
// Server parses private inputs from user a and b
|
||||
let user_a_location_enc = {
|
||||
let c = user_a_enc.unseed::<Vec<Vec<u64>>>().key_switch(0);
|
||||
let c = user_a_enc.unseed::<Vec<Vec<u64>>>().key_switch(a_id);
|
||||
Location::new(c.extract_at(0), c.extract_at(1))
|
||||
};
|
||||
let (user_b_location_enc, user_b_threshold_enc) = {
|
||||
let c = user_b_enc.unseed::<Vec<Vec<u64>>>().key_switch(1);
|
||||
let c = user_b_enc.unseed::<Vec<Vec<u64>>>().key_switch(b_id);
|
||||
(
|
||||
Location::new(c.extract_at(0), c.extract_at(1)),
|
||||
c.extract_at(2),
|
||||
@@ -124,13 +126,13 @@ fn main() {
|
||||
|
||||
// Client Side //
|
||||
|
||||
// user a comes online, downloads out_c, produces a decryption share, and
|
||||
// user `a` comes online, downloads `out_c`, produces a decryption share, and
|
||||
// uploads the decryption share to the server.
|
||||
let a_dec_share = user_a_secret.gen_decryption_share(&out_c);
|
||||
|
||||
// user b comes online downloads user a's decryption share, generates their
|
||||
// user `b` comes online downloads user `a`'s decryption share, generates their
|
||||
// own decryption share, decrypts the output ciphertext. If the output is
|
||||
// True, they contact user a to meet.
|
||||
// True, they contact user `a` to meet.
|
||||
let b_dec_share = user_b_secret.gen_decryption_share(&out_c);
|
||||
let out_bool =
|
||||
user_b_secret.aggregate_decryption_shares(&out_c, &vec![b_dec_share, a_dec_share]);
|
||||
|
||||
@@ -46,7 +46,7 @@ fn main() {
|
||||
let c2_a = thread_rng().gen::<u8>();
|
||||
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
|
||||
|
||||
// client 1 encrypts its private inputs
|
||||
// client 3 encrypts its private inputs
|
||||
let c3_a = thread_rng().gen::<u8>();
|
||||
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
|
||||
|
||||
@@ -66,26 +66,26 @@ fn main() {
|
||||
// Server side //
|
||||
|
||||
// Server receives server key shares from each client and proceeds to aggregate
|
||||
// them to produce server key. After this point, server can use server key share
|
||||
// to evaluate any arbitrary function on encrypted private inputs from the fixed
|
||||
// set of clients
|
||||
// them to produce the server key. After this point, server can use the server
|
||||
// key to evaluate any arbitrary function on encrypted private inputs from
|
||||
// the fixed set of clients
|
||||
|
||||
// aggregate shares and generates server key
|
||||
// aggregate server shares and generate the server key
|
||||
let server_key = aggregate_server_key_shares(&server_key_shares);
|
||||
server_key.set_server_key();
|
||||
|
||||
// Server proceeds to extract private inputs sent by clients
|
||||
//
|
||||
// To extract client 0's (with user_id=0) private inputs we first key switch
|
||||
// client 0's private inputs from thei secret to ideal secret of the mpc
|
||||
// client 0's private inputs from theit secret to ideal secret of the mpc
|
||||
// protocol. To indicate we're key switching client 0's private input we
|
||||
// supply client 0's user_id i.e. we call `key_switch(0)`. Then we extract
|
||||
// supply client 0's `user_id` i.e. we call `key_switch(0)`. Then we extract
|
||||
// the first ciphertext by calling `extract_at(0)`.
|
||||
//
|
||||
// Since client 0 only encrypted 1 input in batched ciphertext calling
|
||||
// Since client 0 only encrypts 1 input in batched ciphertext, calling
|
||||
// extract_at(index) for `index` > 0 will panic. If client 0 had more private
|
||||
// inputs then we can either extract them all at once by `extract_all` or first
|
||||
// `many` of them by `extract_many(many)`
|
||||
// inputs then we can either extract them all at once with `extract_all` or
|
||||
// first `many` of them with `extract_many(many)`
|
||||
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
|
||||
|
||||
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
|
||||
@@ -93,7 +93,7 @@ fn main() {
|
||||
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
|
||||
|
||||
// After extracting each client's private inputs, server proceeds to evaluate
|
||||
// the function1
|
||||
// function1
|
||||
let now = std::time::Instant::now();
|
||||
let ct_out_f1 = function1_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
|
||||
println!("Function1 FHE evaluation time: {:?}", now.elapsed());
|
||||
@@ -104,10 +104,10 @@ fn main() {
|
||||
// Client side //
|
||||
|
||||
// In multi-party decryption, each client needs to come online, download output
|
||||
// ciphertext from the server, produce decryption share, and send to other
|
||||
// parties (either via p2p or via server). After receving decryption shares
|
||||
// for output ciphertext from other parties, client can independently decrypt
|
||||
// output ciphertext.
|
||||
// ciphertext from the server, produce "output ciphertext" dependent decryption
|
||||
// share, and send it to other parties (either via p2p or via server). After
|
||||
// receving decryption shares from other parties, clients can independently
|
||||
// decrypt output ciphertext.
|
||||
|
||||
// each client produces decryption share
|
||||
let decryption_shares = cks
|
||||
@@ -115,19 +115,19 @@ fn main() {
|
||||
.map(|k| k.gen_decryption_share(&ct_out_f1))
|
||||
.collect_vec();
|
||||
|
||||
// With all decrytpion shares, client can aggregate the shares and decrypt the
|
||||
// With all decrytpion shares, clients can aggregate the shares and decrypt the
|
||||
// ciphertext
|
||||
let out_f1 = cks[0].aggregate_decryption_shares(&ct_out_f1, &decryption_shares);
|
||||
|
||||
// we check that output is correct
|
||||
// we check correctness of function1
|
||||
let want_out_f1 = function1(c0_a, c1_a, c2_a, c3_a);
|
||||
assert_eq!(out_f1, want_out_f1);
|
||||
|
||||
// -----------
|
||||
|
||||
// Server key can be re-used for different function with different private
|
||||
// client inputs for same set of clients. Here we run `function2_fhe` for
|
||||
// the same set of client but with new inputs. Client only have to upload their
|
||||
// Server key can be re-used for different functions with different private
|
||||
// client inputs for the same set of clients. Here we run `function2_fhe` for
|
||||
// the same set of client but with new inputs. Clients only have to upload their
|
||||
// private inputs to the server this time.
|
||||
|
||||
// Each client encrypts their private input
|
||||
@@ -140,7 +140,7 @@ fn main() {
|
||||
let c3_a = thread_rng().gen::<u8>();
|
||||
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
|
||||
|
||||
// Client upload their private inputs to the server
|
||||
// Clients upload their private inputs to the server
|
||||
|
||||
// Server side //
|
||||
|
||||
@@ -163,7 +163,7 @@ fn main() {
|
||||
.map(|k| k.gen_decryption_share(&ct_out_f2))
|
||||
.collect_vec();
|
||||
|
||||
// Client independently aggregate the shares and decrypt
|
||||
// Clients independently aggregate the shares and decrypt
|
||||
let out_f2 = cks[0].aggregate_decryption_shares(&ct_out_f2, &decryption_shares);
|
||||
|
||||
// We check correctness of function2
|
||||
|
||||
@@ -517,7 +517,7 @@ mod tests {
|
||||
let ct = seeded_ct.unseed::<Vec<Vec<u64>>>();
|
||||
|
||||
let m_back = (0..batch_size)
|
||||
.map(|i| ck.decrypt(&ct.extract(i)))
|
||||
.map(|i| ck.decrypt(&ct.extract_at(i)))
|
||||
.collect_vec();
|
||||
|
||||
assert_eq!(m, m_back);
|
||||
@@ -528,7 +528,7 @@ mod tests {
|
||||
fn all_uint8_apis() {
|
||||
use num_traits::Euclid;
|
||||
|
||||
use crate::div_zero_error_flag;
|
||||
use crate::{div_zero_error_flag, FheBool};
|
||||
|
||||
set_single_party_parameter_sets(SP_TEST_BOOL_PARAMS);
|
||||
|
||||
@@ -624,7 +624,7 @@ mod tests {
|
||||
}
|
||||
}
|
||||
|
||||
// Comparisons
|
||||
// // Comparisons
|
||||
{
|
||||
{
|
||||
let c_eq = c0.eq(&c1);
|
||||
@@ -681,6 +681,15 @@ mod tests {
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// mux
|
||||
{
|
||||
let selector = thread_rng().gen_bool(0.5);
|
||||
let selector_enc: FheBool = ck.encrypt(&selector);
|
||||
let mux_out = ck.decrypt(&c0.mux(&c1, &selector_enc));
|
||||
let want_mux_out = if selector { m0 } else { m1 };
|
||||
assert_eq!(mux_out, want_mux_out);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
12
src/lib.rs
12
src/lib.rs
@@ -16,13 +16,10 @@ mod utils;
|
||||
pub use backend::{
|
||||
ArithmeticLazyOps, ArithmeticOps, ModInit, ModularOpsU64, ShoupMatrixFMA, VectorOps,
|
||||
};
|
||||
// pub use bool::{
|
||||
// aggregate_public_key_shares, aggregate_server_key_shares, gen_client_key,
|
||||
// gen_mp_keys_phase1, gen_mp_keys_phase2, set_mp_seed, set_parameter_set,
|
||||
// ParameterSelector, };
|
||||
|
||||
pub use bool::*;
|
||||
pub use ntt::{Ntt, NttBackendU64, NttInit};
|
||||
pub use shortint::{div_zero_error_flag, FheUint8};
|
||||
pub use shortint::{div_zero_error_flag, reset_error_flags, FheUint8};
|
||||
|
||||
pub use decomposer::{Decomposer, DecomposerIter, DefaultDecomposer};
|
||||
|
||||
@@ -96,11 +93,6 @@ pub trait RowEntity: Row {
|
||||
fn zeros(col: usize) -> Self;
|
||||
}
|
||||
|
||||
trait Secret {
|
||||
type Element;
|
||||
fn values(&self) -> &[Self::Element];
|
||||
}
|
||||
|
||||
impl<T> Matrix for Vec<Vec<T>> {
|
||||
type MatElement = T;
|
||||
type R = Vec<T>;
|
||||
|
||||
13
src/lwe.rs
13
src/lwe.rs
@@ -173,7 +173,7 @@ mod tests {
|
||||
decomposer::DefaultDecomposer,
|
||||
random::{DefaultSecureRng, NewWithSeed},
|
||||
utils::{fill_random_ternary_secret_with_hamming_weight, WithLocal},
|
||||
MatrixEntity, MatrixMut, Secret,
|
||||
MatrixEntity, MatrixMut,
|
||||
};
|
||||
|
||||
use super::*;
|
||||
@@ -185,13 +185,6 @@ mod tests {
|
||||
pub(crate) values: Vec<i32>,
|
||||
}
|
||||
|
||||
impl Secret for LweSecret {
|
||||
type Element = i32;
|
||||
fn values(&self) -> &[Self::Element] {
|
||||
&self.values
|
||||
}
|
||||
}
|
||||
|
||||
impl LweSecret {
|
||||
fn random(hw: usize, n: usize) -> LweSecret {
|
||||
DefaultSecureRng::with_local_mut(|rng| {
|
||||
@@ -201,6 +194,10 @@ mod tests {
|
||||
LweSecret { values: out }
|
||||
})
|
||||
}
|
||||
|
||||
fn values(&self) -> &[i32] {
|
||||
&self.values
|
||||
}
|
||||
}
|
||||
|
||||
struct LweKeySwitchingKey<M, R> {
|
||||
|
||||
@@ -24,7 +24,7 @@ pub(crate) mod tests {
|
||||
fill_random_ternary_secret_with_hamming_weight, generate_prime, negacyclic_mul,
|
||||
tests::Stats, ToShoup, TryConvertFrom1, WithLocal,
|
||||
},
|
||||
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
||||
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut,
|
||||
};
|
||||
|
||||
use super::{
|
||||
@@ -406,13 +406,6 @@ pub(crate) mod tests {
|
||||
pub(crate) values: Vec<i32>,
|
||||
}
|
||||
|
||||
impl Secret for RlweSecret {
|
||||
type Element = i32;
|
||||
fn values(&self) -> &[Self::Element] {
|
||||
&self.values
|
||||
}
|
||||
}
|
||||
|
||||
impl RlweSecret {
|
||||
pub fn random(hw: usize, n: usize) -> RlweSecret {
|
||||
DefaultSecureRng::with_local_mut(|rng| {
|
||||
@@ -422,6 +415,10 @@ pub(crate) mod tests {
|
||||
RlweSecret { values: out }
|
||||
})
|
||||
}
|
||||
|
||||
fn values(&self) -> &[i32] {
|
||||
&self.values
|
||||
}
|
||||
}
|
||||
|
||||
fn random_seed() -> [u8; 32] {
|
||||
|
||||
@@ -17,6 +17,16 @@ pub fn div_zero_error_flag() -> Option<FheBool> {
|
||||
DIV_ZERO_ERROR.with_borrow(|c| c.clone())
|
||||
}
|
||||
|
||||
/// Reset all error flags
|
||||
///
|
||||
/// Error flags are thread local. When running multiple circuits in sequence
|
||||
/// within a single program you must prevent error flags set during the
|
||||
/// execution of previous circuit to affect error flags set during execution of
|
||||
/// the next circuit by resetting the flags before starting with next circuit.
|
||||
pub fn reset_error_flags() {
|
||||
DIV_ZERO_ERROR.with_borrow_mut(|c| *c = None);
|
||||
}
|
||||
|
||||
mod frontend {
|
||||
use super::ops::{
|
||||
arbitrary_bit_adder, arbitrary_bit_division_for_quotient_and_rem, arbitrary_bit_subtractor,
|
||||
@@ -176,7 +186,9 @@ mod frontend {
|
||||
}
|
||||
|
||||
mod booleans {
|
||||
use crate::shortint::ops::{arbitrary_bit_comparator, arbitrary_bit_equality};
|
||||
use crate::shortint::ops::{
|
||||
arbitrary_bit_comparator, arbitrary_bit_equality, arbitrary_bit_mux,
|
||||
};
|
||||
|
||||
use super::*;
|
||||
|
||||
@@ -238,6 +250,27 @@ mod frontend {
|
||||
FheBool { data: a_less_b }
|
||||
})
|
||||
}
|
||||
|
||||
/// Returns `Self` if `selector = True` else returns `other`
|
||||
pub fn mux(&self, other: &FheUint8, selector: &FheBool) -> FheUint8 {
|
||||
BoolEvaluator::with_local_mut(|e| {
|
||||
let key = RuntimeServerKey::global();
|
||||
let out = arbitrary_bit_mux(e, selector.data(), self.data(), other.data(), key);
|
||||
FheUint8 { data: out }
|
||||
})
|
||||
}
|
||||
|
||||
/// max(`Self`, `other`)
|
||||
pub fn max(&self, other: &FheUint8) -> FheUint8 {
|
||||
let self_gt = self.gt(other);
|
||||
self.mux(other, &self_gt)
|
||||
}
|
||||
|
||||
/// min(`Self`, `other`)
|
||||
pub fn min(&self, other: &FheUint8) -> FheUint8 {
|
||||
let self_lt = self.lt(other);
|
||||
self.mux(other, &self_lt)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -114,9 +114,10 @@ pub(super) fn bit_mux<E: BooleanGates>(
|
||||
// (s&a) | ((1-s)^b)
|
||||
let not_selector = evaluator.not(&selector);
|
||||
|
||||
let s_and_a = evaluator.and(&selector, if_true, key);
|
||||
let mut s_and_a = evaluator.and(&selector, if_true, key);
|
||||
let s_and_b = evaluator.and(¬_selector, if_false, key);
|
||||
evaluator.or(&s_and_a, &s_and_b, key)
|
||||
evaluator.or(&mut s_and_a, &s_and_b, key);
|
||||
s_and_a
|
||||
}
|
||||
|
||||
pub(super) fn arbitrary_bit_mux<E: BooleanGates>(
|
||||
@@ -131,9 +132,10 @@ pub(super) fn arbitrary_bit_mux<E: BooleanGates>(
|
||||
|
||||
izip!(if_true.iter(), if_false.iter())
|
||||
.map(|(a, b)| {
|
||||
let s_and_a = evaluator.and(&selector, a, key);
|
||||
let mut s_and_a = evaluator.and(&selector, a, key);
|
||||
let s_and_b = evaluator.and(¬_selector, b, key);
|
||||
evaluator.or(&s_and_a, &s_and_b, key)
|
||||
evaluator.or_inplace(&mut s_and_a, &s_and_b, key);
|
||||
s_and_a
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user