Browse Source

implement min, max, mux

par-agg-key-shares
Janmajaya Mall 9 months ago
parent
commit
d8d5e40f00
9 changed files with 136 additions and 94 deletions
  1. +27
    -17
      examples/bomberman.rs
  2. +23
    -21
      examples/meeting_friends.rs
  3. +22
    -22
      examples/non_interactive_fheuint8.rs
  4. +12
    -3
      src/bool/mp_api.rs
  5. +2
    -10
      src/lib.rs
  6. +5
    -8
      src/lwe.rs
  7. +5
    -8
      src/rgsw/mod.rs
  8. +34
    -1
      src/shortint/mod.rs
  9. +6
    -4
      src/shortint/ops.rs

+ 27
- 17
examples/bomberman.rs

@ -34,6 +34,8 @@ fn coordinates_is_equal(a: &Coordinates, b: &Coordinates) ->
&(a.x().eq(b.x())) & &(a.y().eq(b.y()))
}
/// Traverse the map with `p0` moves and check whether any of the moves equal
/// bomb coordinates (in encrypted domain)
fn traverse_map(p0: &[Coordinates<FheUint8>], bomb_coords: &[Coordinates<FheUint8>]) -> FheBool {
// First move
let mut out = coordinates_is_equal(&p0[0], &bomb_coords[0]);
@ -52,23 +54,23 @@ fn traverse_map(p0: &[Coordinates], bomb_coords: &[Coordinates
}
// Do you recall bomberman? It's an interesting game where the bomberman has to
// cross the map without stepping on strategically placed bombs all across the
// cross the map without stepping on strategically placed bombs all over the
// map. Below we implement a very basic prototype of bomberman with 4 players.
//
// The map has 256 tiles with bottom left-most tile labelled with coordinate
// (0,0) and top right-most tile labelled with coordinate (255, 255). There are
// The map has 256 tiles with bottom left-most tile labelled with coordinates
// (0,0) and top right-most tile labelled with coordinates (255, 255). There are
// 4 players: Player 0, Player 1, Player 2, Player 3. Player 0's task is to walk
// across the map with fixed no. of moves while preventing itself from stepping
// on any of the bombs placed across the map by Player 1, 2, and 3.
// on any of the bombs placed on the map by Player 1, 2, and 3.
//
// The twist is that Player 0's moves and the locations of bombs placed by other
// players are encrypted. Player 0 moves across the map in encrypted domain.
// Only a boolean output indicating whether player 0 survived after all the
// moves or killed itself by stepping onto a bomb is revealed at the end. If
// player 0 survives, Player 1, 2, 3 never learn what moves did it make. If
// player 0 kills itself by stepping onto a bomb, it only learns that bomb was
// placed on one coordinates it moved to. Moreover, Player 1, 2, 3 never learn
// about locations of each other bombs or even whose bomb killed Player 1.
// player 0 survives, Player 1, 2, 3 never learn what moves did Player 0 make.
// If Player 0 kills itself by stepping onto a bomb, it only learns that bomb
// was placed on one of the coordinates it moved to. Moreover, Player 1, 2, 3
// never learn locations of each other bombs or whose bomb killed Player 0.
fn main() {
set_parameter_set(ParameterSelector::NonInteractiveLTE4Party);
@ -81,29 +83,34 @@ fn main() {
// Client side //
// Players generate client keys
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
// Players generate server keys
let server_key_shares = cks
.iter()
.enumerate()
.map(|(index, k)| gen_server_key_share(index, no_of_parties, k))
.collect_vec();
// encrypt inputs
// Player 0 describes its moves as sequence of coordinates on the map
let no_of_moves = 10;
let player_0_moves = (0..no_of_moves)
.map(|_| Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen()))
.collect_vec();
// Coordinates of bomb placed by Player 1
let player_1_bomb = Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen());
// Coordinates of bomb placed by Player 2
let player_2_bomb = Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen());
// Coordinates of bomb placed by Player 3
let player_3_bomb = Coordinates::new(thread_rng().gen::<u8>(), thread_rng().gen());
println!("P0 moves coordinates: {:?}", &player_0_moves);
println!("P1 bomb coordinate : {:?}", &player_1_bomb);
println!("P2 bomb coordinate : {:?}", &player_2_bomb);
println!("P3 bomb coordinate : {:?}", &player_3_bomb);
println!("P1 bomb coordinates : {:?}", &player_1_bomb);
println!("P2 bomb coordinates : {:?}", &player_2_bomb);
println!("P3 bomb coordinates : {:?}", &player_3_bomb);
// Al players encrypt their private inputs
// Players encrypt their private inputs
let player_0_enc = cks[0].encrypt(
player_0_moves
.iter()
@ -115,14 +122,14 @@ fn main() {
let player_2_enc = cks[2].encrypt(vec![*player_2_bomb.x(), *player_2_bomb.y()].as_slice());
let player_3_enc = cks[3].encrypt(vec![*player_3_bomb.x(), *player_3_bomb.y()].as_slice());
// All player upload the encrypted inputs and server key shates to the server
// Players upload the encrypted inputs and server key shares to the server
// Server side //
let server_key = aggregate_server_key_shares(&server_key_shares);
server_key.set_server_key();
// server parses all player inputs
// server parses Player inputs
let player_0_moves_enc = {
let c = player_0_enc
.unseed::<Vec<Vec<u64>>>()
@ -147,17 +154,20 @@ fn main() {
Coordinates::new(c.extract_at(0), c.extract_at(1))
};
// run the game
// Server runs the game
let player_0_dead_ct = traverse_map(
&player_0_moves_enc,
&vec![player_1_bomb_enc, player_2_bomb_enc, player_3_bomb_enc],
);
// All players generate decryption shares
// Client side //
// Players generate decryption shares and send them to each other
let decryption_shares = cks
.iter()
.map(|k| k.gen_decryption_share(&player_0_dead_ct))
.collect_vec();
// Players decrypt to find whether Player 0 survived
let player_0_dead = cks[0].aggregate_decryption_shares(&player_0_dead_ct, &decryption_shares);
if player_0_dead {

+ 23
- 21
examples/meeting_friends.rs

@ -1,6 +1,6 @@
use bin_rs::*;
use itertools::Itertools;
use rand::{thread_rng, RngCore};
use rand::{thread_rng, Rng, RngCore};
struct Location<T>(T, T);
@ -47,17 +47,19 @@ fn should_meet_fhe(
// Here we write a simple application with two users `a` and `b`. User `a` wants
// to find (long distance) friends that live in their neighbourhood. User `b` is
// open to meeting new friends within some distance of their location. Both user
// `a` and `b` encrypt their location and upload to the server. User `b` also
// encrypts the distance square threshold within which they are interested in
// meeting new friends. The server calculates the square of the distance between
// user a's location and user b's location and returns encrypted boolean output
// indicating whether square of distance is <= user b's supplied distance square
// threshold. User `a` then comes online, downloads output ciphertext, produces
// their decryption share for user `b`, and uploads the decryption share to the
// `a` and `b` encrypt their locations and upload their encrypted locations to
// the server. User `b` also encrypts the distance square threshold within which
// they are interested in meeting new friends. and send encrypted distance
// square threshold to the server.
// The server calculates the square of the distance between user a's location
// and user b's location and produces encrypted boolean output indicating
// whether square of distance is <= user b's supplied distance square threshold.
// User `a` then comes online, downloads output ciphertext, produces their
// decryption share for user `b`, and uploads the decryption share to the
// server. User `b` comes online, downloads output ciphertext and user a's
// decryption share, produces their own decryption share, and then decrypts the
// encrypted boolean output. If the output is `True`, it indicates
// user `a` is within the distance square threshold defined by user `b`.
// encrypted boolean output. If the output is `True`, it indicates user `a` is
// within the distance square threshold defined by user `b`.
fn main() {
set_parameter_set(ParameterSelector::NonInteractiveLTE2Party);
@ -73,7 +75,7 @@ fn main() {
// Generate client keys
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
// We assign id 0 to client 0 and id 1 to client 1
// We assign user_id 0 to client 0 and user_id 1 to client 1
let a_id = 0;
let b_id = 1;
let user_a_secret = &cks[0];
@ -85,30 +87,30 @@ fn main() {
// User a and b encrypt their locations
let user_a_secret = &cks[0];
let user_a_location = Location::new(50, 60);
let user_a_location = Location::new(thread_rng().gen::<u8>(), thread_rng().gen::<u8>());
let user_a_enc =
user_a_secret.encrypt(vec![*user_a_location.x(), *user_a_location.y()].as_slice());
let user_b_location = Location::new(50, 60);
// User b also encrypts the distance sq threshold
let user_b_threshold = 20;
let user_b_location = Location::new(thread_rng().gen::<u8>(), thread_rng().gen::<u8>());
// User b also encrypts the distance square threshold
let user_b_threshold = 40;
let user_b_enc = user_b_secret
.encrypt(vec![*user_b_location.x(), *user_b_location.y(), user_b_threshold].as_slice());
// Server Side //
// Both user a and b upload their private inputs and server key shares to
// the server in one shot message
// the server in single shot message
let server_key = aggregate_server_key_shares(&vec![a_server_key_share, b_server_key_share]);
server_key.set_server_key();
// Server parses private inputs from user a and b
let user_a_location_enc = {
let c = user_a_enc.unseed::<Vec<Vec<u64>>>().key_switch(0);
let c = user_a_enc.unseed::<Vec<Vec<u64>>>().key_switch(a_id);
Location::new(c.extract_at(0), c.extract_at(1))
};
let (user_b_location_enc, user_b_threshold_enc) = {
let c = user_b_enc.unseed::<Vec<Vec<u64>>>().key_switch(1);
let c = user_b_enc.unseed::<Vec<Vec<u64>>>().key_switch(b_id);
(
Location::new(c.extract_at(0), c.extract_at(1)),
c.extract_at(2),
@ -124,13 +126,13 @@ fn main() {
// Client Side //
// user a comes online, downloads out_c, produces a decryption share, and
// user `a` comes online, downloads `out_c`, produces a decryption share, and
// uploads the decryption share to the server.
let a_dec_share = user_a_secret.gen_decryption_share(&out_c);
// user b comes online downloads user a's decryption share, generates their
// user `b` comes online downloads user `a`'s decryption share, generates their
// own decryption share, decrypts the output ciphertext. If the output is
// True, they contact user a to meet.
// True, they contact user `a` to meet.
let b_dec_share = user_b_secret.gen_decryption_share(&out_c);
let out_bool =
user_b_secret.aggregate_decryption_shares(&out_c, &vec![b_dec_share, a_dec_share]);

+ 22
- 22
examples/non_interactive_fheuint8.rs

@ -46,7 +46,7 @@ fn main() {
let c2_a = thread_rng().gen::<u8>();
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
// client 1 encrypts its private inputs
// client 3 encrypts its private inputs
let c3_a = thread_rng().gen::<u8>();
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
@ -66,26 +66,26 @@ fn main() {
// Server side //
// Server receives server key shares from each client and proceeds to aggregate
// them to produce server key. After this point, server can use server key share
// to evaluate any arbitrary function on encrypted private inputs from the fixed
// set of clients
// them to produce the server key. After this point, server can use the server
// key to evaluate any arbitrary function on encrypted private inputs from
// the fixed set of clients
// aggregate shares and generates server key
// aggregate server shares and generate the server key
let server_key = aggregate_server_key_shares(&server_key_shares);
server_key.set_server_key();
// Server proceeds to extract private inputs sent by clients
//
// To extract client 0's (with user_id=0) private inputs we first key switch
// client 0's private inputs from thei secret to ideal secret of the mpc
// client 0's private inputs from theit secret to ideal secret of the mpc
// protocol. To indicate we're key switching client 0's private input we
// supply client 0's user_id i.e. we call `key_switch(0)`. Then we extract
// supply client 0's `user_id` i.e. we call `key_switch(0)`. Then we extract
// the first ciphertext by calling `extract_at(0)`.
//
// Since client 0 only encrypted 1 input in batched ciphertext calling
// Since client 0 only encrypts 1 input in batched ciphertext, calling
// extract_at(index) for `index` > 0 will panic. If client 0 had more private
// inputs then we can either extract them all at once by `extract_all` or first
// `many` of them by `extract_many(many)`
// inputs then we can either extract them all at once with `extract_all` or
// first `many` of them with `extract_many(many)`
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
@ -93,7 +93,7 @@ fn main() {
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
// After extracting each client's private inputs, server proceeds to evaluate
// the function1
// function1
let now = std::time::Instant::now();
let ct_out_f1 = function1_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
println!("Function1 FHE evaluation time: {:?}", now.elapsed());
@ -104,10 +104,10 @@ fn main() {
// Client side //
// In multi-party decryption, each client needs to come online, download output
// ciphertext from the server, produce decryption share, and send to other
// parties (either via p2p or via server). After receving decryption shares
// for output ciphertext from other parties, client can independently decrypt
// output ciphertext.
// ciphertext from the server, produce "output ciphertext" dependent decryption
// share, and send it to other parties (either via p2p or via server). After
// receving decryption shares from other parties, clients can independently
// decrypt output ciphertext.
// each client produces decryption share
let decryption_shares = cks
@ -115,19 +115,19 @@ fn main() {
.map(|k| k.gen_decryption_share(&ct_out_f1))
.collect_vec();
// With all decrytpion shares, client can aggregate the shares and decrypt the
// With all decrytpion shares, clients can aggregate the shares and decrypt the
// ciphertext
let out_f1 = cks[0].aggregate_decryption_shares(&ct_out_f1, &decryption_shares);
// we check that output is correct
// we check correctness of function1
let want_out_f1 = function1(c0_a, c1_a, c2_a, c3_a);
assert_eq!(out_f1, want_out_f1);
// -----------
// Server key can be re-used for different function with different private
// client inputs for same set of clients. Here we run `function2_fhe` for
// the same set of client but with new inputs. Client only have to upload their
// Server key can be re-used for different functions with different private
// client inputs for the same set of clients. Here we run `function2_fhe` for
// the same set of client but with new inputs. Clients only have to upload their
// private inputs to the server this time.
// Each client encrypts their private input
@ -140,7 +140,7 @@ fn main() {
let c3_a = thread_rng().gen::<u8>();
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
// Client upload their private inputs to the server
// Clients upload their private inputs to the server
// Server side //
@ -163,7 +163,7 @@ fn main() {
.map(|k| k.gen_decryption_share(&ct_out_f2))
.collect_vec();
// Client independently aggregate the shares and decrypt
// Clients independently aggregate the shares and decrypt
let out_f2 = cks[0].aggregate_decryption_shares(&ct_out_f2, &decryption_shares);
// We check correctness of function2

+ 12
- 3
src/bool/mp_api.rs

@ -517,7 +517,7 @@ mod tests {
let ct = seeded_ct.unseed::<Vec<Vec<u64>>>();
let m_back = (0..batch_size)
.map(|i| ck.decrypt(&ct.extract(i)))
.map(|i| ck.decrypt(&ct.extract_at(i)))
.collect_vec();
assert_eq!(m, m_back);
@ -528,7 +528,7 @@ mod tests {
fn all_uint8_apis() {
use num_traits::Euclid;
use crate::div_zero_error_flag;
use crate::{div_zero_error_flag, FheBool};
set_single_party_parameter_sets(SP_TEST_BOOL_PARAMS);
@ -624,7 +624,7 @@ mod tests {
}
}
// Comparisons
// // Comparisons
{
{
let c_eq = c0.eq(&c1);
@ -681,6 +681,15 @@ mod tests {
);
}
}
// mux
{
let selector = thread_rng().gen_bool(0.5);
let selector_enc: FheBool = ck.encrypt(&selector);
let mux_out = ck.decrypt(&c0.mux(&c1, &selector_enc));
let want_mux_out = if selector { m0 } else { m1 };
assert_eq!(mux_out, want_mux_out);
}
}
}
}

+ 2
- 10
src/lib.rs

@ -16,13 +16,10 @@ mod utils;
pub use backend::{
ArithmeticLazyOps, ArithmeticOps, ModInit, ModularOpsU64, ShoupMatrixFMA, VectorOps,
};
// pub use bool::{
// aggregate_public_key_shares, aggregate_server_key_shares, gen_client_key,
// gen_mp_keys_phase1, gen_mp_keys_phase2, set_mp_seed, set_parameter_set,
// ParameterSelector, };
pub use bool::*;
pub use ntt::{Ntt, NttBackendU64, NttInit};
pub use shortint::{div_zero_error_flag, FheUint8};
pub use shortint::{div_zero_error_flag, reset_error_flags, FheUint8};
pub use decomposer::{Decomposer, DecomposerIter, DefaultDecomposer};
@ -96,11 +93,6 @@ pub trait RowEntity: Row {
fn zeros(col: usize) -> Self;
}
trait Secret {
type Element;
fn values(&self) -> &[Self::Element];
}
impl<T> Matrix for Vec<Vec<T>> {
type MatElement = T;
type R = Vec<T>;

+ 5
- 8
src/lwe.rs

@ -173,7 +173,7 @@ mod tests {
decomposer::DefaultDecomposer,
random::{DefaultSecureRng, NewWithSeed},
utils::{fill_random_ternary_secret_with_hamming_weight, WithLocal},
MatrixEntity, MatrixMut, Secret,
MatrixEntity, MatrixMut,
};
use super::*;
@ -185,13 +185,6 @@ mod tests {
pub(crate) values: Vec<i32>,
}
impl Secret for LweSecret {
type Element = i32;
fn values(&self) -> &[Self::Element] {
&self.values
}
}
impl LweSecret {
fn random(hw: usize, n: usize) -> LweSecret {
DefaultSecureRng::with_local_mut(|rng| {
@ -201,6 +194,10 @@ mod tests {
LweSecret { values: out }
})
}
fn values(&self) -> &[i32] {
&self.values
}
}
struct LweKeySwitchingKey<M, R> {

+ 5
- 8
src/rgsw/mod.rs

@ -24,7 +24,7 @@ pub(crate) mod tests {
fill_random_ternary_secret_with_hamming_weight, generate_prime, negacyclic_mul,
tests::Stats, ToShoup, TryConvertFrom1, WithLocal,
},
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut,
};
use super::{
@ -406,13 +406,6 @@ pub(crate) mod tests {
pub(crate) values: Vec<i32>,
}
impl Secret for RlweSecret {
type Element = i32;
fn values(&self) -> &[Self::Element] {
&self.values
}
}
impl RlweSecret {
pub fn random(hw: usize, n: usize) -> RlweSecret {
DefaultSecureRng::with_local_mut(|rng| {
@ -422,6 +415,10 @@ pub(crate) mod tests {
RlweSecret { values: out }
})
}
fn values(&self) -> &[i32] {
&self.values
}
}
fn random_seed() -> [u8; 32] {

+ 34
- 1
src/shortint/mod.rs

@ -17,6 +17,16 @@ pub fn div_zero_error_flag() -> Option {
DIV_ZERO_ERROR.with_borrow(|c| c.clone())
}
/// Reset all error flags
///
/// Error flags are thread local. When running multiple circuits in sequence
/// within a single program you must prevent error flags set during the
/// execution of previous circuit to affect error flags set during execution of
/// the next circuit by resetting the flags before starting with next circuit.
pub fn reset_error_flags() {
DIV_ZERO_ERROR.with_borrow_mut(|c| *c = None);
}
mod frontend {
use super::ops::{
arbitrary_bit_adder, arbitrary_bit_division_for_quotient_and_rem, arbitrary_bit_subtractor,
@ -176,7 +186,9 @@ mod frontend {
}
mod booleans {
use crate::shortint::ops::{arbitrary_bit_comparator, arbitrary_bit_equality};
use crate::shortint::ops::{
arbitrary_bit_comparator, arbitrary_bit_equality, arbitrary_bit_mux,
};
use super::*;
@ -238,6 +250,27 @@ mod frontend {
FheBool { data: a_less_b }
})
}
/// Returns `Self` if `selector = True` else returns `other`
pub fn mux(&self, other: &FheUint8, selector: &FheBool) -> FheUint8 {
BoolEvaluator::with_local_mut(|e| {
let key = RuntimeServerKey::global();
let out = arbitrary_bit_mux(e, selector.data(), self.data(), other.data(), key);
FheUint8 { data: out }
})
}
/// max(`Self`, `other`)
pub fn max(&self, other: &FheUint8) -> FheUint8 {
let self_gt = self.gt(other);
self.mux(other, &self_gt)
}
/// min(`Self`, `other`)
pub fn min(&self, other: &FheUint8) -> FheUint8 {
let self_lt = self.lt(other);
self.mux(other, &self_lt)
}
}
}
}

+ 6
- 4
src/shortint/ops.rs

@ -114,9 +114,10 @@ pub(super) fn bit_mux(
// (s&a) | ((1-s)^b)
let not_selector = evaluator.not(&selector);
let s_and_a = evaluator.and(&selector, if_true, key);
let mut s_and_a = evaluator.and(&selector, if_true, key);
let s_and_b = evaluator.and(&not_selector, if_false, key);
evaluator.or(&s_and_a, &s_and_b, key)
evaluator.or(&mut s_and_a, &s_and_b, key);
s_and_a
}
pub(super) fn arbitrary_bit_mux<E: BooleanGates>(
@ -131,9 +132,10 @@ pub(super) fn arbitrary_bit_mux(
izip!(if_true.iter(), if_false.iter())
.map(|(a, b)| {
let s_and_a = evaluator.and(&selector, a, key);
let mut s_and_a = evaluator.and(&selector, a, key);
let s_and_b = evaluator.and(&not_selector, b, key);
evaluator.or(&s_and_a, &s_and_b, key)
evaluator.or_inplace(&mut s_and_a, &s_and_b, key);
s_and_a
})
.collect()
}

Loading…
Cancel
Save