|
|
@ -84,27 +84,27 @@ pub fn forward_butterly_0_to_2q( |
|
|
|
/// and both x' and y' are \in [0, 2q)
|
|
|
|
///
|
|
|
|
/// Implements Algorithm 3 of [FASTER ARITHMETIC FOR NUMBER-THEORETIC TRANSFORMS](https://arxiv.org/pdf/1205.2926.pdf)
|
|
|
|
pub unsafe fn inverse_butterfly(
|
|
|
|
x: *mut u64,
|
|
|
|
y: *mut u64,
|
|
|
|
w_inv: &u64,
|
|
|
|
w_inv_shoup: &u64,
|
|
|
|
q: &u64,
|
|
|
|
q_twice: &u64,
|
|
|
|
) {
|
|
|
|
debug_assert!(*x < *q_twice, "{} >= (2q){q_twice}", *x);
|
|
|
|
debug_assert!(*y < *q_twice, "{} >= (2q){q_twice}", *y);
|
|
|
|
pub fn inverse_butterfly(
|
|
|
|
x: u64,
|
|
|
|
y: u64,
|
|
|
|
w_inv: u64,
|
|
|
|
w_inv_shoup: u64,
|
|
|
|
q: u64,
|
|
|
|
q_twice: u64,
|
|
|
|
) -> (u64, u64) {
|
|
|
|
debug_assert!(x < q_twice, "{} >= (2q){q_twice}", x);
|
|
|
|
debug_assert!(y < q_twice, "{} >= (2q){q_twice}", y);
|
|
|
|
|
|
|
|
let mut x_dash = *x + *y;
|
|
|
|
if x_dash >= *q_twice {
|
|
|
|
let mut x_dash = x + y;
|
|
|
|
if x_dash >= q_twice {
|
|
|
|
x_dash -= q_twice
|
|
|
|
}
|
|
|
|
|
|
|
|
let t = *x + q_twice - *y;
|
|
|
|
let k = ((*w_inv_shoup as u128 * t as u128) >> 64) as u64; // TODO (Jay): Hot path
|
|
|
|
*y = w_inv.wrapping_mul(t).wrapping_sub(k.wrapping_mul(*q));
|
|
|
|
let t = x + q_twice - y;
|
|
|
|
let k = ((w_inv_shoup as u128 * t as u128) >> 64) as u64;
|
|
|
|
let y = w_inv.wrapping_mul(t).wrapping_sub(k.wrapping_mul(q));
|
|
|
|
|
|
|
|
*x = x_dash;
|
|
|
|
(x_dash, y)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Number theoretic transform of vector `a` where each element can be in range
|
|
|
@ -192,36 +192,78 @@ pub fn ntt_inv_lazy( |
|
|
|
psi_inv: &[u64],
|
|
|
|
psi_inv_shoup: &[u64],
|
|
|
|
n_inv: u64,
|
|
|
|
n_inv_shoup: u64,
|
|
|
|
q: u64,
|
|
|
|
q_twice: u64,
|
|
|
|
) {
|
|
|
|
debug_assert!(a.len() == psi_inv.len());
|
|
|
|
assert!(a.len() == psi_inv.len());
|
|
|
|
|
|
|
|
let mut m = a.len();
|
|
|
|
let mut m = a.len() >> 1;
|
|
|
|
let mut t = 1;
|
|
|
|
while m > 1 {
|
|
|
|
let mut j_1: usize = 0;
|
|
|
|
let h = m >> 1;
|
|
|
|
for i in 0..h {
|
|
|
|
let j_2 = j_1 + t;
|
|
|
|
unsafe {
|
|
|
|
let w_inv = psi_inv.get_unchecked(h + i);
|
|
|
|
let w_inv_shoup = psi_inv_shoup.get_unchecked(h + i);
|
|
|
|
|
|
|
|
for j in j_1..j_2 {
|
|
|
|
let x = a.get_unchecked_mut(j) as *mut u64;
|
|
|
|
let y = a.get_unchecked_mut(j + t) as *mut u64;
|
|
|
|
inverse_butterfly(x, y, w_inv, w_inv_shoup, &q, &q_twice);
|
|
|
|
|
|
|
|
while m > 0 {
|
|
|
|
let w_inv = &psi_inv[m..];
|
|
|
|
let w_inv_shoup = &psi_inv_shoup[m..];
|
|
|
|
|
|
|
|
if m == 1 {
|
|
|
|
let (left, right) = a.split_at_mut(t);
|
|
|
|
|
|
|
|
for (x, y) in izip!(left.iter_mut(), right.iter_mut()) {
|
|
|
|
let (ox, oy) = inverse_butterfly(*x, *y, w_inv[0], w_inv_shoup[0], q, q_twice);
|
|
|
|
|
|
|
|
*x = (n_inv.wrapping_mul(ox)).wrapping_sub(
|
|
|
|
q.wrapping_mul(((ox as u128 * n_inv_shoup as u128) >> 64) as u64),
|
|
|
|
);
|
|
|
|
*y = (n_inv.wrapping_mul(oy)).wrapping_sub(
|
|
|
|
q.wrapping_mul(((oy as u128 * n_inv_shoup as u128) >> 64) as u64),
|
|
|
|
);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for i in 0..m {
|
|
|
|
let a = &mut a[2 * i * t..2 * (i + 1) * t];
|
|
|
|
let (left, right) = a.split_at_mut(t);
|
|
|
|
|
|
|
|
for (x, y) in izip!(left.iter_mut(), right.iter_mut()) {
|
|
|
|
let (ox, oy) = inverse_butterfly(*x, *y, w_inv[i], w_inv_shoup[i], q, q_twice);
|
|
|
|
*x = ox;
|
|
|
|
*y = oy;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
j_1 = j_1 + 2 * t;
|
|
|
|
}
|
|
|
|
|
|
|
|
// for i in 0..m {
|
|
|
|
// let a = &mut a[2 * i * t..2 * (i + 1) * t];
|
|
|
|
// let (left, right) = a.split_at_mut(t);
|
|
|
|
|
|
|
|
// for (x, y) in izip!(left.iter_mut(), right.iter_mut()) {
|
|
|
|
// let (ox, oy) = inverse_butterfly(*x, *y, w_inv[i], w_inv_shoup[i], q,
|
|
|
|
// q_twice); *x = ox;
|
|
|
|
// *y = oy;
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
|
|
|
|
// for i in 0..h {
|
|
|
|
// let j_2 = j_1 + t;
|
|
|
|
// unsafe {
|
|
|
|
// let w_inv = psi_inv.get_unchecked(h + i);
|
|
|
|
// let w_inv_shoup = psi_inv_shoup.get_unchecked(h + i);
|
|
|
|
|
|
|
|
// for j in j_1..j_2 {
|
|
|
|
// let x = a.get_unchecked_mut(j) as *mut u64;
|
|
|
|
// let y = a.get_unchecked_mut(j + t) as *mut u64;
|
|
|
|
// inverse_butterfly(x, y, w_inv, w_inv_shoup, &q, &q_twice);
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
// j_1 = j_1 + 2 * t;
|
|
|
|
// }
|
|
|
|
t *= 2;
|
|
|
|
m >>= 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
a.iter_mut()
|
|
|
|
.for_each(|a0| *a0 = ((*a0 as u128 * n_inv as u128) % q as u128) as u64);
|
|
|
|
// a.iter_mut().for_each(|a0| {
|
|
|
|
// *a0 = (n_inv.wrapping_mul(*a0))
|
|
|
|
// .wrapping_sub(((*a0 as u128 * n_inv_shoup as u128) >> 64) as u64)
|
|
|
|
// });
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Find n^{th} root of unity in field F_q, if one exists
|
|
|
@ -259,6 +301,7 @@ pub struct NttBackendU64 { |
|
|
|
q_twice: u64,
|
|
|
|
n: u64,
|
|
|
|
n_inv: u64,
|
|
|
|
n_inv_shoup: u64,
|
|
|
|
psi_powers_bo: Box<[u64]>,
|
|
|
|
psi_inv_powers_bo: Box<[u64]>,
|
|
|
|
psi_powers_bo_shoup: Box<[u64]>,
|
|
|
@ -322,6 +365,7 @@ impl NttBackendU64 { |
|
|
|
q_twice: 2 * q,
|
|
|
|
n: n as u64,
|
|
|
|
n_inv,
|
|
|
|
n_inv_shoup: shoup_representation_fq(n_inv, q),
|
|
|
|
psi_powers_bo: psi_powers_bo.into_boxed_slice(),
|
|
|
|
psi_inv_powers_bo: psi_inv_powers_bo.into_boxed_slice(),
|
|
|
|
psi_powers_bo_shoup: psi_powers_bo_shoup.into_boxed_slice(),
|
|
|
@ -378,6 +422,7 @@ impl Ntt for NttBackendU64 { |
|
|
|
&self.psi_inv_powers_bo,
|
|
|
|
&self.psi_inv_powers_bo_shoup,
|
|
|
|
self.n_inv,
|
|
|
|
self.n_inv_shoup,
|
|
|
|
self.q,
|
|
|
|
self.q_twice,
|
|
|
|
)
|
|
|
@ -389,6 +434,7 @@ impl Ntt for NttBackendU64 { |
|
|
|
&self.psi_inv_powers_bo,
|
|
|
|
&self.psi_inv_powers_bo_shoup,
|
|
|
|
self.n_inv,
|
|
|
|
self.n_inv_shoup,
|
|
|
|
self.q,
|
|
|
|
self.q_twice,
|
|
|
|
);
|
|
|
|