use std::{fmt::Debug, iter::Sum}; use itertools::izip; use num_traits::{FromPrimitive, PrimInt, Zero}; use rand_distr::uniform::SampleUniform; use crate::{ backend::{GetModulus, Modulus}, decomposer::RlweDecomposer, lwe::{decrypt_lwe, lwe_key_switch}, parameters::{BoolParameters, CiphertextModulus}, random::{DefaultSecureRng, RandomFillUniformInModulus}, rgsw::{decrypt_rlwe, rlwe_auto, IsTrivial, RlweCiphertext}, utils::{encode_x_pow_si_with_emebedding_factor, tests::Stats, TryConvertFrom1}, ArithmeticOps, ClientKey, Decomposer, MatrixEntity, MatrixMut, ModInit, Ntt, NttInit, RowEntity, RowMut, VectorOps, }; use super::keys::tests::{ideal_sk_lwe, ideal_sk_rlwe}; pub(crate) trait CollectRuntimeServerKeyStats { type M; /// RGSW ciphertext X^{s[s_index]} in evaluation domain where s the LWE /// secret fn rgsw_cts_lwe_si(&self, s_index: usize) -> &Self::M; /// Auto key in evaluation domain for automorphism g^k. For auto key for /// automorphism corresponding to -g, set k = 0 fn galois_key_for_auto(&self, k: usize) -> &Self::M; /// LWE key switching key fn lwe_ksk(&self) -> &Self::M; } struct ServerKeyStats { brk_rgsw_cts: (Stats, Stats), post_1_auto: Stats, post_lwe_key_switch: Stats, } impl ServerKeyStats where T: for<'a> Sum<&'a T>, { fn new() -> Self { ServerKeyStats { brk_rgsw_cts: (Stats::default(), Stats::default()), post_1_auto: Stats::default(), post_lwe_key_switch: Stats::default(), } } fn add_noise_brk_rgsw_cts_nsm(&mut self, noise: &[T]) { self.brk_rgsw_cts.0.add_more(noise); } fn add_noise_brk_rgsw_cts_m(&mut self, noise: &[T]) { self.brk_rgsw_cts.1.add_more(noise); } fn add_noise_post_1_auto(&mut self, noise: &[T]) { self.post_1_auto.add_more(&noise); } fn add_noise_post_kwe_key_switch(&mut self, noise: &[T]) { self.post_lwe_key_switch.add_more(&noise); } } fn collect_server_key_stats< M: MatrixEntity + MatrixMut, D: Decomposer, NttOp: NttInit> + Ntt, ModOp: VectorOps + ArithmeticOps + ModInit> + GetModulus, Element = M::MatElement>, S: CollectRuntimeServerKeyStats, >( parameters: BoolParameters, client_keys: &[ClientKey], server_key: &S, ) -> ServerKeyStats where M::R: RowMut + RowEntity + TryConvertFrom1<[i32], CiphertextModulus> + Clone, M::MatElement: Copy + PrimInt + FromPrimitive + SampleUniform + Zero + Debug, { let ideal_sk_rlwe = ideal_sk_rlwe(client_keys); let ideal_sk_lwe = ideal_sk_lwe(client_keys); let embedding_factor = (2 * parameters.rlwe_n().0) / parameters.br_q(); let rlwe_n = parameters.rlwe_n().0; let rlwe_q = parameters.rlwe_q(); let lwe_q = parameters.lwe_q(); let rlwe_modop = ModOp::new(rlwe_q.clone()); let rlwe_nttop = NttOp::new(rlwe_q, rlwe_n); let lwe_modop = ModOp::new(*parameters.lwe_q()); let rlwe_x_rgsw_decomposer = parameters.rlwe_rgsw_decomposer::(); let (rlwe_x_rgsw_gadget_a, rlwe_x_rgsw_gadget_b) = ( rlwe_x_rgsw_decomposer.a().gadget_vector(), rlwe_x_rgsw_decomposer.b().gadget_vector(), ); let lwe_ks_decomposer = parameters.lwe_decomposer::(); let mut server_key_stats = ServerKeyStats::new(); let mut rng = DefaultSecureRng::new(); // RGSW ciphertext noise // Check noise in RGSW ciphertexts of ideal LWE secret elements { ideal_sk_lwe.iter().enumerate().for_each(|(s_index, s_i)| { let rgsw_ct_i = server_key.rgsw_cts_lwe_si(s_index); // X^{s[i]} let m_si = encode_x_pow_si_with_emebedding_factor::( *s_i, embedding_factor, rlwe_n, rlwe_q, ); // RLWE'(-sm) let mut neg_s_eval = M::R::try_convert_from(ideal_sk_rlwe.as_slice(), rlwe_q); rlwe_modop.elwise_neg_mut(neg_s_eval.as_mut()); rlwe_nttop.forward(neg_s_eval.as_mut()); for j in 0..rlwe_x_rgsw_decomposer.a().decomposition_count() { // RLWE(B^{j} * -s[X]*X^{s_lwe[i]}) // -s[X]*X^{s_lwe[i]}*B_j let mut m_ideal = m_si.clone(); rlwe_nttop.forward(m_ideal.as_mut()); rlwe_modop.elwise_mul_mut(m_ideal.as_mut(), neg_s_eval.as_ref()); rlwe_nttop.backward(m_ideal.as_mut()); rlwe_modop.elwise_scalar_mul_mut(m_ideal.as_mut(), &rlwe_x_rgsw_gadget_a[j]); // RLWE(-s*X^{s_lwe[i]}*B_j) let mut rlwe_ct = M::zeros(2, rlwe_n); rlwe_ct .get_row_mut(0) .copy_from_slice(rgsw_ct_i.get_row_slice(j)); rlwe_ct.get_row_mut(1).copy_from_slice( rgsw_ct_i.get_row_slice(j + rlwe_x_rgsw_decomposer.a().decomposition_count()), ); // RGSW ciphertexts are in eval domain. We put RLWE ciphertexts back in // coefficient domain rlwe_ct .iter_rows_mut() .for_each(|r| rlwe_nttop.backward(r.as_mut())); let mut m_back = M::R::zeros(rlwe_n); decrypt_rlwe( &rlwe_ct, &ideal_sk_rlwe, &mut m_back, &rlwe_nttop, &rlwe_modop, ); // diff rlwe_modop.elwise_sub_mut(m_back.as_mut(), m_ideal.as_ref()); server_key_stats.add_noise_brk_rgsw_cts_nsm(&Vec::::try_convert_from( m_back.as_ref(), rlwe_q, )); } // RLWE'(m) for j in 0..rlwe_x_rgsw_decomposer.b().decomposition_count() { // RLWE(B^{j} * X^{s_lwe[i]}) // X^{s_lwe[i]}*B_j let mut m_ideal = m_si.clone(); rlwe_modop.elwise_scalar_mul_mut(m_ideal.as_mut(), &rlwe_x_rgsw_gadget_b[j]); // RLWE(X^{s_lwe[i]}*B_j) let mut rlwe_ct = M::zeros(2, rlwe_n); rlwe_ct.get_row_mut(0).copy_from_slice( rgsw_ct_i .get_row_slice(j + (2 * rlwe_x_rgsw_decomposer.a().decomposition_count())), ); rlwe_ct .get_row_mut(1) .copy_from_slice(rgsw_ct_i.get_row_slice( j + (2 * rlwe_x_rgsw_decomposer.a().decomposition_count()) + rlwe_x_rgsw_decomposer.b().decomposition_count(), )); rlwe_ct .iter_rows_mut() .for_each(|r| rlwe_nttop.backward(r.as_mut())); let mut m_back = M::R::zeros(rlwe_n); decrypt_rlwe( &rlwe_ct, &ideal_sk_rlwe, &mut m_back, &rlwe_nttop, &rlwe_modop, ); // diff rlwe_modop.elwise_sub_mut(m_back.as_mut(), m_ideal.as_ref()); server_key_stats.add_noise_brk_rgsw_cts_m(&Vec::::try_convert_from( m_back.as_ref(), rlwe_q, )); } }); } // Noise in ciphertext after 1 auto // For each auto key g^k. Sample random polynomial m(X) and multiply with // -s(X^{g^k}) using key corresponding to auto g^k. Then check the noise in // resutling RLWE(m(X) * -s(X^{g^k})) { let neg_s = { let mut s = M::R::try_convert_from(ideal_sk_rlwe.as_slice(), rlwe_q); rlwe_modop.elwise_neg_mut(s.as_mut()); s }; let g = parameters.g(); let br_q = parameters.br_q(); let g_dlogs = parameters.auto_element_dlogs(); let auto_decomposer = parameters.auto_decomposer::(); let mut scratch_matrix = M::zeros(auto_decomposer.decomposition_count() + 2, rlwe_n); g_dlogs.iter().for_each(|k| { let g_pow_k = if *k == 0 { -(g as isize) } else { (g.pow(*k as u32) % br_q) as isize }; // Send s(X) -> s(X^{g^k}) let (auto_index_map, auto_sign_map) = crate::rgsw::generate_auto_map(rlwe_n, g_pow_k); let mut neg_s_g_k = M::R::zeros(rlwe_n); izip!( neg_s.as_ref().iter(), auto_index_map.iter(), auto_sign_map.iter() ) .for_each(|(el, to_index, to_sign)| { if !to_sign { neg_s_g_k.as_mut()[*to_index] = rlwe_modop.neg(el); } else { neg_s_g_k.as_mut()[*to_index] = *el; } }); let mut m = M::R::zeros(rlwe_n); RandomFillUniformInModulus::random_fill(&mut rng, rlwe_q, m.as_mut()); // We want -m(X^{g^k})s(X^{g^k}) after key switch let want_m = { let mut m_g_k_eval = M::R::zeros(rlwe_n); // send m(X) -> m(X^{g^k}) izip!( m.as_ref().iter(), auto_index_map.iter(), auto_sign_map.iter() ) .for_each(|(el, to_index, to_sign)| { if !to_sign { m_g_k_eval.as_mut()[*to_index] = rlwe_modop.neg(el); } else { m_g_k_eval.as_mut()[*to_index] = *el; } }); rlwe_nttop.forward(m_g_k_eval.as_mut()); let mut s_g_k = neg_s_g_k.clone(); rlwe_nttop.forward(s_g_k.as_mut()); rlwe_modop.elwise_mul_mut(m_g_k_eval.as_mut(), s_g_k.as_ref()); rlwe_nttop.backward(m_g_k_eval.as_mut()); m_g_k_eval }; // RLWE auto sends part A, A(X), of RLWE to A(X^{g^k}) and then multiplies it // with -s(X^{g^k}) using auto key. Deliberately set RLWE = (0, m(X)) // (ie. m in part A) to get back RLWE(-m(X^{g^k})s(X^{g^k})) let mut rlwe = RlweCiphertext::<_, DefaultSecureRng>::new_trivial(M::zeros(2, rlwe_n)); rlwe.data.get_row_mut(0).copy_from_slice(m.as_ref()); rlwe.set_not_trivial(); rlwe_auto( &mut rlwe, server_key.galois_key_for_auto(*k), &mut scratch_matrix, &auto_index_map, &auto_sign_map, &rlwe_modop, &rlwe_nttop, &auto_decomposer, ); // decrypt RLWE(-m(X)s(X^{g^k]})) let mut back_m = M::R::zeros(rlwe_n); decrypt_rlwe(&rlwe, &ideal_sk_rlwe, &mut back_m, &rlwe_nttop, &rlwe_modop); // check difference let mut diff = back_m; rlwe_modop.elwise_sub_mut(diff.as_mut(), want_m.as_ref()); server_key_stats .add_noise_post_1_auto(&Vec::::try_convert_from(diff.as_ref(), rlwe_q)); }); // sample random m // key switch } // LWE Key switch // LWE key switches LWE_in = LWE_{Q_ks,N, s}(m) = (b, a_0, ... a_N) -> LWE_out = // LWE_{Q_{ks}, n, z}(m) = (b', a'_0, ..., a'n) // If LWE_in = (0, a = {a_0, ..., a_N}), then LWE_out = LWE(-a \cdot s_{rlwe}) for _ in 0..10 { let mut lwe_in = M::R::zeros(rlwe_n + 1); RandomFillUniformInModulus::random_fill(&mut rng, lwe_q, &mut lwe_in.as_mut()[1..]); // Key switch let mut lwe_out = M::R::zeros(parameters.lwe_n().0 + 1); lwe_key_switch( &mut lwe_out, &lwe_in, server_key.lwe_ksk(), &lwe_modop, &lwe_ks_decomposer, ); // -a \cdot s let mut want_m = M::MatElement::zero(); izip!(lwe_in.as_ref().iter().skip(1), ideal_sk_rlwe.iter()).for_each(|(a, b)| { want_m = lwe_modop.add( &want_m, &lwe_modop.mul(a, &lwe_q.map_element_from_i64(*b as i64)), ); }); want_m = lwe_modop.neg(&want_m); // decrypt lwe out let back_m = decrypt_lwe(&lwe_out, &ideal_sk_lwe, &lwe_modop); let noise = lwe_modop.sub(&want_m, &back_m); server_key_stats.add_noise_post_kwe_key_switch(&vec![lwe_q.map_element_to_i64(&noise)]); } server_key_stats // Auto keys noise // Ksk noise } #[cfg(test)] mod tests { use itertools::Itertools; use super::collect_server_key_stats; #[test] #[cfg(feature = "interactive_mp")] fn qwerty() { use crate::{ aggregate_public_key_shares, aggregate_server_key_shares, bool::keys::ServerKeyEvaluationDomain, evaluator::MultiPartyCrs, gen_client_key, gen_mp_keys_phase1, gen_mp_keys_phase2, parameters::{BoolParameters, CiphertextModulus}, random::DefaultSecureRng, set_mp_seed, set_parameter_set, utils::WithLocal, BoolEvaluator, DefaultDecomposer, ModularOpsU64, Ntt, NttBackendU64, }; set_parameter_set(crate::ParameterSelector::HighCommunicationButFast2Party); set_mp_seed(MultiPartyCrs::random().seed); let parties = 2; let cks = (0..parties).map(|_| gen_client_key()).collect_vec(); let pk_shares = cks.iter().map(|k| gen_mp_keys_phase1(k)).collect_vec(); let pk = aggregate_public_key_shares(&pk_shares); let server_key_shares = cks .iter() .enumerate() .map(|(index, k)| gen_mp_keys_phase2(k, index, parties, &pk)) .collect_vec(); let seeded_server_key = aggregate_server_key_shares(&server_key_shares); let server_key_eval = ServerKeyEvaluationDomain::<_, _, DefaultSecureRng, NttBackendU64>::from( &seeded_server_key, ); let parameters = BoolEvaluator::with_local(|e| e.parameters().clone()); let server_key_stats = collect_server_key_stats::< _, DefaultDecomposer, NttBackendU64, ModularOpsU64>, _, >(parameters, &cks, &server_key_eval); println!( "Rgsw nsm std log2 {}", server_key_stats.brk_rgsw_cts.0.std_dev().abs().log2() ); println!( "Rgsw m std log2 {}", server_key_stats.brk_rgsw_cts.1.std_dev().abs().log2() ); println!( "rlwe post 1 auto std log2 {}", server_key_stats.post_1_auto.std_dev().abs().log2() ); println!( "key switching noise rlwe secret s to lwe secret z std log2 {}", server_key_stats.post_lwe_key_switch.std_dev().abs().log2() ); } #[test] #[cfg(feature = "non_interactive_mp")] fn querty2() { use crate::{ aggregate_server_key_shares, bool::keys::NonInteractiveServerKeyEvaluationDomain, evaluator::NonInteractiveMultiPartyCrs, gen_client_key, gen_server_key_share, parameters::CiphertextModulus, random::DefaultSecureRng, set_common_reference_seed, set_parameter_set, utils::WithLocal, BoolEvaluator, DefaultDecomposer, ModularOpsU64, NttBackendU64, }; set_parameter_set(crate::ParameterSelector::NonInteractiveLTE2Party); set_common_reference_seed(NonInteractiveMultiPartyCrs::random().seed); let parties = 2; let cks = (0..parties).map(|i| gen_client_key()).collect_vec(); let server_key_shares = cks .iter() .enumerate() .map(|(user_id, k)| gen_server_key_share(user_id, parties, k)) .collect_vec(); let server_key = aggregate_server_key_shares(&server_key_shares); let server_key_eval = NonInteractiveServerKeyEvaluationDomain::<_, _, DefaultSecureRng, NttBackendU64>::from( &server_key, ); let parameters = BoolEvaluator::with_local(|e| e.parameters().clone()); let server_key_stats = collect_server_key_stats::< _, DefaultDecomposer, NttBackendU64, ModularOpsU64>, _, >(parameters, &cks, &server_key_eval); println!( "Rgsw nsm std log2 {}", server_key_stats.brk_rgsw_cts.0.std_dev().abs().log2() ); println!( "Rgsw m std log2 {}", server_key_stats.brk_rgsw_cts.1.std_dev().abs().log2() ); println!( "rlwe post 1 auto std log2 {}", server_key_stats.post_1_auto.std_dev().abs().log2() ); println!( "key switching noise rlwe secret s to lwe secret z std log2 {}", server_key_stats.post_lwe_key_switch.std_dev().abs().log2() ); } #[test] #[cfg(feature = "non_interactive_mp")] fn enc_under_sk_and_key_switch() { use rand::{thread_rng, Rng}; use crate::{ aggregate_server_key_shares, bool::{keys::tests::ideal_sk_rlwe, ni_mp_api::NonInteractiveBatchedFheBools}, gen_client_key, gen_server_key_share, rgsw::decrypt_rlwe, set_common_reference_seed, set_parameter_set, utils::{tests::Stats, TryConvertFrom1, WithLocal}, BoolEvaluator, Encoder, Encryptor, KeySwitchWithId, ModInit, ModularOpsU64, NttBackendU64, NttInit, ParameterSelector, VectorOps, }; set_parameter_set(ParameterSelector::NonInteractiveLTE2Party); set_common_reference_seed([2; 32]); let parties = 2; let cks = (0..parties).map(|_| gen_client_key()).collect_vec(); let key_shares = cks .iter() .enumerate() .map(|(user_index, ck)| gen_server_key_share(user_index, parties, ck)) .collect_vec(); let seeded_server_key = aggregate_server_key_shares(&key_shares); seeded_server_key.set_server_key(); let parameters = BoolEvaluator::with_local(|e| e.parameters().clone()); let nttop = NttBackendU64::new(parameters.rlwe_q(), parameters.rlwe_n().0); let rlwe_q_modop = ModularOpsU64::new(*parameters.rlwe_q()); let m = (0..parameters.rlwe_n().0) .map(|_| thread_rng().gen_bool(0.5)) .collect_vec(); let ct: NonInteractiveBatchedFheBools<_> = cks[0].encrypt(m.as_slice()); let ct = ct.key_switch(0); let ideal_rlwe_sk = ideal_sk_rlwe(&cks); let message = m .iter() .map(|b| parameters.rlwe_q().encode(*b)) .collect_vec(); let mut m_out = vec![0u64; parameters.rlwe_n().0]; decrypt_rlwe( &ct.data[0], &ideal_rlwe_sk, &mut m_out, &nttop, &rlwe_q_modop, ); let mut diff = m_out; rlwe_q_modop.elwise_sub_mut(diff.as_mut_slice(), message.as_ref()); let mut stats = Stats::new(); stats.add_more(&Vec::::try_convert_from( diff.as_slice(), parameters.rlwe_q(), )); println!("Noise std log2: {}", stats.std_dev().abs().log2()); } }