You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

135 lines
4.2 KiB

use num_traits::ToPrimitive;
use crate::{Matrix, RowMut};
mod modulus_u64;
mod word_size;
pub use modulus_u64::ModularOpsU64;
pub use word_size::WordSizeModulus;
pub trait Modulus {
type Element;
/// Modulus value if it fits in Element
fn q(&self) -> Option<Self::Element>;
/// Modulus value as f64 if it fits in f64
fn q_as_f64(&self) -> Option<f64>;
/// Is modulus native?
fn is_native(&self) -> bool;
/// -1 in signed representaiton
fn neg_one(&self) -> Self::Element;
/// Largest unsigned value that fits in the modulus. That is, q - 1.
fn largest_unsigned_value(&self) -> Self::Element;
/// Smallest unsigned value that fits in the modulus
/// Always assmed to be 0.
fn smallest_unsigned_value(&self) -> Self::Element;
/// Convert unsigned value in signed represetation to i64
fn map_element_to_i64(&self, v: &Self::Element) -> i64;
/// Convert f64 to signed represented in modulus
fn map_element_from_f64(&self, v: f64) -> Self::Element;
/// Convert i64 to signed represented in modulus
fn map_element_from_i64(&self, v: i64) -> Self::Element;
}
impl Modulus for u64 {
type Element = u64;
fn is_native(&self) -> bool {
// q of size u64 can never be a naitve modulus
false
}
fn largest_unsigned_value(&self) -> Self::Element {
self - 1
}
fn neg_one(&self) -> Self::Element {
self - 1
}
fn smallest_unsigned_value(&self) -> Self::Element {
0
}
fn map_element_to_i64(&self, v: &Self::Element) -> i64 {
assert!(v <= self, "{v} must be <= {self}");
if *v >= (self >> 1) {
-ToPrimitive::to_i64(&(self - v)).unwrap()
} else {
ToPrimitive::to_i64(v).unwrap()
}
}
fn map_element_from_f64(&self, v: f64) -> Self::Element {
//FIXME (Jay): Before I check whether v is smaller than 0 with `let is_neg =
// o.is_sign_negative() && o != 0.0; I'm ocnfused why didn't I simply check <
// 0.0?
let v = v.round();
if v < 0.0 {
self - v.abs().to_u64().unwrap()
} else {
v.to_u64().unwrap()
}
}
fn map_element_from_i64(&self, v: i64) -> Self::Element {
if v < 0 {
self - v.abs().to_u64().unwrap()
} else {
v.to_u64().unwrap()
}
}
fn q(&self) -> Option<Self::Element> {
Some(*self)
}
fn q_as_f64(&self) -> Option<f64> {
self.to_f64()
}
}
pub trait ModInit {
type M;
fn new(modulus: Self::M) -> Self;
}
pub trait GetModulus {
type Element;
type M: Modulus<Element = Self::Element>;
fn modulus(&self) -> &Self::M;
}
pub trait VectorOps {
type Element;
fn elwise_scalar_mul(&self, out: &mut [Self::Element], a: &[Self::Element], b: &Self::Element);
fn elwise_mul(&self, out: &mut [Self::Element], a: &[Self::Element], b: &[Self::Element]);
fn elwise_add_mut(&self, a: &mut [Self::Element], b: &[Self::Element]);
fn elwise_sub_mut(&self, a: &mut [Self::Element], b: &[Self::Element]);
fn elwise_mul_mut(&self, a: &mut [Self::Element], b: &[Self::Element]);
fn elwise_scalar_mul_mut(&self, a: &mut [Self::Element], b: &Self::Element);
fn elwise_neg_mut(&self, a: &mut [Self::Element]);
/// inplace mutates `a`: a = a + b*c
fn elwise_fma_mut(&self, a: &mut [Self::Element], b: &[Self::Element], c: &[Self::Element]);
fn elwise_fma_scalar_mut(
&self,
a: &mut [Self::Element],
b: &[Self::Element],
c: &Self::Element,
);
}
pub trait ArithmeticOps {
type Element;
fn mul(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
fn add(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
fn sub(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
fn neg(&self, a: &Self::Element) -> Self::Element;
}
pub trait ArithmeticLazyOps {
type Element;
fn mul_lazy(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
fn add_lazy(&self, a: &Self::Element, b: &Self::Element) -> Self::Element;
}
pub trait ShoupMatrixFMA<M: Matrix>
where
M::R: RowMut,
{
/// Returns summation of row-wise product of matrix a and b.
fn shoup_matrix_fma(&self, out: &mut M::R, a: &M, a_shoup: &M, b: &M);
}