|
use itertools::Itertools;
|
|
use phantom_zone::*;
|
|
use rand::{thread_rng, Rng, RngCore};
|
|
|
|
fn function1(a: u8, b: u8, c: u8, d: u8) -> u8 {
|
|
((a + b) * c) * d
|
|
}
|
|
|
|
fn function1_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
|
|
&(&(a + b) * c) * d
|
|
}
|
|
|
|
fn function2(a: u8, b: u8, c: u8, d: u8) -> u8 {
|
|
(a * b) + (c * d)
|
|
}
|
|
|
|
fn function2_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
|
|
&(a * b) + &(c * d)
|
|
}
|
|
|
|
fn main() {
|
|
// Select parameter set
|
|
set_parameter_set(ParameterSelector::InteractiveLTE4Party);
|
|
|
|
// set application's common reference seed
|
|
let mut seed = [0u8; 32];
|
|
thread_rng().fill_bytes(&mut seed);
|
|
set_common_reference_seed(seed);
|
|
|
|
let no_of_parties = 4;
|
|
|
|
// Client side //
|
|
|
|
// Clients generate their private keys
|
|
let cks = (0..no_of_parties)
|
|
.into_iter()
|
|
.map(|_| gen_client_key())
|
|
.collect_vec();
|
|
|
|
// -- Round 1 -- //
|
|
// In round 1 each client generates their share for the collective public key.
|
|
// They send public key shares to each other with or out without the server.
|
|
// After receiving others public key shares clients independently aggregate
|
|
// the shares and produce the collective public key `pk`
|
|
|
|
let pk_shares = cks
|
|
.iter()
|
|
.map(|k| interactive_multi_party_round1_share(k))
|
|
.collect_vec();
|
|
|
|
// Clients aggregate public key shares to produce collective public key `pk`
|
|
let pk = aggregate_public_key_shares(&pk_shares);
|
|
|
|
// -- Round 2 -- //
|
|
// In round 2 each client generates server key share using the public key `pk`.
|
|
// Clients may also encrypt their private inputs using collective public key
|
|
// `pk`. Each client then uploads their server key share and private input
|
|
// ciphertexts to the server.
|
|
|
|
// Clients generate server key shares
|
|
//
|
|
// We assign user_id 0 to client 0, user_id 1 to client 1, user_id 2 to client
|
|
// 2, and user_id 4 to client 4.
|
|
//
|
|
// Note that `user_id`'s must be unique among the clients and must be less than
|
|
// total number of clients.
|
|
let server_key_shares = cks
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(user_id, k)| gen_mp_keys_phase2(k, user_id, no_of_parties, &pk))
|
|
.collect_vec();
|
|
|
|
// Each client encrypts their private inputs using the collective public key
|
|
// `pk`. Unlike non-inteactive MPC protocol, private inputs are
|
|
// encrypted using collective public key.
|
|
let c0_a = thread_rng().gen::<u8>();
|
|
let c0_enc = pk.encrypt(vec![c0_a].as_slice());
|
|
let c1_a = thread_rng().gen::<u8>();
|
|
let c1_enc = pk.encrypt(vec![c1_a].as_slice());
|
|
let c2_a = thread_rng().gen::<u8>();
|
|
let c2_enc = pk.encrypt(vec![c2_a].as_slice());
|
|
let c3_a = thread_rng().gen::<u8>();
|
|
let c3_enc = pk.encrypt(vec![c3_a].as_slice());
|
|
|
|
// Clients upload their server key along with private encrypted inputs to
|
|
// the server
|
|
|
|
// Server side //
|
|
|
|
// Server receives server key shares from each client and proceeds to
|
|
// aggregate the shares and produce the server key
|
|
let server_key = aggregate_server_key_shares(&server_key_shares);
|
|
server_key.set_server_key();
|
|
|
|
// Server proceeds to extract clients private inputs
|
|
//
|
|
// Clients encrypt their FheUint8s inputs packed in a batched ciphertext.
|
|
// The server must extract clients private inputs from the batch ciphertext
|
|
// either (1) using `extract_at(index)` to extract `index`^{th} FheUint8
|
|
// ciphertext (2) or using `extract_all()` to extract all available FheUint8s
|
|
// (3) or using `extract_many(many)` to extract first `many` available FheUint8s
|
|
let c0_a_enc = c0_enc.extract_at(0);
|
|
let c1_a_enc = c1_enc.extract_at(0);
|
|
let c2_a_enc = c2_enc.extract_at(0);
|
|
let c3_a_enc = c3_enc.extract_at(0);
|
|
|
|
// Server proceeds to evaluate function1 on clients private inputs
|
|
let ct_out_f1 = function1_fhe(&c0_a_enc, &c1_a_enc, &c2_a_enc, &c3_a_enc);
|
|
|
|
// After server has finished evaluating the circuit on client private
|
|
// inputs, clients can proceed to multi-party decryption protocol to
|
|
// decrypt output ciphertext
|
|
|
|
// Client Side //
|
|
|
|
// In multi-party decryption protocol, client must come online, download the
|
|
// output ciphertext from the server, product "output ciphertext" dependent
|
|
// decryption share, and send it to other parties. After receiving
|
|
// decryption shares of other parties, clients independently aggregate the
|
|
// decrytion shares and decrypt the output ciphertext.
|
|
|
|
// Clients generate decryption shares
|
|
let decryption_shares = cks
|
|
.iter()
|
|
.map(|k| k.gen_decryption_share(&ct_out_f1))
|
|
.collect_vec();
|
|
|
|
// After receiving decryption shares from other parties, clients aggregate the
|
|
// shares and decrypt output ciphertext
|
|
let out_f1 = cks[0].aggregate_decryption_shares(&ct_out_f1, &decryption_shares);
|
|
|
|
// Check correctness of function1 output
|
|
let want_f1 = function1(c0_a, c1_a, c2_a, c3_a);
|
|
assert!(out_f1 == want_f1);
|
|
|
|
// --------
|
|
|
|
// Once server key is produced it can be re-used across different functions
|
|
// with different private client inputs for the same set of clients.
|
|
//
|
|
// Here we run `function2_fhe` for the same of clients but with different
|
|
// private inputs. Clients do not need to participate in the 2 round
|
|
// protocol again, instead they only upload their new private inputs to the
|
|
// server.
|
|
|
|
// Clients encrypt their private inputs
|
|
let c0_a = thread_rng().gen::<u8>();
|
|
let c0_enc = pk.encrypt(vec![c0_a].as_slice());
|
|
let c1_a = thread_rng().gen::<u8>();
|
|
let c1_enc = pk.encrypt(vec![c1_a].as_slice());
|
|
let c2_a = thread_rng().gen::<u8>();
|
|
let c2_enc = pk.encrypt(vec![c2_a].as_slice());
|
|
let c3_a = thread_rng().gen::<u8>();
|
|
let c3_enc = pk.encrypt(vec![c3_a].as_slice());
|
|
|
|
// Clients uploads only their new private inputs to the server
|
|
|
|
// Server side //
|
|
|
|
// Server receives private inputs from the clients, extracts them, and
|
|
// proceeds to evaluate `function2_fhe`
|
|
let c0_a_enc = c0_enc.extract_at(0);
|
|
let c1_a_enc = c1_enc.extract_at(0);
|
|
let c2_a_enc = c2_enc.extract_at(0);
|
|
let c3_a_enc = c3_enc.extract_at(0);
|
|
|
|
let ct_out_f2 = function2_fhe(&c0_a_enc, &c1_a_enc, &c2_a_enc, &c3_a_enc);
|
|
|
|
// Client side //
|
|
|
|
// Clients generate decryption shares for `ct_out_f2`
|
|
let decryption_shares = cks
|
|
.iter()
|
|
.map(|k| k.gen_decryption_share(&ct_out_f2))
|
|
.collect_vec();
|
|
|
|
// Clients aggregate decryption shares and decrypt `ct_out_f2`
|
|
let out_f2 = cks[0].aggregate_decryption_shares(&ct_out_f2, &decryption_shares);
|
|
|
|
// We check correctness of function2
|
|
let want_f2 = function2(c0_a, c1_a, c2_a, c3_a);
|
|
assert!(want_f2 == out_f2);
|
|
}
|