|
use itertools::Itertools;
|
|
use phantom_zone::*;
|
|
use rand::{thread_rng, Rng, RngCore};
|
|
|
|
fn function1(a: u8, b: u8, c: u8, d: u8) -> u8 {
|
|
((a + b) * c) * d
|
|
}
|
|
|
|
fn function1_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
|
|
&(&(a + b) * c) * d
|
|
}
|
|
|
|
fn function2(a: u8, b: u8, c: u8, d: u8) -> u8 {
|
|
(a * b) + (c * d)
|
|
}
|
|
|
|
fn function2_fhe(a: &FheUint8, b: &FheUint8, c: &FheUint8, d: &FheUint8) -> FheUint8 {
|
|
&(a * b) + &(c * d)
|
|
}
|
|
|
|
fn main() {
|
|
set_parameter_set(ParameterSelector::NonInteractiveLTE4Party);
|
|
|
|
// set application's common reference seed
|
|
let mut seed = [0u8; 32];
|
|
thread_rng().fill_bytes(&mut seed);
|
|
set_common_reference_seed(seed);
|
|
|
|
let no_of_parties = 4;
|
|
|
|
// Clide side //
|
|
|
|
// Generate client keys
|
|
let cks = (0..no_of_parties).map(|_| gen_client_key()).collect_vec();
|
|
|
|
// client 0 encrypts its private inputs
|
|
let c0_a = thread_rng().gen::<u8>();
|
|
// Clients encrypt their private inputs in a seeded batched ciphertext using
|
|
// their private RLWE secret `u_j`.
|
|
let c0_enc = cks[0].encrypt(vec![c0_a].as_slice());
|
|
|
|
// client 1 encrypts its private inputs
|
|
let c1_a = thread_rng().gen::<u8>();
|
|
let c1_enc = cks[1].encrypt(vec![c1_a].as_slice());
|
|
|
|
// client 2 encrypts its private inputs
|
|
let c2_a = thread_rng().gen::<u8>();
|
|
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
|
|
|
|
// client 3 encrypts its private inputs
|
|
let c3_a = thread_rng().gen::<u8>();
|
|
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
|
|
|
|
// Clients independently generate their server key shares
|
|
//
|
|
// We assign user_id 0 to client 0, user_id 1 to client 1, user_id 2 to client
|
|
// 2, user_id 3 to client 3.
|
|
//
|
|
// Note that `user_id`s must be unique among the clients and must be less than
|
|
// total number of clients.
|
|
let server_key_shares = cks
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(id, k)| gen_server_key_share(id, no_of_parties, k))
|
|
.collect_vec();
|
|
|
|
// Each client uploads their server key shares and encrypted private inputs to
|
|
// the server in a single shot message.
|
|
|
|
// Server side //
|
|
|
|
// Server receives server key shares from each client and proceeds to aggregate
|
|
// them to produce the server key. After this point, server can use the server
|
|
// key to evaluate any arbitrary function on encrypted private inputs from
|
|
// the fixed set of clients
|
|
|
|
// aggregate server shares and generate the server key
|
|
let server_key = aggregate_server_key_shares(&server_key_shares);
|
|
server_key.set_server_key();
|
|
|
|
// Server proceeds to extract private inputs sent by clients
|
|
//
|
|
// To extract client 0's (with user_id=0) private inputs we first key switch
|
|
// client 0's private inputs from theit secret `u_j` to ideal secret of the mpc
|
|
// protocol. To indicate we're key switching client 0's private input we
|
|
// supply client 0's `user_id` i.e. we call `key_switch(0)`. Then we extract
|
|
// the first ciphertext by calling `extract_at(0)`.
|
|
//
|
|
// Since client 0 only encrypts 1 input in batched ciphertext, calling
|
|
// extract_at(index) for `index` > 0 will panic. If client 0 had more private
|
|
// inputs then we can either extract them all at once with `extract_all` or
|
|
// first `many` of them with `extract_many(many)`
|
|
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
|
|
|
|
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
|
|
let ct_c2_a = c2_enc.unseed::<Vec<Vec<u64>>>().key_switch(2).extract_at(0);
|
|
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
|
|
|
|
// After extracting each client's private inputs, server proceeds to evaluate
|
|
// function1
|
|
let now = std::time::Instant::now();
|
|
let ct_out_f1 = function1_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
|
|
println!("Function1 FHE evaluation time: {:?}", now.elapsed());
|
|
|
|
// Server has finished running compute. Clients can proceed to decrypt the
|
|
// output ciphertext using multi-party decryption.
|
|
|
|
// Client side //
|
|
|
|
// In multi-party decryption, each client needs to come online, download output
|
|
// ciphertext from the server, produce "output ciphertext" dependent decryption
|
|
// share, and send it to other parties (either via p2p or via server). After
|
|
// receving decryption shares from other parties, clients can independently
|
|
// decrypt output ciphertext.
|
|
|
|
// each client produces decryption share
|
|
let decryption_shares = cks
|
|
.iter()
|
|
.map(|k| k.gen_decryption_share(&ct_out_f1))
|
|
.collect_vec();
|
|
|
|
// With all decryption shares, clients can aggregate the shares and decrypt the
|
|
// ciphertext
|
|
let out_f1 = cks[0].aggregate_decryption_shares(&ct_out_f1, &decryption_shares);
|
|
|
|
// we check correctness of function1
|
|
let want_out_f1 = function1(c0_a, c1_a, c2_a, c3_a);
|
|
assert_eq!(out_f1, want_out_f1);
|
|
|
|
// -----------
|
|
|
|
// Server key can be re-used for different functions with different private
|
|
// client inputs for the same set of clients.
|
|
//
|
|
// Here we run `function2_fhe` for the same set of client but with new inputs.
|
|
// Clients only have to upload their private inputs to the server this time.
|
|
|
|
// Each client encrypts their private input
|
|
let c0_a = thread_rng().gen::<u8>();
|
|
let c0_enc = cks[0].encrypt(vec![c0_a].as_slice());
|
|
let c1_a = thread_rng().gen::<u8>();
|
|
let c1_enc = cks[1].encrypt(vec![c1_a].as_slice());
|
|
let c2_a = thread_rng().gen::<u8>();
|
|
let c2_enc = cks[2].encrypt(vec![c2_a].as_slice());
|
|
let c3_a = thread_rng().gen::<u8>();
|
|
let c3_enc = cks[3].encrypt(vec![c3_a].as_slice());
|
|
|
|
// Clients upload only their new private inputs to the server
|
|
|
|
// Server side //
|
|
|
|
// Server receives clients private inputs and extracts them
|
|
let ct_c0_a = c0_enc.unseed::<Vec<Vec<u64>>>().key_switch(0).extract_at(0);
|
|
let ct_c1_a = c1_enc.unseed::<Vec<Vec<u64>>>().key_switch(1).extract_at(0);
|
|
let ct_c2_a = c2_enc.unseed::<Vec<Vec<u64>>>().key_switch(2).extract_at(0);
|
|
let ct_c3_a = c3_enc.unseed::<Vec<Vec<u64>>>().key_switch(3).extract_at(0);
|
|
|
|
// Server proceeds to evaluate `function2_fhe`
|
|
let now = std::time::Instant::now();
|
|
let ct_out_f2 = function2_fhe(&ct_c0_a, &ct_c1_a, &ct_c2_a, &ct_c3_a);
|
|
println!("Function2 FHE evaluation time: {:?}", now.elapsed());
|
|
|
|
// Client side //
|
|
|
|
// Each client generates decrytion share for `ct_out_f2`
|
|
let decryption_shares = cks
|
|
.iter()
|
|
.map(|k| k.gen_decryption_share(&ct_out_f2))
|
|
.collect_vec();
|
|
|
|
// Clients independently aggregate the shares and decrypt
|
|
let out_f2 = cks[0].aggregate_decryption_shares(&ct_out_f2, &decryption_shares);
|
|
|
|
// We check correctness of function2
|
|
let want_out_f2 = function2(c0_a, c1_a, c2_a, c3_a);
|
|
assert_eq!(out_f2, want_out_f2);
|
|
}
|