You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

337 lines
10 KiB

use std::fmt::Debug;
use itertools::izip;
use num_traits::Zero;
use crate::{
backend::{ArithmeticOps, GetModulus, VectorOps},
decomposer::Decomposer,
random::{RandomFillUniformInModulus, RandomGaussianElementInModulus},
utils::TryConvertFrom1,
Matrix, Row, RowEntity, RowMut,
};
pub(crate) fn lwe_key_switch<
M: Matrix,
Ro: AsMut<[M::MatElement]> + AsRef<[M::MatElement]>,
Op: VectorOps<Element = M::MatElement> + ArithmeticOps<Element = M::MatElement>,
D: Decomposer<Element = M::MatElement>,
>(
lwe_out: &mut Ro,
lwe_in: &Ro,
lwe_ksk: &M,
operator: &Op,
decomposer: &D,
) {
assert!(
lwe_ksk.dimension().0 == ((lwe_in.as_ref().len() - 1) * decomposer.decomposition_count().0)
);
assert!(lwe_out.as_ref().len() == lwe_ksk.dimension().1);
let lwe_in_a_decomposed = lwe_in
.as_ref()
.iter()
.skip(1)
.flat_map(|ai| decomposer.decompose_iter(ai));
izip!(lwe_in_a_decomposed, lwe_ksk.iter_rows()).for_each(|(ai_j, beta_ij_lwe)| {
// let now = std::time::Instant::now();
operator.elwise_fma_scalar_mut(lwe_out.as_mut(), beta_ij_lwe.as_ref(), &ai_j);
// println!("Time elwise_fma_scalar_mut: {:?}", now.elapsed());
});
let out_b = operator.add(&lwe_out.as_ref()[0], &lwe_in.as_ref()[0]);
lwe_out.as_mut()[0] = out_b;
}
pub(crate) fn seeded_lwe_ksk_keygen<
Ro: RowMut + RowEntity,
S,
Op: VectorOps<Element = Ro::Element>
+ ArithmeticOps<Element = Ro::Element>
+ GetModulus<Element = Ro::Element>,
R: RandomGaussianElementInModulus<Ro::Element, Op::M>,
PR: RandomFillUniformInModulus<[Ro::Element], Op::M>,
>(
from_lwe_sk: &[S],
to_lwe_sk: &[S],
gadget: &[Ro::Element],
operator: &Op,
p_rng: &mut PR,
rng: &mut R,
) -> Ro
where
Ro: TryConvertFrom1<[S], Op::M>,
Ro::Element: Zero + Debug,
{
let mut ksk_out = Ro::zeros(from_lwe_sk.len() * gadget.len());
let d = gadget.len();
let modulus = operator.modulus();
let mut neg_sk_in_m = Ro::try_convert_from(from_lwe_sk, modulus);
operator.elwise_neg_mut(neg_sk_in_m.as_mut());
let sk_out_m = Ro::try_convert_from(to_lwe_sk, modulus);
let mut scratch = Ro::zeros(to_lwe_sk.len());
izip!(neg_sk_in_m.as_ref(), ksk_out.as_mut().chunks_mut(d)).for_each(
|(neg_sk_in_si, d_lwes_partb)| {
izip!(gadget.iter(), d_lwes_partb.into_iter()).for_each(|(beta, lwe_b)| {
// sample `a`
RandomFillUniformInModulus::random_fill(p_rng, &modulus, scratch.as_mut());
// a * z
let mut az = Ro::Element::zero();
izip!(scratch.as_ref().iter(), sk_out_m.as_ref()).for_each(|(ai, si)| {
let ai_si = operator.mul(ai, si);
az = operator.add(&az, &ai_si);
});
// a*z + (-s_i)*\beta^j + e
let mut b = operator.add(&az, &operator.mul(beta, neg_sk_in_si));
let e = RandomGaussianElementInModulus::random(rng, &modulus);
b = operator.add(&b, &e);
*lwe_b = b;
})
},
);
ksk_out
}
/// Encrypts encoded message m as LWE ciphertext
pub(crate) fn encrypt_lwe<
Ro: RowMut + RowEntity,
Op: ArithmeticOps<Element = Ro::Element> + GetModulus<Element = Ro::Element>,
R: RandomGaussianElementInModulus<Ro::Element, Op::M>
+ RandomFillUniformInModulus<[Ro::Element], Op::M>,
S,
>(
m: &Ro::Element,
s: &[S],
operator: &Op,
rng: &mut R,
) -> Ro
where
Ro: TryConvertFrom1<[S], Op::M>,
Ro::Element: Zero,
{
let s = Ro::try_convert_from(s, operator.modulus());
let mut lwe_out = Ro::zeros(s.as_ref().len() + 1);
// a*s
RandomFillUniformInModulus::random_fill(rng, operator.modulus(), &mut lwe_out.as_mut()[1..]);
let mut sa = Ro::Element::zero();
izip!(lwe_out.as_mut().iter().skip(1), s.as_ref()).for_each(|(ai, si)| {
let tmp = operator.mul(ai, si);
sa = operator.add(&tmp, &sa);
});
// b = a*s + e + m
let e = RandomGaussianElementInModulus::random(rng, operator.modulus());
let b = operator.add(&operator.add(&sa, &e), m);
lwe_out.as_mut()[0] = b;
lwe_out
}
pub(crate) fn decrypt_lwe<
Ro: Row,
Op: ArithmeticOps<Element = Ro::Element> + GetModulus<Element = Ro::Element>,
S,
>(
lwe_ct: &Ro,
s: &[S],
operator: &Op,
) -> Ro::Element
where
Ro: TryConvertFrom1<[S], Op::M>,
Ro::Element: Zero,
{
let s = Ro::try_convert_from(s, operator.modulus());
let mut sa = Ro::Element::zero();
izip!(lwe_ct.as_ref().iter().skip(1), s.as_ref()).for_each(|(ai, si)| {
let tmp = operator.mul(ai, si);
sa = operator.add(&tmp, &sa);
});
let b = &lwe_ct.as_ref()[0];
operator.sub(b, &sa)
}
#[cfg(test)]
mod tests {
use std::marker::PhantomData;
use itertools::izip;
use crate::{
backend::{ModInit, ModulusPowerOf2},
decomposer::DefaultDecomposer,
random::{DefaultSecureRng, NewWithSeed},
utils::{fill_random_ternary_secret_with_hamming_weight, WithLocal},
MatrixEntity, MatrixMut, Secret,
};
use super::*;
const K: usize = 50;
#[derive(Clone)]
struct LweSecret {
pub(crate) values: Vec<i32>,
}
impl Secret for LweSecret {
type Element = i32;
fn values(&self) -> &[Self::Element] {
&self.values
}
}
impl LweSecret {
fn random(hw: usize, n: usize) -> LweSecret {
DefaultSecureRng::with_local_mut(|rng| {
let mut out = vec![0i32; n];
fill_random_ternary_secret_with_hamming_weight(&mut out, hw, rng);
LweSecret { values: out }
})
}
}
struct LweKeySwitchingKey<M, R> {
data: M,
_phantom: PhantomData<R>,
}
impl<
M: MatrixMut + MatrixEntity,
R: NewWithSeed + RandomFillUniformInModulus<[M::MatElement], M::MatElement>,
> From<&(M::R, R::Seed, usize, M::MatElement)> for LweKeySwitchingKey<M, R>
where
M::R: RowMut,
R::Seed: Clone,
M::MatElement: Copy,
{
fn from(value: &(M::R, R::Seed, usize, M::MatElement)) -> Self {
let data_in = &value.0;
let seed = &value.1;
let to_lwe_n = value.2;
let modulus = value.3;
let mut p_rng = R::new_with_seed(seed.clone());
let mut data = M::zeros(data_in.as_ref().len(), to_lwe_n + 1);
izip!(data_in.as_ref().iter(), data.iter_rows_mut()).for_each(|(bi, lwe_i)| {
RandomFillUniformInModulus::random_fill(
&mut p_rng,
&modulus,
&mut lwe_i.as_mut()[1..],
);
lwe_i.as_mut()[0] = *bi;
});
LweKeySwitchingKey {
data,
_phantom: PhantomData,
}
}
}
#[test]
fn encrypt_decrypt_works() {
let logq = 16;
let q = 1u64 << logq;
let lwe_n = 1024;
let logp = 3;
let modq_op = ModulusPowerOf2::new(q);
let lwe_sk = LweSecret::random(lwe_n >> 1, lwe_n);
let mut rng = DefaultSecureRng::new();
// encrypt
for m in 0..1u64 << logp {
let encoded_m = m << (logq - logp);
let lwe_ct =
encrypt_lwe::<Vec<u64>, _, _, _>(&encoded_m, &lwe_sk.values(), &modq_op, &mut rng);
let encoded_m_back = decrypt_lwe(&lwe_ct, &lwe_sk.values(), &modq_op);
let m_back = ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as f64).round()
as u64)
% (1u64 << logp);
assert_eq!(m, m_back, "Expected {m} but got {m_back}");
}
}
#[test]
fn key_switch_works() {
let logq = 20;
let logp = 2;
let q = 1u64 << logq;
let lwe_in_n = 2048;
let lwe_out_n = 600;
let d_ks = 5;
let logb = 4;
let lwe_sk_in = LweSecret::random(lwe_in_n >> 1, lwe_in_n);
let lwe_sk_out = LweSecret::random(lwe_out_n >> 1, lwe_out_n);
let mut rng = DefaultSecureRng::new();
let modq_op = ModulusPowerOf2::new(q);
// genrate ksk
for _ in 0..1 {
let mut ksk_seed = [0u8; 32];
rng.fill_bytes(&mut ksk_seed);
let mut p_rng = DefaultSecureRng::new_seeded(ksk_seed);
let decomposer = DefaultDecomposer::new(q, logb, d_ks);
let gadget = decomposer.gadget_vector();
let seeded_ksk = seeded_lwe_ksk_keygen(
&lwe_sk_in.values(),
&lwe_sk_out.values(),
&gadget,
&modq_op,
&mut p_rng,
&mut rng,
);
// println!("{:?}", ksk);
let ksk = LweKeySwitchingKey::<Vec<Vec<u64>>, DefaultSecureRng>::from(&(
seeded_ksk, ksk_seed, lwe_out_n, q,
));
for m in 0..(1 << logp) {
// encrypt using lwe_sk_in
let encoded_m = m << (logq - logp);
let lwe_in_ct = encrypt_lwe(&encoded_m, lwe_sk_in.values(), &modq_op, &mut rng);
// key switch from lwe_sk_in to lwe_sk_out
let mut lwe_out_ct = vec![0u64; lwe_out_n + 1];
let now = std::time::Instant::now();
lwe_key_switch(
&mut lwe_out_ct,
&lwe_in_ct,
&ksk.data,
&modq_op,
&decomposer,
);
println!("Time: {:?}", now.elapsed());
// decrypt lwe_out_ct using lwe_sk_out
// TODO(Jay): Fix me
// let encoded_m_back = decrypt_lwe(&lwe_out_ct,
// &lwe_sk_out.values(), &modq_op); let m_back =
// ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as
// f64).round() as u64)
// % (1u64 << logp);
// let noise =
// measure_noise_lwe(&lwe_out_ct, lwe_sk_out.values(),
// &modq_op, &encoded_m); println!("Noise:
// {noise}"); assert_eq!(m, m_back, "Expected
// {m} but got {m_back}"); dbg!(m, m_back);
// dbg!(encoded_m, encoded_m_back);
}
}
}
}