use std::{
|
|
cell::{OnceCell, RefCell},
|
|
collections::HashMap,
|
|
fmt::{Debug, Display},
|
|
marker::PhantomData,
|
|
ops::Shr,
|
|
};
|
|
|
|
use itertools::{izip, partition, Itertools};
|
|
use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, WrappingSub, Zero};
|
|
|
|
use crate::{
|
|
backend::{ArithmeticOps, GetModulus, ModInit, ModularOpsU64, Modulus, VectorOps},
|
|
bool::parameters::{MP_BOOL_PARAMS, SP_BOOL_PARAMS},
|
|
decomposer::{Decomposer, DefaultDecomposer, NumInfo, RlweDecomposer},
|
|
lwe::{decrypt_lwe, encrypt_lwe, lwe_key_switch, lwe_ksk_keygen, measure_noise_lwe, LweSecret},
|
|
multi_party::public_key_share,
|
|
ntt::{self, Ntt, NttBackendU64, NttInit},
|
|
random::{
|
|
DefaultSecureRng, NewWithSeed, RandomFillGaussianInModulus, RandomFillUniformInModulus,
|
|
RandomGaussianElementInModulus,
|
|
},
|
|
rgsw::{
|
|
decrypt_rlwe, galois_auto, galois_key_gen, generate_auto_map, public_key_encrypt_rgsw,
|
|
rgsw_by_rgsw_inplace, rlwe_by_rgsw, secret_key_encrypt_rgsw, IsTrivial, RgswCiphertext,
|
|
RlweCiphertext, RlweSecret,
|
|
},
|
|
utils::{
|
|
fill_random_ternary_secret_with_hamming_weight, generate_prime, mod_exponent,
|
|
TryConvertFrom1, WithLocal,
|
|
},
|
|
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
|
};
|
|
|
|
use super::parameters::{BoolParameters, CiphertextModulus};
|
|
|
|
thread_local! {
|
|
static BOOL_EVALUATOR: RefCell<BoolEvaluator<Vec<Vec<u64>>, NttBackendU64, ModularOpsU64<CiphertextModulus<u64>>, ModularOpsU64<CiphertextModulus<u64>>>> = RefCell::new(BoolEvaluator::new(MP_BOOL_PARAMS));
|
|
}
|
|
|
|
pub fn set_parameter_set(parameter: &BoolParameters<u64>) {
|
|
BoolEvaluator::with_local_mut(|e| *e = BoolEvaluator::new(parameter.clone()))
|
|
}
|
|
|
|
impl WithLocal
|
|
for BoolEvaluator<
|
|
Vec<Vec<u64>>,
|
|
NttBackendU64,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>
|
|
{
|
|
fn with_local<F, R>(func: F) -> R
|
|
where
|
|
F: Fn(&Self) -> R,
|
|
{
|
|
BOOL_EVALUATOR.with_borrow(|s| func(s))
|
|
}
|
|
|
|
fn with_local_mut<F, R>(func: F) -> R
|
|
where
|
|
F: Fn(&mut Self) -> R,
|
|
{
|
|
BOOL_EVALUATOR.with_borrow_mut(|s| func(s))
|
|
}
|
|
}
|
|
|
|
struct ScratchMemory<M>
|
|
where
|
|
M: Matrix,
|
|
{
|
|
lwe_vector: M::R,
|
|
decomposition_matrix: M,
|
|
}
|
|
|
|
impl<M: MatrixEntity> ScratchMemory<M>
|
|
where
|
|
M::R: RowEntity,
|
|
{
|
|
fn new(parameters: &BoolParameters<M::MatElement>) -> Self {
|
|
// Vector to store LWE ciphertext with LWE dimesnion n
|
|
let lwe_vector = M::R::zeros(parameters.lwe_n().0 + 1);
|
|
|
|
// Matrix to store decomposed polynomials
|
|
// Max decompistion count + space for temporary RLWE
|
|
let d = std::cmp::max(
|
|
parameters.auto_decomposition_count().0,
|
|
std::cmp::max(
|
|
parameters.rlwe_rgsw_decomposition_count().0 .0,
|
|
parameters.rlwe_rgsw_decomposition_count().1 .0,
|
|
),
|
|
) + 2;
|
|
let decomposition_matrix = M::zeros(d, parameters.rlwe_n().0);
|
|
|
|
Self {
|
|
lwe_vector,
|
|
decomposition_matrix,
|
|
}
|
|
}
|
|
}
|
|
|
|
// thread_local! {
|
|
// pub(crate) static CLIENT_KEY: RefCell<ClientKey> =
|
|
// RefCell::new(ClientKey::random()); }
|
|
|
|
trait BoolEncoding {
|
|
type Element;
|
|
fn true_el(&self) -> Self::Element;
|
|
fn false_el(&self) -> Self::Element;
|
|
fn qby4(&self) -> Self::Element;
|
|
fn decode(&self, m: Self::Element) -> bool;
|
|
}
|
|
|
|
impl<T> BoolEncoding for CiphertextModulus<T>
|
|
where
|
|
CiphertextModulus<T>: Modulus<Element = T>,
|
|
T: PrimInt,
|
|
{
|
|
type Element = T;
|
|
|
|
fn qby4(&self) -> Self::Element {
|
|
if self.is_native() {
|
|
T::one() << (CiphertextModulus::<T>::_bits() - 2)
|
|
} else {
|
|
self.q().unwrap() >> 2
|
|
}
|
|
}
|
|
/// Q/8
|
|
fn true_el(&self) -> Self::Element {
|
|
if self.is_native() {
|
|
T::one() << (CiphertextModulus::<T>::_bits() - 3)
|
|
} else {
|
|
self.q().unwrap() >> 3
|
|
}
|
|
}
|
|
/// -Q/8
|
|
fn false_el(&self) -> Self::Element {
|
|
self.largest_unsigned_value() - self.true_el() + T::one()
|
|
}
|
|
fn decode(&self, m: Self::Element) -> bool {
|
|
let qby8 = self.true_el();
|
|
let m = (((m + qby8).to_f64().unwrap() * 4.0f64) / self.q_as_f64().unwrap()).round()
|
|
as usize
|
|
% 4usize;
|
|
|
|
if m == 0 {
|
|
return false;
|
|
} else if m == 1 {
|
|
return true;
|
|
} else {
|
|
panic!("Incorrect bool decryption. Got m={m} but expected m to be 0 or 1")
|
|
}
|
|
}
|
|
}
|
|
|
|
trait PbsKey {
|
|
type M: Matrix;
|
|
|
|
/// RGSW ciphertext of LWE secret elements
|
|
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M;
|
|
/// Key for automorphism
|
|
fn galois_key_for_auto(&self, k: isize) -> &Self::M;
|
|
/// LWE ksk to key switch from RLWE secret to LWE secret
|
|
fn lwe_ksk(&self) -> &Self::M;
|
|
}
|
|
|
|
trait PbsInfo {
|
|
type Element;
|
|
type Modulus: Modulus<Element = Self::Element>;
|
|
type NttOp: Ntt<Element = Self::Element>;
|
|
type D: Decomposer<Element = Self::Element>;
|
|
|
|
// Although both types have same bounds, they can be different types. For ex,
|
|
// type RlweModOp may only support native modulus, where LweModOp may only
|
|
// support prime modulus, etc.
|
|
type RlweModOp: VectorOps<Element = Self::Element> + ArithmeticOps<Element = Self::Element>;
|
|
type LweModOp: VectorOps<Element = Self::Element> + ArithmeticOps<Element = Self::Element>;
|
|
|
|
fn rlwe_q(&self) -> &Self::Modulus;
|
|
fn lwe_q(&self) -> &Self::Modulus;
|
|
fn br_q(&self) -> usize;
|
|
fn rlwe_n(&self) -> usize;
|
|
fn lwe_n(&self) -> usize;
|
|
/// Embedding fator for ring X^{q}+1 inside
|
|
fn embedding_factor(&self) -> usize;
|
|
/// generator g
|
|
fn g(&self) -> isize;
|
|
/// Decomposers
|
|
fn lwe_decomposer(&self) -> &Self::D;
|
|
fn rlwe_rgsw_decomposer(&self) -> &(Self::D, Self::D);
|
|
fn auto_decomposer(&self) -> &Self::D;
|
|
|
|
/// Modulus operators
|
|
fn modop_lweq(&self) -> &Self::LweModOp;
|
|
fn modop_rlweq(&self) -> &Self::RlweModOp;
|
|
|
|
/// Ntt operators
|
|
fn nttop_rlweq(&self) -> &Self::NttOp;
|
|
|
|
/// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k =
|
|
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
|
|
/// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t
|
|
/// a = -g^{k}, then k is expressed as k=k+q/2
|
|
fn g_k_dlog_map(&self) -> &[usize];
|
|
fn rlwe_auto_map(&self, k: isize) -> &(Vec<usize>, Vec<bool>);
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
struct ClientKey {
|
|
sk_rlwe: RlweSecret,
|
|
sk_lwe: LweSecret,
|
|
}
|
|
|
|
impl ClientKey {
|
|
fn random() -> Self {
|
|
let sk_rlwe = RlweSecret::random(0, 0);
|
|
let sk_lwe = LweSecret::random(0, 0);
|
|
Self { sk_rlwe, sk_lwe }
|
|
}
|
|
}
|
|
|
|
// impl WithLocal for ClientKey {
|
|
// fn with_local<F, R>(func: F) -> R
|
|
// where
|
|
// F: Fn(&Self) -> R,
|
|
// {
|
|
// CLIENT_KEY.with_borrow(|client_key| func(client_key))
|
|
// }
|
|
|
|
// fn with_local_mut<F, R>(func: F) -> R
|
|
// where
|
|
// F: Fn(&mut Self) -> R,
|
|
// {
|
|
// CLIENT_KEY.with_borrow_mut(|client_key| func(client_key))
|
|
// }
|
|
// }
|
|
|
|
// fn set_client_key(key: &ClientKey) {
|
|
// ClientKey::with_local_mut(|k| *k = key.clone())
|
|
// }
|
|
|
|
struct MultiPartyDecryptionShare<E> {
|
|
share: E,
|
|
}
|
|
|
|
struct CommonReferenceSeededCollectivePublicKeyShare<R, S, P> {
|
|
share: R,
|
|
cr_seed: S,
|
|
parameters: P,
|
|
}
|
|
|
|
struct PublicKey<M, R, O> {
|
|
key: M,
|
|
_phantom: PhantomData<(R, O)>,
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
Rng: NewWithSeed + RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
|
|
ModOp: VectorOps<Element = M::MatElement> + ModInit<M = CiphertextModulus<M::MatElement>>,
|
|
>
|
|
From<
|
|
&[CommonReferenceSeededCollectivePublicKeyShare<
|
|
M::R,
|
|
Rng::Seed,
|
|
BoolParameters<M::MatElement>,
|
|
>],
|
|
> for PublicKey<M, Rng, ModOp>
|
|
where
|
|
<M as Matrix>::R: RowMut,
|
|
Rng::Seed: Copy + PartialEq,
|
|
M::MatElement: PartialEq + Copy,
|
|
{
|
|
fn from(
|
|
value: &[CommonReferenceSeededCollectivePublicKeyShare<
|
|
M::R,
|
|
Rng::Seed,
|
|
BoolParameters<M::MatElement>,
|
|
>],
|
|
) -> Self {
|
|
assert!(value.len() > 0);
|
|
|
|
let parameters = &value[0].parameters;
|
|
let mut key = M::zeros(2, parameters.rlwe_n().0);
|
|
|
|
// sample A
|
|
let seed = value[0].cr_seed;
|
|
let mut main_rng = Rng::new_with_seed(seed);
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_rng,
|
|
parameters.rlwe_q(),
|
|
key.get_row_mut(0),
|
|
);
|
|
|
|
// Sum all Bs
|
|
let rlweq_modop = ModOp::new(parameters.rlwe_q().clone());
|
|
value.iter().for_each(|share_i| {
|
|
assert!(share_i.cr_seed == seed);
|
|
assert!(&share_i.parameters == parameters);
|
|
|
|
rlweq_modop.elwise_add_mut(key.get_row_mut(1), share_i.share.as_ref());
|
|
});
|
|
|
|
PublicKey {
|
|
key,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct CommonReferenceSeededMultiPartyServerKeyShare<M: Matrix, P, S> {
|
|
rgsw_cts: Vec<M>,
|
|
auto_keys: HashMap<isize, M>,
|
|
lwe_ksk: M::R,
|
|
/// Common reference seed
|
|
cr_seed: S,
|
|
parameters: P,
|
|
}
|
|
struct SeededMultiPartyServerKey<M: Matrix, S, P> {
|
|
rgsw_cts: Vec<M>,
|
|
auto_keys: HashMap<isize, M>,
|
|
lwe_ksk: M::R,
|
|
cr_seed: S,
|
|
parameters: P,
|
|
}
|
|
|
|
/// Seeded single party server key
|
|
struct SeededServerKey<M: Matrix, P, S> {
|
|
/// Rgsw cts of LWE secret elements
|
|
pub(crate) rgsw_cts: Vec<M>,
|
|
/// Auto keys
|
|
pub(crate) auto_keys: HashMap<isize, M>,
|
|
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
|
|
pub(crate) lwe_ksk: M::R,
|
|
/// Parameters
|
|
pub(crate) parameters: P,
|
|
/// Main seed
|
|
pub(crate) seed: S,
|
|
}
|
|
|
|
impl<M: Matrix, S> SeededServerKey<M, BoolParameters<M::MatElement>, S> {
|
|
pub(crate) fn from_raw(
|
|
auto_keys: HashMap<isize, M>,
|
|
rgsw_cts: Vec<M>,
|
|
lwe_ksk: M::R,
|
|
parameters: BoolParameters<M::MatElement>,
|
|
seed: S,
|
|
) -> Self {
|
|
// sanity checks
|
|
auto_keys.iter().for_each(|v| {
|
|
assert!(
|
|
v.1.dimension()
|
|
== (
|
|
parameters.auto_decomposition_count().0,
|
|
parameters.rlwe_n().0
|
|
)
|
|
)
|
|
});
|
|
|
|
let (part_a_d, part_b_d) = parameters.rlwe_rgsw_decomposition_count();
|
|
rgsw_cts.iter().for_each(|v| {
|
|
assert!(v.dimension() == (part_a_d.0 * 2 + part_b_d.0, parameters.rlwe_n().0))
|
|
});
|
|
assert!(
|
|
lwe_ksk.as_ref().len()
|
|
== (parameters.lwe_decomposition_count().0 * parameters.rlwe_n().0)
|
|
);
|
|
|
|
SeededServerKey {
|
|
rgsw_cts,
|
|
auto_keys,
|
|
lwe_ksk,
|
|
parameters,
|
|
seed,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Server key in evaluation domain
|
|
struct ServerKeyEvaluationDomain<M, R, N> {
|
|
/// Rgsw cts of LWE secret elements
|
|
rgsw_cts: Vec<M>,
|
|
/// Galois keys
|
|
galois_keys: HashMap<isize, M>,
|
|
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
|
|
lwe_ksk: M,
|
|
_phanton: PhantomData<(R, N)>,
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
R: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>> + NewWithSeed,
|
|
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
|
|
> From<&SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>>
|
|
for ServerKeyEvaluationDomain<M, R, N>
|
|
where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: Copy,
|
|
R::Seed: Clone,
|
|
{
|
|
fn from(value: &SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>) -> Self {
|
|
let mut main_prng = R::new_with_seed(value.seed.clone());
|
|
let parameters = &value.parameters;
|
|
let g = parameters.g() as isize;
|
|
let ring_size = value.parameters.rlwe_n().0;
|
|
let lwe_n = value.parameters.lwe_n().0;
|
|
let rlwe_q = value.parameters.rlwe_q();
|
|
let lwq_q = value.parameters.lwe_q();
|
|
|
|
let nttop = N::new(rlwe_q, ring_size);
|
|
|
|
// galois keys
|
|
let mut auto_keys = HashMap::new();
|
|
let auto_decomp_count = parameters.auto_decomposition_count().0;
|
|
for i in [g, -g] {
|
|
let seeded_auto_key = value.auto_keys.get(&i).unwrap();
|
|
assert!(seeded_auto_key.dimension() == (auto_decomp_count, ring_size));
|
|
|
|
let mut data = M::zeros(auto_decomp_count * 2, ring_size);
|
|
|
|
// sample RLWE'_A(-s(X^k))
|
|
data.iter_rows_mut().take(auto_decomp_count).for_each(|ri| {
|
|
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
|
|
});
|
|
|
|
// copy over RLWE'B_(-s(X^k))
|
|
izip!(
|
|
data.iter_rows_mut().skip(auto_decomp_count),
|
|
seeded_auto_key.iter_rows()
|
|
)
|
|
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
|
|
|
|
// Send to Evaluation domain
|
|
data.iter_rows_mut()
|
|
.for_each(|ri| nttop.forward(ri.as_mut()));
|
|
|
|
auto_keys.insert(i, data);
|
|
}
|
|
|
|
// RGSW ciphertexts
|
|
let (rlrg_a_decomp, rlrg_b_decomp) = parameters.rlwe_rgsw_decomposition_count();
|
|
let rgsw_cts = value
|
|
.rgsw_cts
|
|
.iter()
|
|
.map(|seeded_rgsw_si| {
|
|
assert!(
|
|
seeded_rgsw_si.dimension()
|
|
== (rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0, ring_size)
|
|
);
|
|
|
|
let mut data = M::zeros(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0 * 2, ring_size);
|
|
|
|
// copy over RLWE'(-sm)
|
|
izip!(
|
|
data.iter_rows_mut().take(rlrg_a_decomp.0 * 2),
|
|
seeded_rgsw_si.iter_rows().take(rlrg_a_decomp.0 * 2)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
|
|
|
|
// sample RLWE'_A(m)
|
|
data.iter_rows_mut()
|
|
.skip(rlrg_a_decomp.0 * 2)
|
|
.take(rlrg_b_decomp.0)
|
|
.for_each(|ri| {
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_prng,
|
|
&rlwe_q,
|
|
ri.as_mut(),
|
|
)
|
|
});
|
|
|
|
// copy over RLWE'_B(m)
|
|
izip!(
|
|
data.iter_rows_mut()
|
|
.skip(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0),
|
|
seeded_rgsw_si.iter_rows().skip(rlrg_a_decomp.0 * 2)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
|
|
|
|
// send polynomials to evaluation domain
|
|
data.iter_rows_mut()
|
|
.for_each(|ri| nttop.forward(ri.as_mut()));
|
|
|
|
data
|
|
})
|
|
.collect_vec();
|
|
|
|
// LWE ksk
|
|
let lwe_ksk = {
|
|
let d = parameters.lwe_decomposition_count().0;
|
|
assert!(value.lwe_ksk.as_ref().len() == d * ring_size);
|
|
|
|
let mut data = M::zeros(d * ring_size, lwe_n + 1);
|
|
izip!(data.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(|(lwe_i, bi)| {
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_prng,
|
|
&lwq_q,
|
|
&mut lwe_i.as_mut()[1..],
|
|
);
|
|
lwe_i.as_mut()[0] = *bi;
|
|
});
|
|
|
|
data
|
|
};
|
|
|
|
ServerKeyEvaluationDomain {
|
|
rgsw_cts,
|
|
galois_keys: auto_keys,
|
|
lwe_ksk,
|
|
_phanton: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
Rng: NewWithSeed,
|
|
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
|
|
> From<&SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>>
|
|
for ServerKeyEvaluationDomain<M, Rng, N>
|
|
where
|
|
<M as Matrix>::R: RowMut,
|
|
Rng::Seed: Copy,
|
|
Rng: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
|
|
M::MatElement: Copy,
|
|
{
|
|
fn from(
|
|
value: &SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>,
|
|
) -> Self {
|
|
let g = value.parameters.g() as isize;
|
|
let rlwe_n = value.parameters.rlwe_n().0;
|
|
let lwe_n = value.parameters.lwe_n().0;
|
|
let rlwe_q = value.parameters.rlwe_q();
|
|
let lwe_q = value.parameters.lwe_q();
|
|
|
|
let mut main_prng = Rng::new_with_seed(value.cr_seed);
|
|
|
|
let rlwe_nttop = N::new(rlwe_q, rlwe_n);
|
|
|
|
// auto keys
|
|
let mut auto_keys = HashMap::new();
|
|
let auto_d_count = value.parameters.auto_decomposition_count().0;
|
|
for i in [g, -g] {
|
|
let mut key = M::zeros(auto_d_count * 2, rlwe_n);
|
|
|
|
// sample a
|
|
key.iter_rows_mut().take(auto_d_count).for_each(|ri| {
|
|
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
|
|
});
|
|
|
|
let key_part_b = value.auto_keys.get(&i).unwrap();
|
|
assert!(key_part_b.dimension() == (auto_d_count, rlwe_n));
|
|
izip!(
|
|
key.iter_rows_mut().skip(auto_d_count),
|
|
key_part_b.iter_rows()
|
|
)
|
|
.for_each(|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
});
|
|
|
|
// send to evaluation domain
|
|
key.iter_rows_mut()
|
|
.for_each(|ri| rlwe_nttop.forward(ri.as_mut()));
|
|
|
|
auto_keys.insert(i, key);
|
|
}
|
|
|
|
// rgsw cts
|
|
let (rgswrgsw_d_a, rgswrgsw_d_b) = value.parameters.rgsw_rgsw_decomposition_count();
|
|
let (rlrg_d_a, rlrg_d_b) = value.parameters.rlwe_rgsw_decomposition_count();
|
|
// d_a and d_b may differ for RGSWxRGSW multiplication and RLWExRGSW
|
|
// multiplication. After this point RGSW ciphertexts will only be used for
|
|
// RLWExRGSW multiplication (in blind rotation). Thus we drop any additional
|
|
// RLWE ciphertexts in incoming collective RGSW ciphertexts, which are
|
|
// result of RGSWxRGSW multiplications.
|
|
let rgsw_ct_rows_in = rgswrgsw_d_a.0 * 2 + rgswrgsw_d_b.0 * 2;
|
|
let rgsw_ct_rows_out = rlrg_d_a.0 * 2 + rlrg_d_b.0 * 2;
|
|
let rgsw_cts = value
|
|
.rgsw_cts
|
|
.iter()
|
|
.map(|ct_i_in| {
|
|
assert!(ct_i_in.dimension() == (rgsw_ct_rows_in, rlwe_n));
|
|
let mut eval_ct_i_out = M::zeros(rgsw_ct_rows_out, rlwe_n);
|
|
|
|
// RLWE'(-sm) part A
|
|
izip!(
|
|
eval_ct_i_out.iter_rows_mut().take(rlrg_d_a.0),
|
|
ct_i_in.iter_rows().take(rlrg_d_a.0)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
rlwe_nttop.forward(to_ri.as_mut());
|
|
});
|
|
|
|
// RLWE'(-sm) part B
|
|
izip!(
|
|
eval_ct_i_out
|
|
.iter_rows_mut()
|
|
.skip(rlrg_d_a.0)
|
|
.take(rlrg_d_a.0),
|
|
ct_i_in.iter_rows().skip(rgswrgsw_d_a.0).take(rlrg_d_a.0)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
rlwe_nttop.forward(to_ri.as_mut());
|
|
});
|
|
|
|
// RLWE'(m) Part A
|
|
izip!(
|
|
eval_ct_i_out
|
|
.iter_rows_mut()
|
|
.skip(rlrg_d_a.0 * 2)
|
|
.take(rlrg_d_b.0),
|
|
ct_i_in
|
|
.iter_rows()
|
|
.skip(rgswrgsw_d_a.0 * 2)
|
|
.take(rlrg_d_b.0)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
rlwe_nttop.forward(to_ri.as_mut());
|
|
});
|
|
|
|
// RLWE'(m) Part B
|
|
izip!(
|
|
eval_ct_i_out
|
|
.iter_rows_mut()
|
|
.skip(rlrg_d_a.0 * 2 + rlrg_d_b.0)
|
|
.take(rlrg_d_b.0),
|
|
ct_i_in
|
|
.iter_rows()
|
|
.skip(rgswrgsw_d_a.0 * 2 + rgswrgsw_d_b.0)
|
|
.take(rlrg_d_b.0)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
rlwe_nttop.forward(to_ri.as_mut());
|
|
});
|
|
|
|
eval_ct_i_out
|
|
})
|
|
.collect_vec();
|
|
|
|
// lwe ksk
|
|
let d_lwe = value.parameters.lwe_decomposition_count().0;
|
|
let mut lwe_ksk = M::zeros(rlwe_n * d_lwe, lwe_n + 1);
|
|
izip!(lwe_ksk.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(|(lwe_i, bi)| {
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_prng,
|
|
&lwe_q,
|
|
&mut lwe_i.as_mut()[1..],
|
|
);
|
|
lwe_i.as_mut()[0] = *bi;
|
|
});
|
|
|
|
ServerKeyEvaluationDomain {
|
|
rgsw_cts,
|
|
galois_keys: auto_keys,
|
|
lwe_ksk,
|
|
_phanton: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
//FIXME(Jay): Figure out a way for BoolEvaluator to have access to ServerKey
|
|
// via a pointer and implement PbsKey for BoolEvaluator instead of ServerKey
|
|
// directly
|
|
impl<M: Matrix, R, N> PbsKey for ServerKeyEvaluationDomain<M, R, N> {
|
|
type M = M;
|
|
fn galois_key_for_auto(&self, k: isize) -> &Self::M {
|
|
self.galois_keys.get(&k).unwrap()
|
|
}
|
|
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M {
|
|
&self.rgsw_cts[si]
|
|
}
|
|
|
|
fn lwe_ksk(&self) -> &Self::M {
|
|
&self.lwe_ksk
|
|
}
|
|
}
|
|
|
|
struct BoolPbsInfo<M: Matrix, Ntt, RlweModOp, LweModOp> {
|
|
auto_decomposer: DefaultDecomposer<M::MatElement>,
|
|
rlwe_rgsw_decomposer: (
|
|
DefaultDecomposer<M::MatElement>,
|
|
DefaultDecomposer<M::MatElement>,
|
|
),
|
|
lwe_decomposer: DefaultDecomposer<M::MatElement>,
|
|
g_k_dlog_map: Vec<usize>,
|
|
rlwe_nttop: Ntt,
|
|
rlwe_modop: RlweModOp,
|
|
lwe_modop: LweModOp,
|
|
embedding_factor: usize,
|
|
nand_test_vec: M::R,
|
|
rlwe_qby4: M::MatElement,
|
|
rlwe_auto_maps: Vec<(Vec<usize>, Vec<bool>)>,
|
|
parameters: BoolParameters<M::MatElement>,
|
|
}
|
|
|
|
impl<M: Matrix, NttOp, RlweModOp, LweModOp> PbsInfo for BoolPbsInfo<M, NttOp, RlweModOp, LweModOp>
|
|
where
|
|
M::MatElement: PrimInt + WrappingSub + NumInfo + Debug + FromPrimitive,
|
|
RlweModOp: ArithmeticOps<Element = M::MatElement> + VectorOps<Element = M::MatElement>,
|
|
LweModOp: ArithmeticOps<Element = M::MatElement> + VectorOps<Element = M::MatElement>,
|
|
NttOp: Ntt<Element = M::MatElement>,
|
|
{
|
|
type Modulus = CiphertextModulus<M::MatElement>;
|
|
type Element = M::MatElement;
|
|
type D = DefaultDecomposer<M::MatElement>;
|
|
type RlweModOp = RlweModOp;
|
|
type LweModOp = LweModOp;
|
|
type NttOp = NttOp;
|
|
fn rlwe_auto_map(&self, k: isize) -> &(Vec<usize>, Vec<bool>) {
|
|
let g = self.parameters.g() as isize;
|
|
if k == g {
|
|
&self.rlwe_auto_maps[0]
|
|
} else if k == -g {
|
|
&self.rlwe_auto_maps[1]
|
|
} else {
|
|
panic!("RLWE auto map only supports k in [-g, g], but got k={k}");
|
|
}
|
|
}
|
|
fn br_q(&self) -> usize {
|
|
*self.parameters.br_q()
|
|
}
|
|
fn lwe_decomposer(&self) -> &Self::D {
|
|
&self.lwe_decomposer
|
|
}
|
|
fn rlwe_rgsw_decomposer(&self) -> &(Self::D, Self::D) {
|
|
&self.rlwe_rgsw_decomposer
|
|
}
|
|
fn auto_decomposer(&self) -> &Self::D {
|
|
&self.auto_decomposer
|
|
}
|
|
fn embedding_factor(&self) -> usize {
|
|
self.embedding_factor
|
|
}
|
|
fn g(&self) -> isize {
|
|
self.parameters.g() as isize
|
|
}
|
|
fn g_k_dlog_map(&self) -> &[usize] {
|
|
&self.g_k_dlog_map
|
|
}
|
|
fn lwe_n(&self) -> usize {
|
|
self.parameters.lwe_n().0
|
|
}
|
|
fn lwe_q(&self) -> &Self::Modulus {
|
|
self.parameters.lwe_q()
|
|
}
|
|
fn rlwe_n(&self) -> usize {
|
|
self.parameters.rlwe_n().0
|
|
}
|
|
fn rlwe_q(&self) -> &Self::Modulus {
|
|
self.parameters.rlwe_q()
|
|
}
|
|
fn modop_lweq(&self) -> &Self::LweModOp {
|
|
&self.lwe_modop
|
|
}
|
|
fn modop_rlweq(&self) -> &Self::RlweModOp {
|
|
&self.rlwe_modop
|
|
}
|
|
fn nttop_rlweq(&self) -> &Self::NttOp {
|
|
&self.rlwe_nttop
|
|
}
|
|
}
|
|
|
|
struct BoolEvaluator<M, Ntt, RlweModOp, LweModOp>
|
|
where
|
|
M: Matrix,
|
|
{
|
|
pbs_info: BoolPbsInfo<M, Ntt, RlweModOp, LweModOp>,
|
|
scratch_memory: ScratchMemory<M>,
|
|
_phantom: PhantomData<M>,
|
|
}
|
|
|
|
impl<M: Matrix, NttOp, RlweModOp, LweModOp> BoolEvaluator<M, NttOp, RlweModOp, LweModOp> {}
|
|
|
|
impl<M: Matrix, NttOp, RlweModOp, LweModOp> BoolEvaluator<M, NttOp, RlweModOp, LweModOp>
|
|
where
|
|
M: MatrixEntity + MatrixMut,
|
|
M::MatElement: PrimInt + Debug + Display + NumInfo + FromPrimitive + WrappingSub,
|
|
NttOp: Ntt<Element = M::MatElement>,
|
|
RlweModOp: ArithmeticOps<Element = M::MatElement>
|
|
+ VectorOps<Element = M::MatElement>
|
|
+ GetModulus<Element = M::MatElement, M = CiphertextModulus<M::MatElement>>,
|
|
LweModOp: ArithmeticOps<Element = M::MatElement>
|
|
+ VectorOps<Element = M::MatElement>
|
|
+ GetModulus<Element = M::MatElement, M = CiphertextModulus<M::MatElement>>,
|
|
M::R: TryConvertFrom1<[i32], CiphertextModulus<M::MatElement>> + RowEntity + Debug,
|
|
<M as Matrix>::R: RowMut,
|
|
DefaultSecureRng: RandomFillGaussianInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>
|
|
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>
|
|
+ RandomGaussianElementInModulus<M::MatElement, CiphertextModulus<M::MatElement>>
|
|
+ NewWithSeed,
|
|
{
|
|
fn new(parameters: BoolParameters<M::MatElement>) -> Self
|
|
where
|
|
RlweModOp: ModInit<M = CiphertextModulus<M::MatElement>>,
|
|
LweModOp: ModInit<M = CiphertextModulus<M::MatElement>>,
|
|
NttOp: NttInit<CiphertextModulus<M::MatElement>>,
|
|
{
|
|
//TODO(Jay): Run sanity checks for modulus values in parameters
|
|
|
|
// generatr dlog map s.t. g^{k} % q = a, for all a \in Z*_{q}
|
|
let g = parameters.g();
|
|
let q = *parameters.br_q();
|
|
let mut g_k_dlog_map = vec![0usize; q];
|
|
for i in 0..q / 2 {
|
|
let v = mod_exponent(g as u64, i as u64, q as u64) as usize;
|
|
// g^i
|
|
g_k_dlog_map[v] = i;
|
|
// -(g^i)
|
|
g_k_dlog_map[q - v] = i + (q / 2);
|
|
}
|
|
|
|
let embedding_factor = (2 * parameters.rlwe_n().0) / q;
|
|
|
|
let rlwe_nttop = NttOp::new(parameters.rlwe_q(), parameters.rlwe_n().0);
|
|
let rlwe_modop = RlweModOp::new(*parameters.rlwe_q());
|
|
let lwe_modop = LweModOp::new(*parameters.lwe_q());
|
|
|
|
// set test vectors
|
|
let q = *parameters.br_q();
|
|
let qby2 = q >> 1;
|
|
let qby8 = q >> 3;
|
|
let mut nand_test_vec = M::R::zeros(qby2);
|
|
// Q/8 (Q: rlwe_q)
|
|
let true_m_el = parameters.rlwe_q().true_el();
|
|
// -Q/8
|
|
let false_m_el = parameters.rlwe_q().false_el();
|
|
for i in 0..qby2 {
|
|
if i < (3 * qby8) {
|
|
nand_test_vec.as_mut()[i] = true_m_el;
|
|
} else {
|
|
nand_test_vec.as_mut()[i] = false_m_el;
|
|
}
|
|
}
|
|
|
|
// v(X) -> v(X^{-g})
|
|
let (auto_map_index, auto_map_sign) = generate_auto_map(qby2, -(g as isize));
|
|
let mut nand_test_vec_autog = M::R::zeros(qby2);
|
|
izip!(
|
|
nand_test_vec.as_ref().iter(),
|
|
auto_map_index.iter(),
|
|
auto_map_sign.iter()
|
|
)
|
|
.for_each(|(v, to_index, to_sign)| {
|
|
if !to_sign {
|
|
// negate
|
|
nand_test_vec_autog.as_mut()[*to_index] = rlwe_modop.neg(v);
|
|
} else {
|
|
nand_test_vec_autog.as_mut()[*to_index] = *v;
|
|
}
|
|
});
|
|
|
|
// auto map indices and sign
|
|
let mut rlwe_auto_maps = vec![];
|
|
let ring_size = parameters.rlwe_n().0;
|
|
let g = parameters.g() as isize;
|
|
for i in [g, -g] {
|
|
rlwe_auto_maps.push(generate_auto_map(ring_size, i))
|
|
}
|
|
|
|
let rlwe_qby4 = parameters.rlwe_q().qby4();
|
|
|
|
let scratch_memory = ScratchMemory::new(¶meters);
|
|
|
|
let pbs_info = BoolPbsInfo {
|
|
auto_decomposer: parameters.auto_decomposer(),
|
|
lwe_decomposer: parameters.lwe_decomposer(),
|
|
rlwe_rgsw_decomposer: parameters.rlwe_rgsw_decomposer(),
|
|
g_k_dlog_map,
|
|
embedding_factor,
|
|
lwe_modop,
|
|
rlwe_modop,
|
|
rlwe_nttop,
|
|
nand_test_vec: nand_test_vec_autog,
|
|
rlwe_qby4,
|
|
rlwe_auto_maps,
|
|
parameters: parameters,
|
|
};
|
|
|
|
BoolEvaluator {
|
|
pbs_info,
|
|
scratch_memory,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
fn client_key(&self) -> ClientKey {
|
|
let sk_lwe = LweSecret::random(
|
|
self.pbs_info.parameters.lwe_n().0 >> 1,
|
|
self.pbs_info.parameters.lwe_n().0,
|
|
);
|
|
let sk_rlwe = RlweSecret::random(
|
|
self.pbs_info.parameters.rlwe_n().0 >> 1,
|
|
self.pbs_info.parameters.rlwe_n().0,
|
|
);
|
|
ClientKey { sk_rlwe, sk_lwe }
|
|
}
|
|
|
|
fn server_key(
|
|
&self,
|
|
client_key: &ClientKey,
|
|
) -> SeededServerKey<M, BoolParameters<M::MatElement>, [u8; 32]> {
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut main_seed = [0u8; 32];
|
|
rng.fill_bytes(&mut main_seed);
|
|
|
|
let mut main_prng = DefaultSecureRng::new_seeded(main_seed);
|
|
|
|
let rlwe_n = self.pbs_info.parameters.rlwe_n().0;
|
|
let sk_rlwe = &client_key.sk_rlwe;
|
|
let sk_lwe = &client_key.sk_lwe;
|
|
|
|
// generate auto keys -g, g
|
|
let mut auto_keys = HashMap::new();
|
|
let auto_gadget = self.pbs_info.auto_decomposer.gadget_vector();
|
|
let g = self.pbs_info.parameters.g() as isize;
|
|
for i in [g, -g] {
|
|
let mut gk = M::zeros(self.pbs_info.auto_decomposer.decomposition_count(), rlwe_n);
|
|
galois_key_gen(
|
|
&mut gk,
|
|
sk_rlwe.values(),
|
|
i,
|
|
&auto_gadget,
|
|
&self.pbs_info.rlwe_modop,
|
|
&self.pbs_info.rlwe_nttop,
|
|
&mut main_prng,
|
|
rng,
|
|
);
|
|
auto_keys.insert(i, gk);
|
|
}
|
|
|
|
// generate rgsw ciphertexts RGSW(si) where si is i^th LWE secret element
|
|
let ring_size = self.pbs_info.parameters.rlwe_n().0;
|
|
let rlwe_q = self.pbs_info.parameters.rlwe_q();
|
|
let (rlrg_d_a, rlrg_d_b) = (
|
|
self.pbs_info.rlwe_rgsw_decomposer.0.decomposition_count(),
|
|
self.pbs_info.rlwe_rgsw_decomposer.1.decomposition_count(),
|
|
);
|
|
let rlrg_gadget_a = self.pbs_info.rlwe_rgsw_decomposer.0.gadget_vector();
|
|
let rlrg_gadget_b = self.pbs_info.rlwe_rgsw_decomposer.1.gadget_vector();
|
|
let rgsw_cts = sk_lwe
|
|
.values()
|
|
.iter()
|
|
.map(|si| {
|
|
// X^{si}; assume |emebedding_factor * si| < N
|
|
let mut m = M::R::zeros(ring_size);
|
|
let si = (self.pbs_info.embedding_factor as i32) * si;
|
|
// dbg!(si);
|
|
if si < 0 {
|
|
// X^{-i} = X^{2N - i} = -X^{N-i}
|
|
m.as_mut()[ring_size - (si.abs() as usize)] = rlwe_q.neg_one();
|
|
} else {
|
|
// X^{i}
|
|
m.as_mut()[si.abs() as usize] = M::MatElement::one();
|
|
}
|
|
|
|
let mut rgsw_si = M::zeros(rlrg_d_a * 2 + rlrg_d_b, ring_size);
|
|
secret_key_encrypt_rgsw(
|
|
&mut rgsw_si,
|
|
m.as_ref(),
|
|
&rlrg_gadget_a,
|
|
&rlrg_gadget_b,
|
|
sk_rlwe.values(),
|
|
&self.pbs_info.rlwe_modop,
|
|
&self.pbs_info.rlwe_nttop,
|
|
&mut main_prng,
|
|
rng,
|
|
);
|
|
|
|
rgsw_si
|
|
})
|
|
.collect_vec();
|
|
|
|
// LWE KSK from RLWE secret s -> LWE secret z
|
|
let d_lwe_gadget = self.pbs_info.lwe_decomposer.gadget_vector();
|
|
let mut lwe_ksk =
|
|
M::R::zeros(self.pbs_info.lwe_decomposer.decomposition_count() * ring_size);
|
|
lwe_ksk_keygen(
|
|
&sk_rlwe.values(),
|
|
&sk_lwe.values(),
|
|
&mut lwe_ksk,
|
|
&d_lwe_gadget,
|
|
&self.pbs_info.lwe_modop,
|
|
&mut main_prng,
|
|
rng,
|
|
);
|
|
|
|
SeededServerKey::from_raw(
|
|
auto_keys,
|
|
rgsw_cts,
|
|
lwe_ksk,
|
|
self.pbs_info.parameters.clone(),
|
|
main_seed,
|
|
)
|
|
})
|
|
}
|
|
|
|
fn multi_party_server_key_share(
|
|
&self,
|
|
cr_seed: [u8; 32],
|
|
collective_pk: &M,
|
|
client_key: &ClientKey,
|
|
) -> CommonReferenceSeededMultiPartyServerKeyShare<M, BoolParameters<M::MatElement>, [u8; 32]>
|
|
{
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut main_prng = DefaultSecureRng::new_seeded(cr_seed);
|
|
|
|
let sk_rlwe = &client_key.sk_rlwe;
|
|
let sk_lwe = &client_key.sk_lwe;
|
|
|
|
let g = self.pbs_info.parameters.g() as isize;
|
|
let ring_size = self.pbs_info.parameters.rlwe_n().0;
|
|
let rlwe_q = self.pbs_info.parameters.rlwe_q();
|
|
let lwe_q = self.pbs_info.parameters.lwe_q();
|
|
|
|
let rlweq_modop = &self.pbs_info.rlwe_modop;
|
|
let rlweq_nttop = &self.pbs_info.rlwe_nttop;
|
|
|
|
// sanity check
|
|
assert!(sk_rlwe.values().len() == ring_size);
|
|
assert!(sk_lwe.values().len() == self.pbs_info.parameters.lwe_n().0);
|
|
|
|
// auto keys
|
|
let mut auto_keys = HashMap::new();
|
|
let auto_gadget = self.pbs_info.auto_decomposer.gadget_vector();
|
|
for i in [g, -g] {
|
|
let mut ksk_out = M::zeros(
|
|
self.pbs_info.auto_decomposer.decomposition_count(),
|
|
ring_size,
|
|
);
|
|
galois_key_gen(
|
|
&mut ksk_out,
|
|
sk_rlwe.values(),
|
|
i,
|
|
&auto_gadget,
|
|
rlweq_modop,
|
|
rlweq_nttop,
|
|
&mut main_prng,
|
|
rng,
|
|
);
|
|
auto_keys.insert(i, ksk_out);
|
|
}
|
|
|
|
// rgsw ciphertexts of lwe secret elements
|
|
let rgsw_rgsw_decomposer = self
|
|
.pbs_info
|
|
.parameters
|
|
.rgsw_rgsw_decomposer::<DefaultDecomposer<M::MatElement>>();
|
|
let (rgrg_d_a, rgrg_d_b) = (
|
|
rgsw_rgsw_decomposer.0.decomposition_count(),
|
|
rgsw_rgsw_decomposer.1.decomposition_count(),
|
|
);
|
|
let (rgrg_gadget_a, rgrg_gadget_b) = (
|
|
rgsw_rgsw_decomposer.0.gadget_vector(),
|
|
rgsw_rgsw_decomposer.1.gadget_vector(),
|
|
);
|
|
let rgsw_cts = sk_lwe
|
|
.values()
|
|
.iter()
|
|
.map(|si| {
|
|
let mut m = M::R::zeros(ring_size);
|
|
//TODO(Jay): It will be nice to have a function that returns polynomial
|
|
// (monomial infact!) corresponding to secret element embedded in ring X^{2N+1}.
|
|
// Save lots of mistakes where one forgest to emebed si in bigger ring.
|
|
let si = *si * (self.pbs_info.embedding_factor as i32);
|
|
if si < 0 {
|
|
// X^{-si} = X^{2N-si} = -X^{N-si}, assuming abs(si) < N
|
|
// (which it is given si is secret element)
|
|
m.as_mut()[ring_size - (si.abs() as usize)] = rlwe_q.neg_one();
|
|
} else {
|
|
m.as_mut()[si as usize] = M::MatElement::one();
|
|
}
|
|
|
|
// public key RGSW encryption has no part that can be seeded, unlike secret key
|
|
// RGSW encryption where RLWE'_A(m) is seeded
|
|
let mut out_rgsw = M::zeros(rgrg_d_a * 2 + rgrg_d_b * 2, ring_size);
|
|
public_key_encrypt_rgsw(
|
|
&mut out_rgsw,
|
|
&m.as_ref(),
|
|
collective_pk,
|
|
&rgrg_gadget_a,
|
|
&rgrg_gadget_b,
|
|
rlweq_modop,
|
|
rlweq_nttop,
|
|
rng,
|
|
);
|
|
|
|
out_rgsw
|
|
})
|
|
.collect_vec();
|
|
|
|
// LWE ksk
|
|
let mut lwe_ksk =
|
|
M::R::zeros(self.pbs_info.lwe_decomposer.decomposition_count() * ring_size);
|
|
let lwe_modop = &self.pbs_info.lwe_modop;
|
|
let d_lwe_gadget_vec = self.pbs_info.lwe_decomposer.gadget_vector();
|
|
lwe_ksk_keygen(
|
|
sk_rlwe.values(),
|
|
sk_lwe.values(),
|
|
&mut lwe_ksk,
|
|
&d_lwe_gadget_vec,
|
|
lwe_modop,
|
|
&mut main_prng,
|
|
rng,
|
|
);
|
|
|
|
CommonReferenceSeededMultiPartyServerKeyShare {
|
|
auto_keys,
|
|
rgsw_cts,
|
|
lwe_ksk,
|
|
cr_seed,
|
|
parameters: self.pbs_info.parameters.clone(),
|
|
}
|
|
})
|
|
}
|
|
|
|
fn multi_party_public_key_share(
|
|
&self,
|
|
cr_seed: [u8; 32],
|
|
client_key: &ClientKey,
|
|
) -> CommonReferenceSeededCollectivePublicKeyShare<
|
|
<M as Matrix>::R,
|
|
[u8; 32],
|
|
BoolParameters<<M as Matrix>::MatElement>,
|
|
> {
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut share_out = M::R::zeros(self.pbs_info.parameters.rlwe_n().0);
|
|
let modop = &self.pbs_info.rlwe_modop;
|
|
let nttop = &self.pbs_info.rlwe_nttop;
|
|
let mut main_prng = DefaultSecureRng::new_seeded(cr_seed);
|
|
public_key_share(
|
|
&mut share_out,
|
|
client_key.sk_rlwe.values(),
|
|
modop,
|
|
nttop,
|
|
&mut main_prng,
|
|
rng,
|
|
);
|
|
|
|
CommonReferenceSeededCollectivePublicKeyShare {
|
|
share: share_out,
|
|
cr_seed: cr_seed,
|
|
parameters: self.pbs_info.parameters.clone(),
|
|
}
|
|
})
|
|
}
|
|
|
|
fn multi_party_decryption_share(
|
|
&self,
|
|
lwe_ct: &M::R,
|
|
client_key: &ClientKey,
|
|
) -> MultiPartyDecryptionShare<<M as Matrix>::MatElement> {
|
|
assert!(lwe_ct.as_ref().len() == self.pbs_info.parameters.rlwe_n().0 + 1);
|
|
let modop = &self.pbs_info.rlwe_modop;
|
|
let mut neg_s = M::R::try_convert_from(
|
|
client_key.sk_rlwe.values(),
|
|
&self.pbs_info.parameters.rlwe_q(),
|
|
);
|
|
modop.elwise_neg_mut(neg_s.as_mut());
|
|
|
|
let mut neg_sa = M::MatElement::zero();
|
|
izip!(lwe_ct.as_ref().iter().skip(1), neg_s.as_ref().iter()).for_each(|(ai, nsi)| {
|
|
neg_sa = modop.add(&neg_sa, &modop.mul(ai, nsi));
|
|
});
|
|
|
|
let e = DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut e =
|
|
RandomGaussianElementInModulus::random(rng, self.pbs_info.parameters.rlwe_q());
|
|
e
|
|
});
|
|
let share = modop.add(&neg_sa, &e);
|
|
|
|
MultiPartyDecryptionShare { share }
|
|
}
|
|
|
|
pub(crate) fn multi_party_decrypt(
|
|
&self,
|
|
shares: &[MultiPartyDecryptionShare<M::MatElement>],
|
|
lwe_ct: &M::R,
|
|
) -> bool {
|
|
let modop = &self.pbs_info.rlwe_modop;
|
|
let mut sum_a = M::MatElement::zero();
|
|
shares
|
|
.iter()
|
|
.for_each(|share_i| sum_a = modop.add(&sum_a, &share_i.share));
|
|
|
|
let encoded_m = modop.add(&lwe_ct.as_ref()[0], &sum_a);
|
|
self.pbs_info.parameters.rlwe_q().decode(encoded_m)
|
|
}
|
|
|
|
/// First encrypt as RLWE(m) with m as constant polynomial and extract it as
|
|
/// LWE ciphertext
|
|
pub(crate) fn pk_encrypt(&self, pk: &M, m: bool) -> M::R {
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
let modop = &self.pbs_info.rlwe_modop;
|
|
let nttop = &self.pbs_info.rlwe_nttop;
|
|
|
|
// RLWE(0)
|
|
// sample ephemeral key u
|
|
let ring_size = self.pbs_info.parameters.rlwe_n().0;
|
|
let mut u = vec![0i32; ring_size];
|
|
fill_random_ternary_secret_with_hamming_weight(u.as_mut(), ring_size >> 1, rng);
|
|
let mut u = M::R::try_convert_from(&u, &self.pbs_info.parameters.rlwe_q());
|
|
nttop.forward(u.as_mut());
|
|
|
|
let mut ua = M::R::zeros(ring_size);
|
|
ua.as_mut().copy_from_slice(pk.get_row_slice(0));
|
|
let mut ub = M::R::zeros(ring_size);
|
|
ub.as_mut().copy_from_slice(pk.get_row_slice(1));
|
|
|
|
// a*u
|
|
nttop.forward(ua.as_mut());
|
|
modop.elwise_mul_mut(ua.as_mut(), u.as_ref());
|
|
nttop.backward(ua.as_mut());
|
|
|
|
// b*u
|
|
nttop.forward(ub.as_mut());
|
|
modop.elwise_mul_mut(ub.as_mut(), u.as_ref());
|
|
nttop.backward(ub.as_mut());
|
|
|
|
let mut rlwe = M::zeros(2, ring_size);
|
|
// sample error
|
|
rlwe.iter_rows_mut().for_each(|ri| {
|
|
RandomFillGaussianInModulus::random_fill(
|
|
rng,
|
|
&self.pbs_info.parameters.rlwe_q(),
|
|
ri.as_mut(),
|
|
);
|
|
});
|
|
|
|
// a*u + e0
|
|
modop.elwise_add_mut(rlwe.get_row_mut(0), ua.as_ref());
|
|
// b*u + e1
|
|
modop.elwise_add_mut(rlwe.get_row_mut(1), ub.as_ref());
|
|
|
|
//FIXME(Jay): Figure out a way to get Q/8 form modulus
|
|
let m = if m {
|
|
// Q/8
|
|
self.pbs_info.rlwe_q().true_el()
|
|
} else {
|
|
// -Q/8
|
|
self.pbs_info.rlwe_q().false_el()
|
|
};
|
|
|
|
// b*u + e1 + m, where m is constant polynomial
|
|
rlwe.set(1, 0, modop.add(rlwe.get(1, 0), &m));
|
|
|
|
// sample extract index 0
|
|
let mut lwe_out = M::R::zeros(ring_size + 1);
|
|
sample_extract(&mut lwe_out, &rlwe, modop, 0);
|
|
|
|
lwe_out
|
|
})
|
|
}
|
|
|
|
/// TODO(Jay): Fetch client key from thread local
|
|
pub fn sk_encrypt(&self, m: bool, client_key: &ClientKey) -> M::R {
|
|
//FIXME(Jay): Figure out a way to get Q/8 form modulus
|
|
let m = if m {
|
|
// Q/8
|
|
self.pbs_info.rlwe_q().true_el()
|
|
} else {
|
|
// -Q/8
|
|
self.pbs_info.rlwe_q().false_el()
|
|
};
|
|
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut lwe_out = M::R::zeros(self.pbs_info.parameters.rlwe_n().0 + 1);
|
|
encrypt_lwe(
|
|
&mut lwe_out,
|
|
&m,
|
|
client_key.sk_rlwe.values(),
|
|
&self.pbs_info.rlwe_modop,
|
|
rng,
|
|
);
|
|
lwe_out
|
|
})
|
|
}
|
|
|
|
pub fn sk_decrypt(&self, lwe_ct: &M::R, client_key: &ClientKey) -> bool {
|
|
let m = decrypt_lwe(
|
|
lwe_ct,
|
|
client_key.sk_rlwe.values(),
|
|
&self.pbs_info.rlwe_modop,
|
|
);
|
|
self.pbs_info.rlwe_q().decode(m)
|
|
}
|
|
|
|
fn aggregate_multi_party_server_key_shares<S>(
|
|
&self,
|
|
shares: &[CommonReferenceSeededMultiPartyServerKeyShare<
|
|
M,
|
|
BoolParameters<M::MatElement>,
|
|
S,
|
|
>],
|
|
) -> SeededMultiPartyServerKey<M, S, BoolParameters<M::MatElement>>
|
|
where
|
|
S: PartialEq + Clone,
|
|
M: Clone,
|
|
{
|
|
assert!(shares.len() > 0);
|
|
let parameters = shares[0].parameters.clone();
|
|
let cr_seed = &shares[0].cr_seed;
|
|
|
|
let rlwe_n = parameters.rlwe_n().0;
|
|
let g = parameters.g() as isize;
|
|
let rlwe_q = parameters.rlwe_q();
|
|
let lwe_q = parameters.lwe_q();
|
|
|
|
// sanity checks
|
|
shares.iter().skip(1).for_each(|s| {
|
|
assert!(s.parameters == parameters);
|
|
assert!(&s.cr_seed == cr_seed);
|
|
});
|
|
|
|
let rlweq_modop = &self.pbs_info.rlwe_modop;
|
|
let rlweq_nttop = &self.pbs_info.rlwe_nttop;
|
|
|
|
// auto keys
|
|
let mut auto_keys = HashMap::new();
|
|
for i in [g, -g] {
|
|
let mut key = M::zeros(parameters.auto_decomposition_count().0, rlwe_n);
|
|
|
|
shares.iter().for_each(|s| {
|
|
let auto_key_share_i = s.auto_keys.get(&i).expect("Auto key {i} missing");
|
|
assert!(
|
|
auto_key_share_i.dimension()
|
|
== (parameters.auto_decomposition_count().0, rlwe_n)
|
|
);
|
|
izip!(key.iter_rows_mut(), auto_key_share_i.iter_rows()).for_each(
|
|
|(partb_out, partb_share)| {
|
|
rlweq_modop.elwise_add_mut(partb_out.as_mut(), partb_share.as_ref());
|
|
},
|
|
);
|
|
});
|
|
|
|
auto_keys.insert(i, key);
|
|
}
|
|
|
|
// rgsw ciphertext (most expensive part!)
|
|
let lwe_n = parameters.lwe_n().0;
|
|
let rgsw_by_rgsw_decomposer =
|
|
parameters.rgsw_rgsw_decomposer::<DefaultDecomposer<M::MatElement>>();
|
|
let mut scratch_matrix = M::zeros(
|
|
std::cmp::max(
|
|
rgsw_by_rgsw_decomposer.a().decomposition_count(),
|
|
rgsw_by_rgsw_decomposer.b().decomposition_count(),
|
|
) + (rgsw_by_rgsw_decomposer.a().decomposition_count() * 2
|
|
+ rgsw_by_rgsw_decomposer.b().decomposition_count() * 2),
|
|
rlwe_n,
|
|
);
|
|
|
|
let mut tmp_rgsw =
|
|
RgswCiphertext::<M, _>::empty(rlwe_n, &rgsw_by_rgsw_decomposer, rlwe_q.clone()).data;
|
|
let rgsw_cts = (0..lwe_n)
|
|
.into_iter()
|
|
.map(|index| {
|
|
// copy over rgsw ciphertext for index^th secret element from first share and
|
|
// treat it as accumulating rgsw ciphertext
|
|
let mut rgsw_i = shares[0].rgsw_cts[index].clone();
|
|
|
|
shares.iter().skip(1).for_each(|si| {
|
|
// copy over si's RGSW[index] ciphertext and send to evaluation domain
|
|
izip!(tmp_rgsw.iter_rows_mut(), si.rgsw_cts[index].iter_rows()).for_each(
|
|
|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
rlweq_nttop.forward(to_ri.as_mut())
|
|
},
|
|
);
|
|
|
|
rgsw_by_rgsw_inplace(
|
|
&mut rgsw_i,
|
|
&tmp_rgsw,
|
|
&rgsw_by_rgsw_decomposer,
|
|
&mut scratch_matrix,
|
|
rlweq_nttop,
|
|
rlweq_modop,
|
|
);
|
|
});
|
|
|
|
rgsw_i
|
|
})
|
|
.collect_vec();
|
|
|
|
// LWE ksks
|
|
let mut lwe_ksk = M::R::zeros(rlwe_n * parameters.lwe_decomposition_count().0);
|
|
let lweq_modop = &self.pbs_info.lwe_modop;
|
|
shares.iter().for_each(|si| {
|
|
assert!(si.lwe_ksk.as_ref().len() == rlwe_n * parameters.lwe_decomposition_count().0);
|
|
lweq_modop.elwise_add_mut(lwe_ksk.as_mut(), si.lwe_ksk.as_ref())
|
|
});
|
|
|
|
SeededMultiPartyServerKey {
|
|
rgsw_cts,
|
|
auto_keys,
|
|
lwe_ksk,
|
|
cr_seed: cr_seed.clone(),
|
|
parameters: parameters,
|
|
}
|
|
}
|
|
|
|
// TODO(Jay): scratch spaces must be thread local. Don't pass them as arguments
|
|
pub fn nand(
|
|
&mut self,
|
|
c0: &M::R,
|
|
c1: &M::R,
|
|
server_key: &ServerKeyEvaluationDomain<M, DefaultSecureRng, NttOp>,
|
|
) -> M::R {
|
|
let mut c_out = M::R::zeros(c0.as_ref().len());
|
|
let modop = &self.pbs_info.rlwe_modop;
|
|
izip!(
|
|
c_out.as_mut().iter_mut(),
|
|
c0.as_ref().iter(),
|
|
c1.as_ref().iter()
|
|
)
|
|
.for_each(|(o, i0, i1)| {
|
|
*o = modop.add(i0, i1);
|
|
});
|
|
// +Q/4
|
|
c_out.as_mut()[0] = modop.add(&c_out.as_ref()[0], &self.pbs_info.rlwe_qby4);
|
|
|
|
// PBS
|
|
pbs(
|
|
&self.pbs_info,
|
|
&self.pbs_info.nand_test_vec,
|
|
&mut c_out,
|
|
server_key,
|
|
&mut self.scratch_memory.lwe_vector,
|
|
&mut self.scratch_memory.decomposition_matrix,
|
|
);
|
|
|
|
c_out
|
|
}
|
|
}
|
|
|
|
/// LMKCY+ Blind rotation
|
|
///
|
|
/// gk_to_si: [g^0, ..., g^{q/2-1}, -g^0, -g^1, .., -g^{q/2-1}]
|
|
fn blind_rotation<
|
|
MT: IsTrivial + MatrixMut,
|
|
Mmut: MatrixMut<MatElement = MT::MatElement> + Matrix,
|
|
D: Decomposer<Element = MT::MatElement>,
|
|
NttOp: Ntt<Element = MT::MatElement>,
|
|
ModOp: ArithmeticOps<Element = MT::MatElement> + VectorOps<Element = MT::MatElement>,
|
|
K: PbsKey<M = Mmut>,
|
|
P: PbsInfo<Element = MT::MatElement>,
|
|
>(
|
|
trivial_rlwe_test_poly: &mut MT,
|
|
scratch_matrix: &mut Mmut,
|
|
g: isize,
|
|
w: usize,
|
|
q: usize,
|
|
gk_to_si: &[Vec<usize>],
|
|
rlwe_rgsw_decomposer: &(D, D),
|
|
auto_decomposer: &D,
|
|
ntt_op: &NttOp,
|
|
mod_op: &ModOp,
|
|
parameters: &P,
|
|
pbs_key: &K,
|
|
) where
|
|
<Mmut as Matrix>::R: RowMut,
|
|
Mmut::MatElement: Copy + Zero,
|
|
<MT as Matrix>::R: RowMut,
|
|
{
|
|
let q_by_2 = q / 2;
|
|
|
|
// -(g^k)
|
|
for i in (1..q_by_2).rev() {
|
|
gk_to_si[q_by_2 + i].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(*s_index),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
|
|
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(g);
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(g),
|
|
scratch_matrix,
|
|
&auto_map_index,
|
|
&auto_map_sign,
|
|
mod_op,
|
|
ntt_op,
|
|
auto_decomposer,
|
|
);
|
|
}
|
|
|
|
// -(g^0)
|
|
gk_to_si[q_by_2].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(*s_index),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(-g);
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(-g),
|
|
scratch_matrix,
|
|
&auto_map_index,
|
|
&auto_map_sign,
|
|
mod_op,
|
|
ntt_op,
|
|
auto_decomposer,
|
|
);
|
|
|
|
// +(g^k)
|
|
for i in (1..q_by_2).rev() {
|
|
gk_to_si[i].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(*s_index),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
|
|
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(g);
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(g),
|
|
scratch_matrix,
|
|
&auto_map_index,
|
|
&auto_map_sign,
|
|
mod_op,
|
|
ntt_op,
|
|
auto_decomposer,
|
|
);
|
|
}
|
|
|
|
// +(g^0)
|
|
gk_to_si[0].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(gk_to_si[q_by_2][*s_index]),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
}
|
|
|
|
/// - Mod down
|
|
/// - key switching
|
|
/// - mod down
|
|
/// - blind rotate
|
|
fn pbs<
|
|
M: Matrix + MatrixMut + MatrixEntity,
|
|
P: PbsInfo<Element = M::MatElement>,
|
|
K: PbsKey<M = M>,
|
|
>(
|
|
pbs_info: &P,
|
|
test_vec: &M::R,
|
|
lwe_in: &mut M::R,
|
|
pbs_key: &K,
|
|
scratch_lwe_vec: &mut M::R,
|
|
scratch_blind_rotate_matrix: &mut M,
|
|
) where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: PrimInt + ToPrimitive + FromPrimitive + One + Copy + Zero + Display,
|
|
{
|
|
let rlwe_q = pbs_info.rlwe_q();
|
|
let lwe_q = pbs_info.lwe_q();
|
|
let br_q = pbs_info.br_q();
|
|
let rlwe_qf64 = rlwe_q.q_as_f64().unwrap();
|
|
let lwe_qf64 = lwe_q.q_as_f64().unwrap();
|
|
let br_qf64 = br_q.to_f64().unwrap();
|
|
let rlwe_n = pbs_info.rlwe_n();
|
|
|
|
// PBSTracer::with_local_mut(|t| {
|
|
// let out = lwe_in
|
|
// .as_ref()
|
|
// .iter()
|
|
// .map(|v| v.to_u64().unwrap())
|
|
// .collect_vec();
|
|
// t.ct_rlwe_q_mod = out;
|
|
// });
|
|
|
|
// moddown Q -> Q_ks
|
|
lwe_in.as_mut().iter_mut().for_each(|v| {
|
|
*v =
|
|
M::MatElement::from_f64(((v.to_f64().unwrap() * lwe_qf64) / rlwe_qf64).round()).unwrap()
|
|
});
|
|
|
|
// PBSTracer::with_local_mut(|t| {
|
|
// let out = lwe_in
|
|
// .as_ref()
|
|
// .iter()
|
|
// .map(|v| v.to_u64().unwrap())
|
|
// .collect_vec();
|
|
// t.ct_lwe_q_mod = out;
|
|
// });
|
|
|
|
// key switch RLWE secret to LWE secret
|
|
scratch_lwe_vec.as_mut().fill(M::MatElement::zero());
|
|
lwe_key_switch(
|
|
scratch_lwe_vec,
|
|
lwe_in,
|
|
pbs_key.lwe_ksk(),
|
|
pbs_info.modop_lweq(),
|
|
pbs_info.lwe_decomposer(),
|
|
);
|
|
|
|
// PBSTracer::with_local_mut(|t| {
|
|
// let out = scratch_lwe_vec
|
|
// .as_ref()
|
|
// .iter()
|
|
// .map(|v| v.to_u64().unwrap())
|
|
// .collect_vec();
|
|
// t.ct_lwe_q_mod_after_ksk = out;
|
|
// });
|
|
|
|
// odd mowdown Q_ks -> q
|
|
let g_k_dlog_map = pbs_info.g_k_dlog_map();
|
|
let mut g_k_si = vec![vec![]; br_q];
|
|
scratch_lwe_vec
|
|
.as_ref()
|
|
.iter()
|
|
.skip(1)
|
|
.enumerate()
|
|
.for_each(|(index, v)| {
|
|
let odd_v = mod_switch_odd(v.to_f64().unwrap(), lwe_qf64, br_qf64);
|
|
let k = g_k_dlog_map[odd_v];
|
|
g_k_si[k].push(index);
|
|
});
|
|
|
|
// PBSTracer::with_local_mut(|t| {
|
|
// let out = scratch_lwe_vec
|
|
// .as_ref()
|
|
// .iter()
|
|
// .map(|v| mod_switch_odd(v.to_f64().unwrap(), lwe_qf64, br_qf64) as
|
|
// u64) .collect_vec();
|
|
// t.ct_br_q_mod = out;
|
|
// });
|
|
|
|
// handle b and set trivial test RLWE
|
|
let g = pbs_info.g() as usize;
|
|
let g_times_b = (g * mod_switch_odd(
|
|
scratch_lwe_vec.as_ref()[0].to_f64().unwrap(),
|
|
lwe_qf64,
|
|
br_qf64,
|
|
)) % (br_q);
|
|
// v = (v(X) * X^{g*b}) mod X^{q/2}+1
|
|
let br_qby2 = br_q / 2;
|
|
let mut gb_monomial_sign = true;
|
|
let mut gb_monomial_exp = g_times_b;
|
|
// X^{g*b} mod X^{q/2}+1
|
|
if gb_monomial_exp > br_qby2 {
|
|
gb_monomial_exp -= br_qby2;
|
|
gb_monomial_sign = false
|
|
}
|
|
// monomial mul
|
|
let mut trivial_rlwe_test_poly = RlweCiphertext::<_, DefaultSecureRng> {
|
|
data: M::zeros(2, rlwe_n),
|
|
is_trivial: true,
|
|
_phatom: PhantomData,
|
|
};
|
|
if pbs_info.embedding_factor() == 1 {
|
|
monomial_mul(
|
|
test_vec.as_ref(),
|
|
trivial_rlwe_test_poly.get_row_mut(1).as_mut(),
|
|
gb_monomial_exp,
|
|
gb_monomial_sign,
|
|
br_qby2,
|
|
pbs_info.modop_rlweq(),
|
|
);
|
|
} else {
|
|
// use lwe_in to store the `t = v(X) * X^{g*2} mod X^{q/2}+1` temporarily. This
|
|
// works because q/2 <= N (where N is lwe_in LWE dimension) always.
|
|
monomial_mul(
|
|
test_vec.as_ref(),
|
|
&mut lwe_in.as_mut()[..br_qby2],
|
|
gb_monomial_exp,
|
|
gb_monomial_sign,
|
|
br_qby2,
|
|
pbs_info.modop_rlweq(),
|
|
);
|
|
|
|
// emebed poly `t` in ring X^{q/2}+1 inside the bigger ring X^{N}+1
|
|
let embed_factor = pbs_info.embedding_factor();
|
|
let partb_trivial_rlwe = trivial_rlwe_test_poly.get_row_mut(1);
|
|
lwe_in.as_ref()[..br_qby2]
|
|
.iter()
|
|
.enumerate()
|
|
.for_each(|(index, v)| {
|
|
partb_trivial_rlwe[embed_factor * index] = *v;
|
|
});
|
|
}
|
|
|
|
// blind rotate
|
|
blind_rotation(
|
|
&mut trivial_rlwe_test_poly,
|
|
scratch_blind_rotate_matrix,
|
|
pbs_info.g(),
|
|
1,
|
|
br_q,
|
|
&g_k_si,
|
|
pbs_info.rlwe_rgsw_decomposer(),
|
|
pbs_info.auto_decomposer(),
|
|
pbs_info.nttop_rlweq(),
|
|
pbs_info.modop_rlweq(),
|
|
pbs_info,
|
|
pbs_key,
|
|
);
|
|
|
|
// ClientKey::with_local(|ck| {
|
|
// let ring_size = parameters.rlwe_n();
|
|
// let mut rlwe_ct = vec![vec![0u64; ring_size]; 2];
|
|
// izip!(
|
|
// rlwe_ct[0].iter_mut(),
|
|
// trivial_rlwe_test_poly.0.get_row_slice(0)
|
|
// )
|
|
// .for_each(|(t, f)| {
|
|
// *t = f.to_u64().unwrap();
|
|
// });
|
|
// izip!(
|
|
// rlwe_ct[1].iter_mut(),
|
|
// trivial_rlwe_test_poly.0.get_row_slice(1)
|
|
// )
|
|
// .for_each(|(t, f)| {
|
|
// *t = f.to_u64().unwrap();
|
|
// });
|
|
// let mut m_out = vec![vec![0u64; ring_size]];
|
|
// let modop = ModularOpsU64::new(rlwe_q.to_u64().unwrap());
|
|
// let nttop = NttBackendU64::new(rlwe_q.to_u64().unwrap(), ring_size);
|
|
// decrypt_rlwe(&rlwe_ct, ck.sk_rlwe.values(), &mut m_out, &nttop, &modop);
|
|
|
|
// println!("RLWE post PBS message: {:?}", m_out[0]);
|
|
// });
|
|
|
|
// sample extract
|
|
sample_extract(lwe_in, &trivial_rlwe_test_poly, pbs_info.modop_rlweq(), 0);
|
|
}
|
|
|
|
fn mod_switch_odd(v: f64, from_q: f64, to_q: f64) -> usize {
|
|
let odd_v = (((v * to_q) / (from_q)).floor()).to_usize().unwrap();
|
|
//TODO(Jay): check correctness of this
|
|
odd_v + ((odd_v & 1) ^ 1)
|
|
}
|
|
|
|
// TODO(Jay): Add tests for sample extract
|
|
fn sample_extract<M: Matrix + MatrixMut, ModOp: ArithmeticOps<Element = M::MatElement>>(
|
|
lwe_out: &mut M::R,
|
|
rlwe_in: &M,
|
|
mod_op: &ModOp,
|
|
index: usize,
|
|
) where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: Copy,
|
|
{
|
|
let ring_size = rlwe_in.dimension().1;
|
|
|
|
// index..=0
|
|
let to = &mut lwe_out.as_mut()[1..];
|
|
let from = rlwe_in.get_row_slice(0);
|
|
for i in 0..index + 1 {
|
|
to[i] = from[index - i];
|
|
}
|
|
|
|
// -(N..index)
|
|
for i in index + 1..ring_size {
|
|
to[i] = mod_op.neg(&from[ring_size + index - i]);
|
|
}
|
|
|
|
// set b
|
|
lwe_out.as_mut()[0] = *rlwe_in.get(1, index);
|
|
}
|
|
|
|
/// TODO(Jay): Write tests for monomial mul
|
|
fn monomial_mul<El, ModOp: ArithmeticOps<Element = El>>(
|
|
p_in: &[El],
|
|
p_out: &mut [El],
|
|
mon_exp: usize,
|
|
mon_sign: bool,
|
|
ring_size: usize,
|
|
mod_op: &ModOp,
|
|
) where
|
|
El: Copy,
|
|
{
|
|
debug_assert!(p_in.as_ref().len() == ring_size);
|
|
debug_assert!(p_in.as_ref().len() == p_out.as_ref().len());
|
|
debug_assert!(mon_exp < ring_size);
|
|
|
|
p_in.as_ref().iter().enumerate().for_each(|(index, v)| {
|
|
let mut to_index = index + mon_exp;
|
|
let mut to_sign = mon_sign;
|
|
if to_index >= ring_size {
|
|
to_index = to_index - ring_size;
|
|
to_sign = !to_sign;
|
|
}
|
|
|
|
if !to_sign {
|
|
p_out.as_mut()[to_index] = mod_op.neg(v);
|
|
} else {
|
|
p_out.as_mut()[to_index] = *v;
|
|
}
|
|
});
|
|
}
|
|
|
|
thread_local! {
|
|
static PBS_TRACER: RefCell<PBSTracer<Vec<Vec<u64>>>> =
|
|
RefCell::new(PBSTracer::default()); }
|
|
|
|
#[derive(Default)]
|
|
struct PBSTracer<M>
|
|
where
|
|
M: Matrix + Default,
|
|
{
|
|
pub(crate) ct_rlwe_q_mod: M::R,
|
|
pub(crate) ct_lwe_q_mod: M::R,
|
|
pub(crate) ct_lwe_q_mod_after_ksk: M::R,
|
|
pub(crate) ct_br_q_mod: Vec<u64>,
|
|
}
|
|
|
|
impl PBSTracer<Vec<Vec<u64>>> {
|
|
fn trace(&self, parameters: &BoolParameters<u64>, sk_lwe: &[i32], sk_rlwe: &[i32]) {
|
|
assert!(parameters.rlwe_n().0 == sk_rlwe.len());
|
|
assert!(parameters.lwe_n().0 == sk_lwe.len());
|
|
|
|
let modop_rlweq = ModularOpsU64::new(*parameters.rlwe_q());
|
|
// noise after mod down Q -> Q_ks
|
|
let m_back0 = decrypt_lwe(&self.ct_rlwe_q_mod, sk_rlwe, &modop_rlweq);
|
|
|
|
let modop_lweq = ModularOpsU64::<CiphertextModulus<u64>>::new(*parameters.lwe_q());
|
|
// noise after mod down Q -> Q_ks
|
|
let m_back1 = decrypt_lwe(&self.ct_lwe_q_mod, sk_rlwe, &modop_lweq);
|
|
// noise after key switch from RLWE -> LWE
|
|
let m_back2 = decrypt_lwe(&self.ct_lwe_q_mod_after_ksk, sk_lwe, &modop_lweq);
|
|
|
|
// noise after mod down odd from Q_ks -> q
|
|
let modop_br_q = ModularOpsU64::<u64>::new(*parameters.br_q() as u64);
|
|
let m_back3 = decrypt_lwe(&self.ct_br_q_mod, sk_lwe, &modop_br_q);
|
|
|
|
println!(
|
|
"
|
|
M initial mod Q: {m_back0},
|
|
M after mod down Q -> Q_ks: {m_back1},
|
|
M after key switch from RLWE -> LWE: {m_back2},
|
|
M after mod dwon Q_ks -> q: {m_back3}
|
|
"
|
|
);
|
|
}
|
|
}
|
|
|
|
impl WithLocal for PBSTracer<Vec<Vec<u64>>> {
|
|
fn with_local<F, R>(func: F) -> R
|
|
where
|
|
F: Fn(&Self) -> R,
|
|
{
|
|
PBS_TRACER.with_borrow(|t| func(t))
|
|
}
|
|
|
|
fn with_local_mut<F, R>(func: F) -> R
|
|
where
|
|
F: Fn(&mut Self) -> R,
|
|
{
|
|
PBS_TRACER.with_borrow_mut(|t| func(t))
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::iter::Sum;
|
|
|
|
use rand::{thread_rng, Rng};
|
|
use rand_distr::Uniform;
|
|
|
|
use crate::{
|
|
backend::{GetModulus, ModInit, ModularOpsU64, WordSizeModulus},
|
|
bool,
|
|
ntt::NttBackendU64,
|
|
random::DEFAULT_RNG,
|
|
rgsw::{
|
|
self, measure_noise, public_key_encrypt_rlwe, secret_key_encrypt_rlwe,
|
|
tests::{_measure_noise_rgsw, _sk_encrypt_rlwe},
|
|
RgswCiphertext, RgswCiphertextEvaluationDomain, SeededRgswCiphertext,
|
|
SeededRlweCiphertext,
|
|
},
|
|
utils::{negacyclic_mul, Stats},
|
|
};
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn bool_encrypt_decrypt_works() {
|
|
let bool_evaluator = BoolEvaluator::<
|
|
Vec<Vec<u64>>,
|
|
NttBackendU64,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::new(SP_BOOL_PARAMS);
|
|
let client_key = bool_evaluator.client_key();
|
|
|
|
let mut m = true;
|
|
for _ in 0..1000 {
|
|
let lwe_ct = bool_evaluator.sk_encrypt(m, &client_key);
|
|
let m_back = bool_evaluator.sk_decrypt(&lwe_ct, &client_key);
|
|
assert_eq!(m, m_back);
|
|
m = !m;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn bool_nand() {
|
|
DefaultSecureRng::with_local_mut(|r| {
|
|
let rng = DefaultSecureRng::new_seeded([19u8; 32]);
|
|
*r = rng;
|
|
});
|
|
|
|
// let mog = WordSizeModulus::<CiphertextModulus<u64>>::new(12u64);
|
|
|
|
let mut bool_evaluator = BoolEvaluator::<
|
|
Vec<Vec<u64>>,
|
|
NttBackendU64,
|
|
WordSizeModulus<CiphertextModulus<u64>>,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::new(SP_BOOL_PARAMS);
|
|
|
|
// println!("{:?}", bool_evaluator.nand_test_vec);
|
|
let client_key = bool_evaluator.client_key();
|
|
let seeded_server_key = bool_evaluator.server_key(&client_key);
|
|
let server_key_eval_domain =
|
|
ServerKeyEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
|
|
&seeded_server_key,
|
|
);
|
|
|
|
let mut m0 = false;
|
|
let mut m1 = true;
|
|
let mut ct0 = bool_evaluator.sk_encrypt(m0, &client_key);
|
|
let mut ct1 = bool_evaluator.sk_encrypt(m1, &client_key);
|
|
|
|
for _ in 0..1000 {
|
|
let ct_back = bool_evaluator.nand(&ct0, &ct1, &server_key_eval_domain);
|
|
|
|
let m_out = !(m0 && m1);
|
|
|
|
// Trace and measure PBS noise
|
|
{
|
|
let noise0 = {
|
|
let ideal = if m0 {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().true_el()
|
|
} else {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().false_el()
|
|
};
|
|
let n = measure_noise_lwe(
|
|
&ct0,
|
|
client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
&ideal,
|
|
);
|
|
let v = decrypt_lwe(
|
|
&ct0,
|
|
client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
);
|
|
(n, v)
|
|
};
|
|
let noise1 = {
|
|
let ideal = if m1 {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().true_el()
|
|
} else {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().false_el()
|
|
};
|
|
let n = measure_noise_lwe(
|
|
&ct1,
|
|
client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
&ideal,
|
|
);
|
|
let v = decrypt_lwe(
|
|
&ct1,
|
|
client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
);
|
|
(n, v)
|
|
};
|
|
|
|
// // Trace PBS
|
|
// PBSTracer::with_local(|t| {
|
|
// t.trace(
|
|
// &SP_BOOL_PARAMS,
|
|
// &client_key.sk_lwe.values(),
|
|
// client_key.sk_rlwe.values(),
|
|
// )
|
|
// });
|
|
|
|
// Calculate noise in ciphertext post PBS
|
|
let noise_out = {
|
|
let ideal = if m_out {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().true_el()
|
|
} else {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().false_el()
|
|
};
|
|
let n = measure_noise_lwe(
|
|
&ct_back,
|
|
client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
&ideal,
|
|
);
|
|
let v = decrypt_lwe(
|
|
&ct_back,
|
|
client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
);
|
|
(n, v)
|
|
};
|
|
dbg!(m0, m1, m_out);
|
|
println!(
|
|
"ct0 (noise, message): {:?} \n ct1 (noise, message): {:?} \n PBS (noise, message): {:?}", noise0, noise1, noise_out
|
|
);
|
|
}
|
|
let m_back = bool_evaluator.sk_decrypt(&ct_back, &client_key);
|
|
assert!(m_out == m_back, "Expected {m_out}, got {m_back}");
|
|
println!("----------");
|
|
|
|
m1 = m0;
|
|
m0 = m_out;
|
|
|
|
ct1 = ct0;
|
|
ct0 = ct_back;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn multi_party_encryption_decryption() {
|
|
let bool_evaluator = BoolEvaluator::<
|
|
Vec<Vec<u64>>,
|
|
NttBackendU64,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::new(MP_BOOL_PARAMS);
|
|
|
|
let no_of_parties = 500;
|
|
let parties = (0..no_of_parties)
|
|
.map(|_| bool_evaluator.client_key())
|
|
.collect_vec();
|
|
|
|
let mut ideal_rlwe_sk = vec![0i32; bool_evaluator.pbs_info.rlwe_n()];
|
|
parties.iter().for_each(|k| {
|
|
izip!(ideal_rlwe_sk.iter_mut(), k.sk_rlwe.values()).for_each(|(ideal_i, s_i)| {
|
|
*ideal_i = *ideal_i + s_i;
|
|
});
|
|
});
|
|
|
|
println!("{:?}", &ideal_rlwe_sk);
|
|
|
|
let mut m = true;
|
|
for i in 0..100 {
|
|
let pk_cr_seed = [0u8; 32];
|
|
|
|
let public_key_share = parties
|
|
.iter()
|
|
.map(|k| bool_evaluator.multi_party_public_key_share(pk_cr_seed, k))
|
|
.collect_vec();
|
|
|
|
let collective_pk = PublicKey::<
|
|
Vec<Vec<u64>>,
|
|
DefaultSecureRng,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::from(public_key_share.as_slice());
|
|
let lwe_ct = bool_evaluator.pk_encrypt(&collective_pk.key, m);
|
|
|
|
let decryption_shares = parties
|
|
.iter()
|
|
.map(|k| bool_evaluator.multi_party_decryption_share(&lwe_ct, k))
|
|
.collect_vec();
|
|
|
|
let m_back = bool_evaluator.multi_party_decrypt(&decryption_shares, &lwe_ct);
|
|
|
|
{
|
|
let ideal_m = if m {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().true_el()
|
|
} else {
|
|
bool_evaluator.pbs_info.parameters.rlwe_q().false_el()
|
|
};
|
|
let noise = measure_noise_lwe(
|
|
&lwe_ct,
|
|
&ideal_rlwe_sk,
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
&ideal_m,
|
|
);
|
|
println!("Noise: {noise}");
|
|
}
|
|
|
|
assert_eq!(m_back, m);
|
|
m = !m;
|
|
}
|
|
}
|
|
|
|
fn _collecitve_public_key_gen(rlwe_q: u64, parties_rlwe_sk: &[RlweSecret]) -> Vec<Vec<u64>> {
|
|
let ring_size = parties_rlwe_sk[0].values.len();
|
|
assert!(ring_size.is_power_of_two());
|
|
let mut rng = DefaultSecureRng::new();
|
|
let nttop = NttBackendU64::new(&rlwe_q, ring_size);
|
|
let modop = ModularOpsU64::new(rlwe_q);
|
|
|
|
// Generate Pk shares
|
|
let pk_seed = [0u8; 32];
|
|
let pk_shares = parties_rlwe_sk.iter().map(|sk| {
|
|
let mut p_rng = DefaultSecureRng::new_seeded(pk_seed);
|
|
let mut share_out = vec![0u64; ring_size];
|
|
public_key_share(
|
|
&mut share_out,
|
|
sk.values(),
|
|
&modop,
|
|
&nttop,
|
|
&mut p_rng,
|
|
&mut rng,
|
|
);
|
|
share_out
|
|
});
|
|
|
|
let mut pk_part_b = vec![0u64; ring_size];
|
|
pk_shares.for_each(|share| modop.elwise_add_mut(&mut pk_part_b, &share));
|
|
let mut pk_part_a = vec![0u64; ring_size];
|
|
let mut p_rng = DefaultSecureRng::new_seeded(pk_seed);
|
|
RandomFillUniformInModulus::random_fill(&mut p_rng, &rlwe_q, pk_part_a.as_mut_slice());
|
|
|
|
vec![pk_part_a, pk_part_b]
|
|
}
|
|
|
|
fn _multi_party_all_keygen(
|
|
bool_evaluator: &BoolEvaluator<
|
|
Vec<Vec<u64>>,
|
|
NttBackendU64,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>,
|
|
no_of_parties: usize,
|
|
) -> (
|
|
Vec<ClientKey>,
|
|
PublicKey<Vec<Vec<u64>>, DefaultSecureRng, ModularOpsU64<CiphertextModulus<u64>>>,
|
|
Vec<
|
|
CommonReferenceSeededMultiPartyServerKeyShare<
|
|
Vec<Vec<u64>>,
|
|
BoolParameters<u64>,
|
|
[u8; 32],
|
|
>,
|
|
>,
|
|
SeededMultiPartyServerKey<Vec<Vec<u64>>, [u8; 32], BoolParameters<u64>>,
|
|
ServerKeyEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64>,
|
|
ClientKey,
|
|
) {
|
|
let parties = (0..no_of_parties)
|
|
.map(|_| bool_evaluator.client_key())
|
|
.collect_vec();
|
|
|
|
let mut rng = DefaultSecureRng::new();
|
|
|
|
// Collective public key
|
|
let mut pk_cr_seed = [0u8; 32];
|
|
rng.fill_bytes(&mut pk_cr_seed);
|
|
let public_key_share = parties
|
|
.iter()
|
|
.map(|k| bool_evaluator.multi_party_public_key_share(pk_cr_seed, k))
|
|
.collect_vec();
|
|
let collective_pk =
|
|
PublicKey::<Vec<Vec<u64>>, DefaultSecureRng, _>::from(public_key_share.as_slice());
|
|
|
|
// Server key
|
|
let mut pbs_cr_seed = [0u8; 32];
|
|
rng.fill_bytes(&mut pbs_cr_seed);
|
|
let server_key_shares = parties
|
|
.iter()
|
|
.map(|k| {
|
|
bool_evaluator.multi_party_server_key_share(pbs_cr_seed, &collective_pk.key, k)
|
|
})
|
|
.collect_vec();
|
|
let seeded_server_key =
|
|
bool_evaluator.aggregate_multi_party_server_key_shares(&server_key_shares);
|
|
let server_key_eval = ServerKeyEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
|
|
&seeded_server_key,
|
|
);
|
|
|
|
// construct ideal rlwe sk for meauring noise
|
|
let ideal_client_key = {
|
|
let mut ideal_rlwe_sk = vec![0i32; bool_evaluator.pbs_info.rlwe_n()];
|
|
parties.iter().for_each(|k| {
|
|
izip!(ideal_rlwe_sk.iter_mut(), k.sk_rlwe.values()).for_each(|(ideal_i, s_i)| {
|
|
*ideal_i = *ideal_i + s_i;
|
|
});
|
|
});
|
|
let mut ideal_lwe_sk = vec![0i32; bool_evaluator.pbs_info.lwe_n()];
|
|
parties.iter().for_each(|k| {
|
|
izip!(ideal_lwe_sk.iter_mut(), k.sk_lwe.values()).for_each(|(ideal_i, s_i)| {
|
|
*ideal_i = *ideal_i + s_i;
|
|
});
|
|
});
|
|
|
|
ClientKey {
|
|
sk_lwe: LweSecret {
|
|
values: ideal_lwe_sk,
|
|
},
|
|
sk_rlwe: RlweSecret {
|
|
values: ideal_rlwe_sk,
|
|
},
|
|
}
|
|
};
|
|
|
|
(
|
|
parties,
|
|
collective_pk,
|
|
server_key_shares,
|
|
seeded_server_key,
|
|
server_key_eval,
|
|
ideal_client_key,
|
|
)
|
|
}
|
|
|
|
#[test]
|
|
fn multi_party_nand() {
|
|
let mut bool_evaluator = BoolEvaluator::<
|
|
Vec<Vec<u64>>,
|
|
NttBackendU64,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::new(MP_BOOL_PARAMS);
|
|
|
|
let (parties, collective_pk, _, _, server_key_eval, ideal_client_key) =
|
|
_multi_party_all_keygen(&bool_evaluator, 2);
|
|
|
|
let mut m0 = true;
|
|
let mut m1 = false;
|
|
|
|
let mut lwe0 = bool_evaluator.pk_encrypt(&collective_pk.key, m0);
|
|
let mut lwe1 = bool_evaluator.pk_encrypt(&collective_pk.key, m1);
|
|
|
|
for _ in 0..2000 {
|
|
let lwe_out = bool_evaluator.nand(&lwe0, &lwe1, &server_key_eval);
|
|
|
|
let m_expected = !(m0 & m1);
|
|
|
|
// measure noise
|
|
{
|
|
let noise0 = {
|
|
let ideal = if m0 {
|
|
bool_evaluator.pbs_info.rlwe_q().true_el()
|
|
} else {
|
|
bool_evaluator.pbs_info.rlwe_q().false_el()
|
|
};
|
|
let n = measure_noise_lwe(
|
|
&lwe0,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
&ideal,
|
|
);
|
|
let v = decrypt_lwe(
|
|
&lwe0,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
);
|
|
(n, v)
|
|
};
|
|
let noise1 = {
|
|
let ideal = if m1 {
|
|
bool_evaluator.pbs_info.rlwe_q().true_el()
|
|
} else {
|
|
bool_evaluator.pbs_info.rlwe_q().false_el()
|
|
};
|
|
let n = measure_noise_lwe(
|
|
&lwe1,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
&ideal,
|
|
);
|
|
let v = decrypt_lwe(
|
|
&lwe1,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
);
|
|
(n, v)
|
|
};
|
|
|
|
// // Trace PBS
|
|
// PBSTracer::with_local(|t| {
|
|
// t.trace(
|
|
// &MP_BOOL_PARAMS,
|
|
// &ideal_client_key.sk_lwe.values(),
|
|
// &ideal_client_key.sk_rlwe.values(),
|
|
// )
|
|
// });
|
|
|
|
let noise_out = {
|
|
let ideal_m = if m_expected {
|
|
bool_evaluator.pbs_info.rlwe_q().true_el()
|
|
} else {
|
|
bool_evaluator.pbs_info.rlwe_q().false_el()
|
|
};
|
|
let n = measure_noise_lwe(
|
|
&lwe_out,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
&ideal_m,
|
|
);
|
|
let v = decrypt_lwe(
|
|
&lwe_out,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&bool_evaluator.pbs_info.rlwe_modop,
|
|
);
|
|
(n, v)
|
|
};
|
|
dbg!(m0, m1, m_expected);
|
|
println!(
|
|
"ct0 (noise, message): {:?} \n ct1 (noise, message): {:?} \n PBS (noise, message): {:?}", noise0, noise1, noise_out
|
|
);
|
|
}
|
|
|
|
// multi-party decrypt
|
|
let decryption_shares = parties
|
|
.iter()
|
|
.map(|k| bool_evaluator.multi_party_decryption_share(&lwe_out, k))
|
|
.collect_vec();
|
|
let m_back = bool_evaluator.multi_party_decrypt(&decryption_shares, &lwe_out);
|
|
|
|
// let m_back = bool_evaluator.sk_decrypt(&lwe_out, &ideal_client_key);
|
|
|
|
assert!(m_expected == m_back, "Expected {m_expected}, got {m_back}");
|
|
m1 = m0;
|
|
m0 = m_expected;
|
|
|
|
lwe1 = lwe0;
|
|
lwe0 = lwe_out;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn tester() {
|
|
// pub(super) const TEST_MP_BOOL_PARAMS: BoolParameters<u64> =
|
|
// BoolParameters::<u64> { rlwe_q: 1152921504606830593,
|
|
// rlwe_logq: 60,
|
|
// lwe_q: 1 << 20,
|
|
// lwe_logq: 20,
|
|
// br_q: 1 << 11,
|
|
// rlwe_n: 1 << 11,
|
|
// lwe_n: 500,
|
|
// d_rgsw: 4,
|
|
// logb_rgsw: 12,
|
|
// d_lwe: 5,
|
|
// logb_lwe: 4,
|
|
// g: 5,
|
|
// w: 1,
|
|
// };
|
|
|
|
let bool_evaluator = BoolEvaluator::<
|
|
Vec<Vec<u64>>,
|
|
NttBackendU64,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::new(MP_BOOL_PARAMS);
|
|
|
|
// let (_, collective_pk, _, _, server_key_eval, ideal_client_key) =
|
|
// _multi_party_all_keygen(&bool_evaluator, 20);
|
|
let no_of_parties = 2;
|
|
let lwe_q = bool_evaluator.pbs_info.parameters.lwe_q();
|
|
let rlwe_q = bool_evaluator.pbs_info.parameters.rlwe_q();
|
|
let lwe_n = bool_evaluator.pbs_info.parameters.lwe_n().0;
|
|
let rlwe_n = bool_evaluator.pbs_info.parameters.rlwe_n().0;
|
|
let lwe_modop = &bool_evaluator.pbs_info.lwe_modop;
|
|
let rlwe_nttop = &bool_evaluator.pbs_info.rlwe_nttop;
|
|
let rlwe_modop = &bool_evaluator.pbs_info.rlwe_modop;
|
|
|
|
let rlwe_rgsw_decomposer = &bool_evaluator.pbs_info.rlwe_rgsw_decomposer;
|
|
let rlwe_rgsw_gadget_a = rlwe_rgsw_decomposer.0.gadget_vector();
|
|
let rlwe_rgsw_gadget_b = rlwe_rgsw_decomposer.1.gadget_vector();
|
|
|
|
// let rgsw_rgsw_decomposer = &bool_evaluator
|
|
// .pbs_info
|
|
// .parameters
|
|
// .rgsw_rgsw_decomposer::<DefaultDecomposer<u64>>();
|
|
// let rgsw_rgsw_gagdet_a = rgsw_rgsw_decomposer.a().gadget_vector();
|
|
// let rgsw_rgsw_gagdet_b = rgsw_rgsw_decomposer.b().gadget_vector();
|
|
|
|
let parties = (0..no_of_parties)
|
|
.map(|_| bool_evaluator.client_key())
|
|
.collect_vec();
|
|
|
|
let ideal_client_key = {
|
|
let mut ideal_rlwe_sk = vec![0i32; bool_evaluator.pbs_info.rlwe_n()];
|
|
parties.iter().for_each(|k| {
|
|
izip!(ideal_rlwe_sk.iter_mut(), k.sk_rlwe.values()).for_each(|(ideal_i, s_i)| {
|
|
*ideal_i = *ideal_i + s_i;
|
|
});
|
|
});
|
|
let mut ideal_lwe_sk = vec![0i32; bool_evaluator.pbs_info.lwe_n()];
|
|
parties.iter().for_each(|k| {
|
|
izip!(ideal_lwe_sk.iter_mut(), k.sk_lwe.values()).for_each(|(ideal_i, s_i)| {
|
|
*ideal_i = *ideal_i + s_i;
|
|
});
|
|
});
|
|
|
|
ClientKey {
|
|
sk_lwe: LweSecret {
|
|
values: ideal_lwe_sk,
|
|
},
|
|
sk_rlwe: RlweSecret {
|
|
values: ideal_rlwe_sk,
|
|
},
|
|
}
|
|
};
|
|
|
|
// check noise in freshly encrypted RLWE ciphertext (ie var_fresh)
|
|
if false {
|
|
let mut rng = DefaultSecureRng::new();
|
|
let mut check = Stats { samples: vec![] };
|
|
for _ in 0..10 {
|
|
// generate a new collective public key
|
|
let mut pk_cr_seed = [0u8; 32];
|
|
rng.fill_bytes(&mut pk_cr_seed);
|
|
let public_key_share = parties
|
|
.iter()
|
|
.map(|k| bool_evaluator.multi_party_public_key_share(pk_cr_seed, k))
|
|
.collect_vec();
|
|
let collective_pk = PublicKey::<
|
|
Vec<Vec<u64>>,
|
|
DefaultSecureRng,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::from(public_key_share.as_slice());
|
|
|
|
let mut m = vec![0u64; rlwe_n];
|
|
RandomFillUniformInModulus::random_fill(&mut rng, rlwe_q, m.as_mut_slice());
|
|
let mut rlwe_ct = vec![vec![0u64; rlwe_n]; 2];
|
|
public_key_encrypt_rlwe::<_, _, _, _, i32, _>(
|
|
&mut rlwe_ct,
|
|
&collective_pk.key,
|
|
&m,
|
|
rlwe_modop,
|
|
rlwe_nttop,
|
|
&mut rng,
|
|
);
|
|
|
|
let mut m_back = vec![0u64; rlwe_n];
|
|
decrypt_rlwe(
|
|
&rlwe_ct,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&mut m_back,
|
|
rlwe_nttop,
|
|
rlwe_modop,
|
|
);
|
|
|
|
rlwe_modop.elwise_sub_mut(m_back.as_mut_slice(), m.as_slice());
|
|
|
|
check.add_more(Vec::<i64>::try_convert_from(&m_back, rlwe_q).as_slice());
|
|
}
|
|
|
|
println!("Public key Std: {}", check.std_dev().abs().log2());
|
|
}
|
|
|
|
if true {
|
|
// Generate server key shares
|
|
let mut rng = DefaultSecureRng::new();
|
|
let mut pk_cr_seed = [0u8; 32];
|
|
rng.fill_bytes(&mut pk_cr_seed);
|
|
let public_key_share = parties
|
|
.iter()
|
|
.map(|k| bool_evaluator.multi_party_public_key_share(pk_cr_seed, k))
|
|
.collect_vec();
|
|
let collective_pk = PublicKey::<
|
|
Vec<Vec<u64>>,
|
|
DefaultSecureRng,
|
|
ModularOpsU64<CiphertextModulus<u64>>,
|
|
>::from(public_key_share.as_slice());
|
|
|
|
let pbs_cr_seed = [0u8; 32];
|
|
rng.fill_bytes(&mut pk_cr_seed);
|
|
let server_key_shares = parties
|
|
.iter()
|
|
.map(|k| {
|
|
bool_evaluator.multi_party_server_key_share(pbs_cr_seed, &collective_pk.key, k)
|
|
})
|
|
.collect_vec();
|
|
|
|
let seeded_server_key =
|
|
bool_evaluator.aggregate_multi_party_server_key_shares(&server_key_shares);
|
|
|
|
// Check noise in RGSW ciphertexts of ideal LWE secret elements
|
|
if true {
|
|
let mut check = Stats { samples: vec![] };
|
|
izip!(
|
|
ideal_client_key.sk_lwe.values.iter(),
|
|
seeded_server_key.rgsw_cts.iter()
|
|
)
|
|
.for_each(|(s_i, rgsw_ct_i)| {
|
|
// X^{s[i]}
|
|
let mut m_si = vec![0u64; rlwe_n];
|
|
let s_i = *s_i * (bool_evaluator.pbs_info.embedding_factor as i32);
|
|
if s_i < 0 {
|
|
m_si[rlwe_n - (s_i.abs() as usize)] = rlwe_q.neg_one();
|
|
} else {
|
|
m_si[s_i as usize] = 1;
|
|
}
|
|
|
|
// RLWE(-sm)
|
|
let mut neg_s_eval =
|
|
Vec::<u64>::try_convert_from(ideal_client_key.sk_rlwe.values(), rlwe_q);
|
|
rlwe_modop.elwise_neg_mut(&mut neg_s_eval);
|
|
rlwe_nttop.forward(&mut neg_s_eval);
|
|
for j in 0..rlwe_rgsw_decomposer.a().decomposition_count() {
|
|
// -s[X]*X^{s_lwe[i]}*B_j
|
|
let mut m_ideal = m_si.clone();
|
|
rlwe_nttop.forward(m_ideal.as_mut_slice());
|
|
rlwe_modop.elwise_mul_mut(m_ideal.as_mut_slice(), neg_s_eval.as_slice());
|
|
rlwe_nttop.backward(m_ideal.as_mut_slice());
|
|
rlwe_modop
|
|
.elwise_scalar_mul_mut(m_ideal.as_mut_slice(), &rlwe_rgsw_gadget_a[j]);
|
|
|
|
// RLWE(-s*X^{s_lwe[i]}*B_j)
|
|
let mut rlwe_ct = vec![vec![0u64; rlwe_n]; 2];
|
|
rlwe_ct[0].copy_from_slice(&rgsw_ct_i[j]);
|
|
rlwe_ct[1].copy_from_slice(
|
|
&rgsw_ct_i[j + rlwe_rgsw_decomposer.a().decomposition_count()],
|
|
);
|
|
|
|
let mut m_back = vec![0u64; rlwe_n];
|
|
decrypt_rlwe(
|
|
&rlwe_ct,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&mut m_back,
|
|
rlwe_nttop,
|
|
rlwe_modop,
|
|
);
|
|
|
|
// diff
|
|
rlwe_modop.elwise_sub_mut(&mut m_back, &m_ideal);
|
|
check.add_more(&Vec::<i64>::try_convert_from(&m_back, rlwe_q));
|
|
}
|
|
|
|
// RLWE'(m)
|
|
for j in 0..rlwe_rgsw_decomposer.b().decomposition_count() {
|
|
// X^{s_lwe[i]}*B_j
|
|
let mut m_ideal = m_si.clone();
|
|
rlwe_modop
|
|
.elwise_scalar_mul_mut(m_ideal.as_mut_slice(), &rlwe_rgsw_gadget_b[j]);
|
|
|
|
// RLWE(X^{s_lwe[i]}*B_j)
|
|
let mut rlwe_ct = vec![vec![0u64; rlwe_n]; 2];
|
|
rlwe_ct[0].copy_from_slice(
|
|
&rgsw_ct_i[j + (2 * rlwe_rgsw_decomposer.a().decomposition_count())],
|
|
);
|
|
rlwe_ct[1].copy_from_slice(
|
|
&rgsw_ct_i[j
|
|
+ (2 * rlwe_rgsw_decomposer.a().decomposition_count()
|
|
+ rlwe_rgsw_decomposer.b().decomposition_count())],
|
|
);
|
|
|
|
let mut m_back = vec![0u64; rlwe_n];
|
|
decrypt_rlwe(
|
|
&rlwe_ct,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&mut m_back,
|
|
rlwe_nttop,
|
|
rlwe_modop,
|
|
);
|
|
|
|
// diff
|
|
rlwe_modop.elwise_sub_mut(&mut m_back, &m_ideal);
|
|
check.add_more(&Vec::<i64>::try_convert_from(&m_back, rlwe_q));
|
|
}
|
|
});
|
|
println!(
|
|
"RGSW Std: {} {} ;; max={}",
|
|
check.mean(),
|
|
check.std_dev().abs().log2(),
|
|
check.samples.iter().max().unwrap()
|
|
);
|
|
}
|
|
|
|
// check noise in RLWE x RGSW(X^{s_i}) where RGSW is accunulated RGSW ciphertext
|
|
if false {
|
|
let mut check = Stats { samples: vec![] };
|
|
// server key in Evaluation domain
|
|
let server_key_eval_domain =
|
|
ServerKeyEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
|
|
&seeded_server_key,
|
|
);
|
|
izip!(
|
|
ideal_client_key.sk_lwe.values(),
|
|
seeded_server_key.rgsw_cts.iter()
|
|
)
|
|
.for_each(|(s_i, rgsw_ct_i)| {
|
|
let mut rgsw_ct_i = rgsw_ct_i.clone();
|
|
rgsw_ct_i
|
|
.iter_mut()
|
|
.for_each(|ri| rlwe_nttop.forward(ri.as_mut()));
|
|
|
|
let mut m = vec![0u64; rlwe_n];
|
|
RandomFillUniformInModulus::random_fill(&mut rng, rlwe_q, m.as_mut_slice());
|
|
let mut rlwe_ct = vec![vec![0u64; rlwe_n]; 2];
|
|
public_key_encrypt_rlwe::<_, _, _, _, i32, _>(
|
|
&mut rlwe_ct,
|
|
&collective_pk.key,
|
|
&m,
|
|
rlwe_modop,
|
|
rlwe_nttop,
|
|
&mut rng,
|
|
);
|
|
|
|
// RLWE(m*X^{s[i]}) = RLWE(m) x RGSW(X^{s[i]})
|
|
let mut rlwe_after = RlweCiphertext::<_, DefaultSecureRng>::new_trivial(vec![
|
|
vec![0u64; rlwe_n],
|
|
m.clone(),
|
|
]);
|
|
// let mut rlwe_after =
|
|
// RlweCiphertext::<_, DefaultSecureRng>::from_raw(rlwe_ct.clone(), false);
|
|
let mut scratch = vec![
|
|
vec![0u64; rlwe_n];
|
|
std::cmp::max(
|
|
rlwe_rgsw_decomposer.0.decomposition_count(),
|
|
rlwe_rgsw_decomposer.1.decomposition_count()
|
|
) + 2
|
|
];
|
|
rlwe_by_rgsw(
|
|
&mut rlwe_after,
|
|
&rgsw_ct_i,
|
|
&mut scratch,
|
|
rlwe_rgsw_decomposer,
|
|
rlwe_nttop,
|
|
rlwe_modop,
|
|
);
|
|
|
|
// m1 = X^{s[i]}
|
|
let mut m1 = vec![0u64; rlwe_n];
|
|
let s_i = *s_i * (bool_evaluator.pbs_info.embedding_factor as i32);
|
|
if s_i < 0 {
|
|
m1[rlwe_n - (s_i.abs() as usize)] = rlwe_q.neg_one()
|
|
} else {
|
|
m1[s_i as usize] = 1;
|
|
}
|
|
|
|
// (m+e) * m1
|
|
let mut m_plus_e_times_m1 = m.clone();
|
|
// decrypt_rlwe(
|
|
// &rlwe_ct,
|
|
// ideal_client_key.sk_rlwe.values(),
|
|
// &mut m_plus_e_times_m1,
|
|
// rlwe_nttop,
|
|
// rlwe_modop,
|
|
// );
|
|
rlwe_nttop.forward(m_plus_e_times_m1.as_mut_slice());
|
|
rlwe_nttop.forward(m1.as_mut_slice());
|
|
rlwe_modop.elwise_mul_mut(m_plus_e_times_m1.as_mut_slice(), m1.as_slice());
|
|
rlwe_nttop.backward(m_plus_e_times_m1.as_mut_slice());
|
|
|
|
// Resulting RLWE ciphertext will equal: (m0m1 + em1) + e_{rlsw x rgsw}.
|
|
// Hence, resulting rlwe ciphertext will have error em1 + e_{rlwe x rgsw}.
|
|
// Here we're only concerned with e_{rlwe x rgsw}, that is noise caused due to
|
|
// RLWExRGSW. Also note, in practice m1 is a monomial, for ex, X^{s_{i}}, for
|
|
// some i and var(em1) = var(e).
|
|
let mut m_plus_e_times_m1_more_e = vec![0u64; rlwe_n];
|
|
decrypt_rlwe(
|
|
&rlwe_after,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
&mut m_plus_e_times_m1_more_e,
|
|
rlwe_nttop,
|
|
rlwe_modop,
|
|
);
|
|
|
|
// diff
|
|
rlwe_modop.elwise_sub_mut(
|
|
m_plus_e_times_m1_more_e.as_mut_slice(),
|
|
m_plus_e_times_m1.as_slice(),
|
|
);
|
|
|
|
let noise = measure_noise(
|
|
&rlwe_after,
|
|
&m_plus_e_times_m1,
|
|
rlwe_nttop,
|
|
rlwe_modop,
|
|
ideal_client_key.sk_rlwe.values(),
|
|
);
|
|
print!("NOISE: {}", noise);
|
|
|
|
check.add_more(&Vec::<i64>::try_convert_from(
|
|
&m_plus_e_times_m1_more_e,
|
|
rlwe_q,
|
|
));
|
|
});
|
|
println!(
|
|
"RLWE x RGSW, where RGSW has noise var_brk, std: {} {}",
|
|
check.std_dev(),
|
|
check.std_dev().abs().log2()
|
|
)
|
|
}
|
|
}
|
|
|
|
// Check noise in fresh RGSW ciphertexts, ie X^{s_j[i]}, must equal noise in
|
|
// fresh RLWE ciphertext
|
|
if true {}
|
|
// test LWE ksk from RLWE -> LWE
|
|
// if false {
|
|
// let logp = 2;
|
|
// let mut rng = DefaultSecureRng::new();
|
|
|
|
// let m = 1;
|
|
// let encoded_m = m << (lwe_logq - logp);
|
|
|
|
// // Encrypt
|
|
// let mut lwe_ct = vec![0u64; rlwe_n + 1];
|
|
// encrypt_lwe(
|
|
// &mut lwe_ct,
|
|
// &encoded_m,
|
|
// ideal_client_key.sk_rlwe.values(),
|
|
// lwe_modop,
|
|
// &mut rng,
|
|
// );
|
|
|
|
// // key switch
|
|
// let lwe_decomposer = &bool_evaluator.decomposer_lwe;
|
|
// let mut lwe_out = vec![0u64; lwe_n + 1];
|
|
// lwe_key_switch(
|
|
// &mut lwe_out,
|
|
// &lwe_ct,
|
|
// &server_key_eval.lwe_ksk,
|
|
// lwe_modop,
|
|
// lwe_decomposer,
|
|
// );
|
|
|
|
// let encoded_m_back = decrypt_lwe(&lwe_out,
|
|
// ideal_client_key.sk_lwe.values(), lwe_modop); let m_back
|
|
// = ((encoded_m_back as f64 * (1 << logp) as f64) /
|
|
// (lwe_q as f64)).round() as u64; dbg!(m_back, m);
|
|
|
|
// let noise = measure_noise_lwe(
|
|
// &lwe_out,
|
|
// ideal_client_key.sk_lwe.values(),
|
|
// lwe_modop,
|
|
// &encoded_m,
|
|
// );
|
|
|
|
// println!("Noise: {noise}");
|
|
// }
|
|
|
|
// Measure noise in RGSW ciphertexts of ideal LWE secrets
|
|
// if true {
|
|
// let gadget_vec = gadget_vector(
|
|
// bool_evaluator.parameters.rlwe_logq,
|
|
// bool_evaluator.parameters.logb_rgsw,
|
|
// bool_evaluator.parameters.d_rgsw,
|
|
// );
|
|
|
|
// for i in 0..20 {
|
|
// // measure noise in RGSW(s[i])
|
|
// let si =
|
|
// ideal_client_key.sk_lwe.values[i] *
|
|
// (bool_evaluator.embedding_factor as i32); let mut
|
|
// si_poly = vec![0u64; rlwe_n]; if si < 0 {
|
|
// si_poly[rlwe_n - (si.abs() as usize)] = rlwe_q - 1;
|
|
// } else {
|
|
// si_poly[(si.abs() as usize)] = 1;
|
|
// }
|
|
|
|
// let mut rgsw_si = server_key_eval.rgsw_cts[i].clone();
|
|
// rgsw_si
|
|
// .iter_mut()
|
|
// .for_each(|ri| rlwe_nttop.backward(ri.as_mut()));
|
|
|
|
// println!("####### Noise in RGSW(X^s_{i}) #######");
|
|
// _measure_noise_rgsw(
|
|
// &rgsw_si,
|
|
// &si_poly,
|
|
// ideal_client_key.sk_rlwe.values(),
|
|
// &gadget_vec,
|
|
// rlwe_q,
|
|
// );
|
|
// println!("####### ##################### #######");
|
|
// }
|
|
// }
|
|
|
|
// // measure noise grwoth in RLWExRGSW
|
|
// if true {
|
|
// let mut rng = DefaultSecureRng::new();
|
|
// let mut carry_m = vec![0u64; rlwe_n];
|
|
// RandomUniformDist1::random_fill(&mut rng, &rlwe_q,
|
|
// carry_m.as_mut_slice());
|
|
|
|
// // RGSW(carrym)
|
|
// let trivial_rlwect = vec![vec![0u64; rlwe_n], carry_m.clone()];
|
|
// let mut rlwe_ct = RlweCiphertext::<_,
|
|
// DefaultSecureRng>::from_raw(trivial_rlwect, true);
|
|
|
|
// let mut scratch_matrix_dplus2_ring = vec![vec![0u64; rlwe_n];
|
|
// d_rgsw + 2]; let mul_mod =
|
|
// |v0: &u64, v1: &u64| (((*v0 as u128 * *v1 as u128) % (rlwe_q as u128)) as u64);
|
|
|
|
// for i in 0..bool_evaluator.parameters.lwe_n {
|
|
// rlwe_by_rgsw(
|
|
// &mut rlwe_ct,
|
|
// server_key_eval.rgsw_ct_lwe_si(i),
|
|
// &mut scratch_matrix_dplus2_ring,
|
|
// rlwe_decomposer,
|
|
// rlwe_nttop,
|
|
// rlwe_modop,
|
|
// );
|
|
|
|
// // carry_m[X] * s_i[X]
|
|
// let si =
|
|
// ideal_client_key.sk_lwe.values[i] *
|
|
// (bool_evaluator.embedding_factor as i32); let mut
|
|
// si_poly = vec![0u64; rlwe_n]; if si < 0 {
|
|
// si_poly[rlwe_n - (si.abs() as usize)] = rlwe_q - 1;
|
|
// } else {
|
|
// si_poly[(si.abs() as usize)] = 1;
|
|
// }
|
|
// carry_m = negacyclic_mul(&carry_m, &si_poly, mul_mod,
|
|
// rlwe_q);
|
|
|
|
// let noise = measure_noise(
|
|
// &rlwe_ct,
|
|
// &carry_m,
|
|
// rlwe_nttop,
|
|
// rlwe_modop,
|
|
// ideal_client_key.sk_rlwe.values(),
|
|
// );
|
|
// println!("Noise RLWE(carry_m) accumulating {i}^th secret
|
|
// monomial: {noise}"); }
|
|
// }
|
|
|
|
// // Check galois keys
|
|
// if false {
|
|
// let g = bool_evaluator.g() as isize;
|
|
// let mut rng = DefaultSecureRng::new();
|
|
// let mut scratch_matrix_dplus2_ring = vec![vec![0u64; rlwe_n];
|
|
// d_rgsw + 2]; for i in [g, -g] {
|
|
// let mut m = vec![0u64; rlwe_n];
|
|
// RandomUniformDist1::random_fill(&mut rng, &rlwe_q,
|
|
// m.as_mut_slice()); let mut rlwe_ct = {
|
|
// let mut data = vec![vec![0u64; rlwe_n]; 2];
|
|
// public_key_encrypt_rlwe(
|
|
// &mut data,
|
|
// &collective_pk.key,
|
|
// &m,
|
|
// rlwe_modop,
|
|
// rlwe_nttop,
|
|
// &mut rng,
|
|
// );
|
|
// RlweCiphertext::<_, DefaultSecureRng>::from_raw(data,
|
|
// false) };
|
|
|
|
// let auto_key = server_key_eval.galois_key_for_auto(i);
|
|
// let (auto_map_index, auto_map_sign) =
|
|
// generate_auto_map(rlwe_n, i); galois_auto(
|
|
// &mut rlwe_ct,
|
|
// auto_key,
|
|
// &mut scratch_matrix_dplus2_ring,
|
|
// &auto_map_index,
|
|
// &auto_map_sign,
|
|
// rlwe_modop,
|
|
// rlwe_nttop,
|
|
// rlwe_decomposer,
|
|
// );
|
|
|
|
// // send m(X) -> m(X^i)
|
|
// let mut m_k = vec![0u64; rlwe_n];
|
|
// izip!(m.iter(), auto_map_index.iter(),
|
|
// auto_map_sign.iter()).for_each( |(mi, to_index, to_sign)|
|
|
// { if !to_sign {
|
|
// m_k[*to_index] = rlwe_q - *mi;
|
|
// } else {
|
|
// m_k[*to_index] = *mi;
|
|
// }
|
|
// },
|
|
// );
|
|
|
|
// // measure noise
|
|
// let noise = measure_noise(
|
|
// &rlwe_ct,
|
|
// &m_k,
|
|
// rlwe_nttop,
|
|
// rlwe_modop,
|
|
// ideal_client_key.sk_rlwe.values(),
|
|
// );
|
|
|
|
// println!("Noise after auto k={i}: {noise}");
|
|
// }
|
|
// }
|
|
}
|
|
}
|