use std::{collections::HashMap, fmt::Debug, marker::PhantomData};
|
|
|
|
use itertools::Itertools;
|
|
use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, Zero};
|
|
|
|
use crate::{
|
|
backend::{ArithmeticOps, ModInit, VectorOps},
|
|
decomposer::{gadget_vector, Decomposer, DefaultDecomposer, NumInfo},
|
|
lwe::{decrypt_lwe, encrypt_lwe, lwe_key_switch, lwe_ksk_keygen, LweSecret},
|
|
ntt::{Ntt, NttInit},
|
|
random::{DefaultSecureRng, RandomGaussianDist, RandomUniformDist},
|
|
rgsw::{encrypt_rgsw, galois_auto, galois_key_gen, rlwe_by_rgsw, IsTrivial, RlweSecret},
|
|
utils::{generate_prime, mod_exponent, TryConvertFrom, WithLocal},
|
|
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
|
};
|
|
|
|
trait PbsKey {
|
|
type M: Matrix;
|
|
|
|
fn rgsw_ct_secret_el(&self, si: usize) -> &Self::M;
|
|
fn galois_key_for_auto(&self, k: isize) -> &Self::M;
|
|
fn auto_map_index(&self, k: isize) -> &[usize];
|
|
fn auto_map_sign(&self, k: isize) -> &[bool];
|
|
}
|
|
trait Parameters {
|
|
type Element;
|
|
type D: Decomposer<Element = Self::Element>;
|
|
fn rlwe_q(&self) -> Self::Element;
|
|
fn lwe_q(&self) -> Self::Element;
|
|
fn br_q(&self) -> usize;
|
|
fn d_rgsw(&self) -> usize;
|
|
fn d_lwe(&self) -> usize;
|
|
fn rlwe_n(&self) -> usize;
|
|
fn lwe_n(&self) -> usize;
|
|
/// Embedding fator for ring X^{q}+1 inside
|
|
fn embedding_factor(&self) -> usize;
|
|
/// generator g
|
|
fn g(&self) -> isize;
|
|
fn decomoposer_lwe(&self) -> &Self::D;
|
|
fn decomoposer_rlwe(&self) -> &Self::D;
|
|
|
|
/// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k =
|
|
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
|
|
/// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t
|
|
/// a = -g^{k}, then k is expressed as k=k+q/2
|
|
fn g_k_dlog_map(&self) -> &[usize];
|
|
}
|
|
struct ClientKey {
|
|
sk_rlwe: RlweSecret,
|
|
sk_lwe: LweSecret,
|
|
}
|
|
|
|
struct ServerKey<M> {
|
|
/// Rgsw cts of LWE secret elements
|
|
rgsw_cts: Vec<M>,
|
|
/// Galois keys
|
|
galois_keys: HashMap<isize, M>,
|
|
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
|
|
lwe_ksk: M,
|
|
}
|
|
|
|
struct BoolParameters<El> {
|
|
rlwe_q: El,
|
|
rlwe_logq: usize,
|
|
lwe_q: El,
|
|
lwe_logq: usize,
|
|
br_q: usize,
|
|
rlwe_n: usize,
|
|
lwe_n: usize,
|
|
d_rgsw: usize,
|
|
logb_rgsw: usize,
|
|
d_lwe: usize,
|
|
logb_lwe: usize,
|
|
g: usize,
|
|
w: usize,
|
|
}
|
|
|
|
struct BoolEvaluator<M, E, Ntt, ModOp> {
|
|
parameters: BoolParameters<E>,
|
|
decomposer_rlwe: DefaultDecomposer<E>,
|
|
decomposer_lwe: DefaultDecomposer<E>,
|
|
g_k_dlog_map: Vec<usize>,
|
|
rlwe_nttop: Ntt,
|
|
rlwe_modop: ModOp,
|
|
lwe_modop: ModOp,
|
|
embedding_factor: usize,
|
|
|
|
_phantom: PhantomData<M>,
|
|
}
|
|
|
|
impl<M, NttOp, ModOp> BoolEvaluator<M, M::MatElement, NttOp, ModOp>
|
|
where
|
|
NttOp: NttInit<Element = M::MatElement> + Ntt<Element = M::MatElement>,
|
|
ModOp: ModInit<Element = M::MatElement>
|
|
+ ArithmeticOps<Element = M::MatElement>
|
|
+ VectorOps<Element = M::MatElement>,
|
|
M::MatElement: PrimInt + Debug + NumInfo + FromPrimitive,
|
|
M: MatrixEntity + MatrixMut,
|
|
M::R: TryConvertFrom<[i32], Parameters = M::MatElement> + RowEntity,
|
|
M: TryConvertFrom<[i32], Parameters = M::MatElement>,
|
|
<M as Matrix>::R: RowMut,
|
|
DefaultSecureRng: RandomGaussianDist<[M::MatElement], Parameters = M::MatElement>
|
|
+ RandomGaussianDist<M::MatElement, Parameters = M::MatElement>
|
|
+ RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
|
|
{
|
|
fn new(parameters: BoolParameters<M::MatElement>) -> Self {
|
|
//TODO(Jay): Run sanity checks for modulus values in parameters
|
|
|
|
let decomposer_rlwe =
|
|
DefaultDecomposer::new(parameters.rlwe_q, parameters.logb_rgsw, parameters.d_rgsw);
|
|
let decomposer_lwe =
|
|
DefaultDecomposer::new(parameters.lwe_q, parameters.logb_lwe, parameters.d_lwe);
|
|
|
|
// generatr dlog map s.t. g^{k} % q = a, for all a \in Z*_{q}
|
|
let g = parameters.g;
|
|
let q = parameters.br_q;
|
|
let mut g_k_dlog_map = vec![0usize; q];
|
|
for i in 0..q / 2 {
|
|
let v = mod_exponent(g as u64, i as u64, q as u64) as usize;
|
|
// g^i
|
|
g_k_dlog_map[v] = i;
|
|
// -(g^i)
|
|
g_k_dlog_map[q - v] = i + (q / 2);
|
|
}
|
|
|
|
let embedding_factor = (2 * parameters.rlwe_n) / q;
|
|
|
|
let rlwe_nttop = NttOp::new(parameters.rlwe_q, parameters.rlwe_n);
|
|
let rlwe_modop = ModInit::new(parameters.rlwe_q);
|
|
let lwe_modop = ModInit::new(parameters.lwe_q);
|
|
|
|
BoolEvaluator {
|
|
parameters: parameters,
|
|
decomposer_lwe,
|
|
decomposer_rlwe,
|
|
g_k_dlog_map,
|
|
embedding_factor,
|
|
lwe_modop,
|
|
rlwe_modop,
|
|
rlwe_nttop,
|
|
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
|
|
fn client_key(&self) -> ClientKey {
|
|
let sk_lwe = LweSecret::random(self.parameters.lwe_n >> 1, self.parameters.lwe_n);
|
|
let sk_rlwe = RlweSecret::random(self.parameters.rlwe_n >> 1, self.parameters.rlwe_n);
|
|
ClientKey { sk_rlwe, sk_lwe }
|
|
}
|
|
|
|
fn server_key(&self, client_key: &ClientKey) -> ServerKey<M> {
|
|
let sk_rlwe = &client_key.sk_rlwe;
|
|
let sk_lwe = &client_key.sk_lwe;
|
|
|
|
let d_rgsw_gadget_vec = gadget_vector(
|
|
self.parameters.rlwe_logq,
|
|
self.parameters.logb_rgsw,
|
|
self.parameters.d_rgsw,
|
|
);
|
|
|
|
// generate galois key -g, g
|
|
let mut galois_keys = HashMap::new();
|
|
let g = self.parameters.g as isize;
|
|
for i in [g, -g] {
|
|
let gk = DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut ksk_out = M::zeros(self.parameters.d_rgsw * 2, self.parameters.rlwe_n);
|
|
galois_key_gen(
|
|
&mut ksk_out,
|
|
sk_rlwe,
|
|
i,
|
|
&d_rgsw_gadget_vec,
|
|
&self.rlwe_modop,
|
|
&self.rlwe_nttop,
|
|
rng,
|
|
);
|
|
ksk_out
|
|
});
|
|
|
|
galois_keys.insert(i, gk);
|
|
}
|
|
|
|
// generate rgsw ciphertexts RGSW(si) where si is i^th LWE secret element
|
|
let ring_size = self.parameters.rlwe_n;
|
|
let rlwe_q = self.parameters.rlwe_q;
|
|
let rgsw_cts = sk_lwe
|
|
.values()
|
|
.iter()
|
|
.map(|si| {
|
|
// X^{si}; assume |emebedding_factor * si| < N
|
|
let mut m = M::zeros(1, ring_size);
|
|
let si = (self.embedding_factor as i32) * si;
|
|
if si < 0 {
|
|
// X^{-i} = X^{2N - i} = -X^{N-i}
|
|
m.set(
|
|
0,
|
|
ring_size - (si.abs() as usize),
|
|
rlwe_q - M::MatElement::one(),
|
|
);
|
|
} else {
|
|
// X^{i}
|
|
m.set(0, (si.abs() as usize), M::MatElement::one());
|
|
}
|
|
self.rlwe_nttop.forward(m.get_row_mut(0));
|
|
|
|
let rgsw_si = DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut rgsw_si = M::zeros(self.parameters.d_rgsw * 4, ring_size);
|
|
encrypt_rgsw(
|
|
&mut rgsw_si,
|
|
&m,
|
|
&d_rgsw_gadget_vec,
|
|
sk_rlwe,
|
|
&self.rlwe_modop,
|
|
&self.rlwe_nttop,
|
|
rng,
|
|
);
|
|
rgsw_si
|
|
});
|
|
rgsw_si
|
|
})
|
|
.collect_vec();
|
|
|
|
// LWE KSK from RLWE secret s -> LWE secret z
|
|
let d_lwe_gadget = gadget_vector(
|
|
self.parameters.lwe_logq,
|
|
self.parameters.logb_lwe,
|
|
self.parameters.d_lwe,
|
|
);
|
|
let mut lwe_ksk = DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut out = M::zeros(self.parameters.d_lwe * ring_size, self.parameters.lwe_n + 1);
|
|
lwe_ksk_keygen(
|
|
&sk_rlwe.values(),
|
|
&sk_lwe.values(),
|
|
&mut out,
|
|
&d_lwe_gadget,
|
|
&self.lwe_modop,
|
|
rng,
|
|
);
|
|
out
|
|
});
|
|
|
|
ServerKey {
|
|
rgsw_cts,
|
|
galois_keys,
|
|
lwe_ksk,
|
|
}
|
|
}
|
|
|
|
pub fn encrypt(&self, m: bool, client_key: &ClientKey) -> M::R {
|
|
let rlwe_q_by8 =
|
|
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
|
|
.unwrap();
|
|
let m = if m {
|
|
// Q/8
|
|
rlwe_q_by8
|
|
} else {
|
|
// -Q/8
|
|
self.parameters.rlwe_q - rlwe_q_by8
|
|
};
|
|
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut lwe_out = M::R::zeros(self.parameters.rlwe_n + 1);
|
|
encrypt_lwe(
|
|
&mut lwe_out,
|
|
&m,
|
|
client_key.sk_rlwe.values(),
|
|
&self.rlwe_modop,
|
|
rng,
|
|
);
|
|
lwe_out
|
|
})
|
|
}
|
|
|
|
pub fn decrypt(&self, lwe_ct: &M::R, client_key: &ClientKey) -> bool {
|
|
let m = decrypt_lwe(lwe_ct, client_key.sk_rlwe.values(), &self.rlwe_modop);
|
|
let m = {
|
|
// m + q/8 => {0,q/4 1}
|
|
let rlwe_q_by8 =
|
|
M::MatElement::from_f64((self.parameters.rlwe_q.to_f64().unwrap() / 8.0).round())
|
|
.unwrap();
|
|
(((m + rlwe_q_by8).to_f64().unwrap() * 4.0) / self.parameters.rlwe_q.to_f64().unwrap())
|
|
.round()
|
|
.to_usize()
|
|
.unwrap()
|
|
% 4
|
|
};
|
|
|
|
if m == 0 {
|
|
false
|
|
} else if m == 1 {
|
|
true
|
|
} else {
|
|
panic!("Incorrect bool decryption. Got m={m} expected m to be 0 or 1")
|
|
}
|
|
}
|
|
}
|
|
|
|
/// LMKCY+ Blind rotation
|
|
///
|
|
/// gk_to_si: [-g^0, -g^1, .., -g^{q/2-1}, g^0, ..., g^{q/2-1}]
|
|
fn blind_rotation<
|
|
MT: IsTrivial + MatrixMut,
|
|
Mmut: MatrixMut<MatElement = MT::MatElement> + Matrix,
|
|
D: Decomposer<Element = MT::MatElement>,
|
|
NttOp: Ntt<Element = MT::MatElement>,
|
|
ModOp: ArithmeticOps<Element = MT::MatElement> + VectorOps<Element = MT::MatElement>,
|
|
K: PbsKey<M = Mmut>,
|
|
>(
|
|
trivial_rlwe_test_poly: &mut MT,
|
|
scratch_matrix_dplus2_ring: &mut Mmut,
|
|
g: isize,
|
|
w: usize,
|
|
q: usize,
|
|
gk_to_si: &[Vec<usize>],
|
|
decomposer: &D,
|
|
ntt_op: &NttOp,
|
|
mod_op: &ModOp,
|
|
pbs_key: &K,
|
|
) where
|
|
<Mmut as Matrix>::R: RowMut,
|
|
Mmut::MatElement: Copy + Zero,
|
|
<MT as Matrix>::R: RowMut,
|
|
{
|
|
let q_by_2 = q / 2;
|
|
|
|
// -(g^k)
|
|
for i in 1..q_by_2 {
|
|
gk_to_si[q_by_2 + i].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_secret_el(*s_index),
|
|
scratch_matrix_dplus2_ring,
|
|
decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(g),
|
|
scratch_matrix_dplus2_ring,
|
|
pbs_key.auto_map_index(g),
|
|
pbs_key.auto_map_sign(g),
|
|
mod_op,
|
|
ntt_op,
|
|
decomposer,
|
|
);
|
|
}
|
|
|
|
// -(g^0)
|
|
gk_to_si[q_by_2].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_secret_el(*s_index),
|
|
scratch_matrix_dplus2_ring,
|
|
decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(-g),
|
|
scratch_matrix_dplus2_ring,
|
|
pbs_key.auto_map_index(-g),
|
|
pbs_key.auto_map_sign(-g),
|
|
mod_op,
|
|
ntt_op,
|
|
decomposer,
|
|
);
|
|
|
|
// +(g^k)
|
|
for i in 1..q_by_2 {
|
|
gk_to_si[i].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_secret_el(*s_index),
|
|
scratch_matrix_dplus2_ring,
|
|
decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(g),
|
|
scratch_matrix_dplus2_ring,
|
|
pbs_key.auto_map_index(g),
|
|
pbs_key.auto_map_sign(g),
|
|
mod_op,
|
|
ntt_op,
|
|
decomposer,
|
|
);
|
|
}
|
|
|
|
// +(g^0)
|
|
gk_to_si[0].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_secret_el(gk_to_si[q_by_2][*s_index]),
|
|
scratch_matrix_dplus2_ring,
|
|
decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
}
|
|
|
|
/// - Mod down
|
|
/// - key switching
|
|
/// - mod down
|
|
/// - blind rotate
|
|
fn pbs<
|
|
M: Matrix + MatrixMut + MatrixEntity,
|
|
MT: MatrixMut<MatElement = M::MatElement, R = M::R> + IsTrivial + MatrixEntity,
|
|
P: Parameters<Element = M::MatElement>,
|
|
NttOp: Ntt<Element = M::MatElement>,
|
|
ModOp: ArithmeticOps<Element = M::MatElement> + VectorOps<Element = M::MatElement>,
|
|
K: PbsKey<M = M>,
|
|
>(
|
|
parameters: &P,
|
|
test_vec: &M::R,
|
|
lwe_in: &mut M::R,
|
|
lwe_ksk: &M,
|
|
scratch_lwen_plus1: &mut M::R,
|
|
scratch_matrix_dplus2_ring: &mut M,
|
|
modop_lweq: &ModOp,
|
|
modop_rlweq: &ModOp,
|
|
nttop_rlweq: &NttOp,
|
|
pbs_key: K,
|
|
) where
|
|
<M as Matrix>::R: RowMut,
|
|
<MT as Matrix>::R: RowMut,
|
|
M::MatElement: PrimInt + ToPrimitive + FromPrimitive + One + Copy + Zero,
|
|
{
|
|
let rlwe_q = parameters.rlwe_q();
|
|
let lwe_q = parameters.lwe_q();
|
|
let br_q = parameters.br_q();
|
|
let rlwe_qf64 = rlwe_q.to_f64().unwrap();
|
|
let lwe_qf64 = lwe_q.to_f64().unwrap();
|
|
let br_qf64 = br_q.to_f64().unwrap();
|
|
let rlwe_n = parameters.rlwe_n();
|
|
|
|
// moddown Q -> Q_ks
|
|
lwe_in.as_mut().iter_mut().for_each(|v| {
|
|
*v =
|
|
M::MatElement::from_f64(((v.to_f64().unwrap() * lwe_qf64) / rlwe_qf64).round()).unwrap()
|
|
});
|
|
|
|
// key switch
|
|
// let mut lwe_out = M::zeros(1, parameters.lwe_n() + 1);
|
|
scratch_lwen_plus1.as_mut().fill(M::MatElement::zero());
|
|
lwe_key_switch(
|
|
scratch_lwen_plus1,
|
|
lwe_in,
|
|
lwe_ksk,
|
|
modop_lweq,
|
|
parameters.decomoposer_lwe(),
|
|
);
|
|
|
|
// odd mowdown Q_ks -> q
|
|
let g_k_dlog_map = parameters.g_k_dlog_map();
|
|
let mut g_k_si = vec![vec![]; br_q];
|
|
scratch_lwen_plus1
|
|
.as_ref()
|
|
.iter()
|
|
.skip(1)
|
|
.enumerate()
|
|
.for_each(|(index, v)| {
|
|
let odd_v = mod_switch_odd(v.to_f64().unwrap(), lwe_qf64, br_qf64);
|
|
let k = g_k_dlog_map[odd_v];
|
|
g_k_si[k].push(index);
|
|
});
|
|
|
|
// handle b and set trivial test RLWE
|
|
let g = parameters.g() as usize;
|
|
let g_times_b = (g * mod_switch_odd(
|
|
scratch_lwen_plus1.as_ref()[0].to_f64().unwrap(),
|
|
lwe_qf64,
|
|
br_qf64,
|
|
)) % (br_q);
|
|
// v = (v(X) * X^{g*b}) mod X^{q/2}+1
|
|
let br_qby2 = br_q / 2;
|
|
let mut gb_monomial_sign = true;
|
|
let mut gb_monomial_exp = g_times_b;
|
|
// X^{g*b} mod X^{q}+1
|
|
if gb_monomial_exp > br_qby2 {
|
|
gb_monomial_exp -= br_qby2;
|
|
gb_monomial_sign = false
|
|
}
|
|
// monomial mul
|
|
let mut trivial_rlwe_test_poly = MT::zeros(2, rlwe_n);
|
|
if parameters.embedding_factor() == 1 {
|
|
monomial_mul(
|
|
test_vec.as_ref(),
|
|
trivial_rlwe_test_poly.get_row_mut(1).as_mut(),
|
|
gb_monomial_exp,
|
|
gb_monomial_sign,
|
|
br_q,
|
|
modop_rlweq,
|
|
);
|
|
} else {
|
|
// use lwe_in to store the `t = v(X) * X^{g*2} mod X^{q/2}+1` temporarily. This
|
|
// works because q/2 < N (where N is lwe_in LWE dimension) always.
|
|
monomial_mul(
|
|
test_vec.as_ref(),
|
|
&mut lwe_in.as_mut()[..br_qby2],
|
|
gb_monomial_exp,
|
|
gb_monomial_sign,
|
|
br_q,
|
|
modop_rlweq,
|
|
);
|
|
|
|
// emebed poly `t` in ring X^{q/2}+1 inside the bigger ring X^{N}+1
|
|
let partb_trivial_rlwe = trivial_rlwe_test_poly.get_row_mut(1);
|
|
lwe_in.as_ref()[..br_qby2]
|
|
.iter()
|
|
.enumerate()
|
|
.for_each(|(index, v)| {
|
|
partb_trivial_rlwe[2 * index] = *v;
|
|
});
|
|
}
|
|
|
|
// blind rotate
|
|
blind_rotation(
|
|
&mut trivial_rlwe_test_poly,
|
|
scratch_matrix_dplus2_ring,
|
|
parameters.g(),
|
|
1,
|
|
br_q,
|
|
&g_k_si,
|
|
parameters.decomoposer_rlwe(),
|
|
nttop_rlweq,
|
|
modop_rlweq,
|
|
&pbs_key,
|
|
);
|
|
|
|
// sample extract
|
|
sample_extract(lwe_in, &trivial_rlwe_test_poly, modop_rlweq, 0);
|
|
}
|
|
|
|
fn mod_switch_odd(v: f64, from_q: f64, to_q: f64) -> usize {
|
|
let odd_v = (((v.to_f64().unwrap() * to_q) / (from_q)).floor())
|
|
.to_usize()
|
|
.unwrap();
|
|
//TODO(Jay): check correctness of this
|
|
odd_v + (odd_v ^ (usize::one()))
|
|
}
|
|
|
|
fn sample_extract<M: Matrix + MatrixMut, ModOp: ArithmeticOps<Element = M::MatElement>>(
|
|
lwe_out: &mut M::R,
|
|
rlwe_in: &M,
|
|
mod_op: &ModOp,
|
|
index: usize,
|
|
) where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: Copy,
|
|
{
|
|
let ring_size = rlwe_in.dimension().1;
|
|
|
|
// index..=0
|
|
let to = &mut lwe_out.as_mut()[1..];
|
|
let from = rlwe_in.get_row_slice(0);
|
|
for i in 0..index + 1 {
|
|
to[i] = from[index - i];
|
|
}
|
|
|
|
// -(N..index)
|
|
for i in index + 1..ring_size {
|
|
to[i] = mod_op.neg(&from[ring_size + index - i]);
|
|
}
|
|
|
|
// set b
|
|
lwe_out.as_mut()[0] = *rlwe_in.get(1, index);
|
|
}
|
|
|
|
fn monomial_mul<El, ModOp: ArithmeticOps<Element = El>>(
|
|
p_in: &[El],
|
|
p_out: &mut [El],
|
|
mon_exp: usize,
|
|
mon_sign: bool,
|
|
ring_size: usize,
|
|
mod_op: &ModOp,
|
|
) where
|
|
El: Copy,
|
|
{
|
|
debug_assert!(p_in.as_ref().len() == ring_size);
|
|
debug_assert!(p_in.as_ref().len() == p_out.as_ref().len());
|
|
debug_assert!(mon_exp < ring_size);
|
|
|
|
p_in.as_ref().iter().enumerate().for_each(|(index, v)| {
|
|
let mut to_index = index + mon_exp;
|
|
let mut to_sign = mon_sign;
|
|
if to_index >= ring_size {
|
|
to_index = to_index - ring_size;
|
|
to_sign = !to_sign;
|
|
}
|
|
|
|
if !to_sign {
|
|
p_out.as_mut()[to_index] = mod_op.neg(v);
|
|
} else {
|
|
p_out.as_mut()[to_index] = *v;
|
|
}
|
|
});
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::{backend::ModularOpsU64, ntt::NttBackendU64};
|
|
|
|
use super::*;
|
|
|
|
const SP_BOOL_PARAMS: BoolParameters<u64> = BoolParameters::<u64> {
|
|
rlwe_q: 4294957057u64,
|
|
rlwe_logq: 32,
|
|
lwe_q: 1 << 16,
|
|
lwe_logq: 16,
|
|
br_q: 1 << 9,
|
|
rlwe_n: 1 << 10,
|
|
lwe_n: 490,
|
|
d_rgsw: 4,
|
|
logb_rgsw: 7,
|
|
d_lwe: 4,
|
|
logb_lwe: 4,
|
|
g: 5,
|
|
w: 1,
|
|
};
|
|
|
|
#[test]
|
|
fn encrypt_decrypt_works() {
|
|
// let prime = generate_prime(32, 2 * 1024, 1 << 32);
|
|
// dbg!(prime);
|
|
let bool_evaluator =
|
|
BoolEvaluator::<Vec<Vec<u64>>, u64, NttBackendU64, ModularOpsU64>::new(SP_BOOL_PARAMS);
|
|
let client_key = bool_evaluator.client_key();
|
|
// let sever_key = bool_evaluator.server_key(&client_key);
|
|
|
|
let mut m = true;
|
|
for _ in 0..1000 {
|
|
let lwe_ct = bool_evaluator.encrypt(m, &client_key);
|
|
let m_back = bool_evaluator.decrypt(&lwe_ct, &client_key);
|
|
assert_eq!(m, m_back);
|
|
m = !m;
|
|
}
|
|
}
|
|
}
|