use std::{collections::HashMap, hash::Hash, marker::PhantomData};
|
|
|
|
use crate::{
|
|
backend::{ModInit, VectorOps},
|
|
lwe::LweSecret,
|
|
random::{NewWithSeed, RandomFillUniformInModulus},
|
|
rgsw::RlweSecret,
|
|
utils::WithLocal,
|
|
Decryptor, Encryptor, Matrix, MatrixEntity, MatrixMut, MultiPartyDecryptor, RowEntity, RowMut,
|
|
};
|
|
|
|
use super::{parameters, BoolEvaluator, BoolParameters, CiphertextModulus};
|
|
|
|
/// Client key with RLWE and LWE secrets
|
|
#[derive(Clone)]
|
|
pub struct ClientKey {
|
|
sk_rlwe: RlweSecret,
|
|
sk_lwe: LweSecret,
|
|
}
|
|
|
|
mod impl_ck {
|
|
use super::*;
|
|
|
|
// Client key
|
|
impl ClientKey {
|
|
pub(in super::super) fn random() -> Self {
|
|
let sk_rlwe = RlweSecret::random(0, 0);
|
|
let sk_lwe = LweSecret::random(0, 0);
|
|
Self { sk_rlwe, sk_lwe }
|
|
}
|
|
|
|
pub(in super::super) fn new(sk_rlwe: RlweSecret, sk_lwe: LweSecret) -> Self {
|
|
Self { sk_rlwe, sk_lwe }
|
|
}
|
|
|
|
pub(in super::super) fn sk_rlwe(&self) -> &RlweSecret {
|
|
&self.sk_rlwe
|
|
}
|
|
|
|
pub(in super::super) fn sk_lwe(&self) -> &LweSecret {
|
|
&self.sk_lwe
|
|
}
|
|
}
|
|
|
|
impl Encryptor<bool, Vec<u64>> for ClientKey {
|
|
fn encrypt(&self, m: &bool) -> Vec<u64> {
|
|
BoolEvaluator::with_local(|e| e.sk_encrypt(*m, self))
|
|
}
|
|
}
|
|
|
|
impl Decryptor<bool, Vec<u64>> for ClientKey {
|
|
fn decrypt(&self, c: &Vec<u64>) -> bool {
|
|
BoolEvaluator::with_local(|e| e.sk_decrypt(c, self))
|
|
}
|
|
}
|
|
|
|
impl MultiPartyDecryptor<bool, Vec<u64>> for ClientKey {
|
|
type DecryptionShare = u64;
|
|
|
|
fn gen_decryption_share(&self, c: &Vec<u64>) -> Self::DecryptionShare {
|
|
BoolEvaluator::with_local(|e| e.multi_party_decryption_share(c, &self))
|
|
}
|
|
|
|
fn aggregate_decryption_shares(
|
|
&self,
|
|
c: &Vec<u64>,
|
|
shares: &[Self::DecryptionShare],
|
|
) -> bool {
|
|
BoolEvaluator::with_local(|e| e.multi_party_decrypt(shares, c))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Public key
|
|
pub struct PublicKey<M, Rng, ModOp> {
|
|
key: M,
|
|
_phantom: PhantomData<(Rng, ModOp)>,
|
|
}
|
|
|
|
pub(super) mod impl_pk {
|
|
use super::*;
|
|
|
|
impl<M, R, Mo> PublicKey<M, R, Mo> {
|
|
pub(in super::super) fn key(&self) -> &M {
|
|
&self.key
|
|
}
|
|
}
|
|
|
|
impl<Rng, ModOp> Encryptor<bool, Vec<u64>> for PublicKey<Vec<Vec<u64>>, Rng, ModOp> {
|
|
fn encrypt(&self, m: &bool) -> Vec<u64> {
|
|
BoolEvaluator::with_local(|e| e.pk_encrypt(&self.key, *m))
|
|
}
|
|
}
|
|
|
|
impl<Rng, ModOp> Encryptor<[bool], Vec<Vec<u64>>> for PublicKey<Vec<Vec<u64>>, Rng, ModOp> {
|
|
fn encrypt(&self, m: &[bool]) -> Vec<Vec<u64>> {
|
|
BoolEvaluator::with_local(|e| e.pk_encrypt_batched(&self.key, m))
|
|
}
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
Rng: NewWithSeed
|
|
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
|
|
ModOp,
|
|
> From<SeededPublicKey<M::R, Rng::Seed, BoolParameters<M::MatElement>, ModOp>>
|
|
for PublicKey<M, Rng, ModOp>
|
|
where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: Copy,
|
|
{
|
|
fn from(
|
|
value: SeededPublicKey<M::R, Rng::Seed, BoolParameters<M::MatElement>, ModOp>,
|
|
) -> Self {
|
|
let mut prng = Rng::new_with_seed(value.seed);
|
|
|
|
let mut key = M::zeros(2, value.parameters.rlwe_n().0);
|
|
// sample A
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut prng,
|
|
value.parameters.rlwe_q(),
|
|
key.get_row_mut(0),
|
|
);
|
|
// Copy over B
|
|
key.get_row_mut(1).copy_from_slice(value.part_b.as_ref());
|
|
|
|
PublicKey {
|
|
key,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
Rng: NewWithSeed
|
|
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
|
|
ModOp: VectorOps<Element = M::MatElement> + ModInit<M = CiphertextModulus<M::MatElement>>,
|
|
>
|
|
From<
|
|
&[CommonReferenceSeededCollectivePublicKeyShare<
|
|
M::R,
|
|
Rng::Seed,
|
|
BoolParameters<M::MatElement>,
|
|
>],
|
|
> for PublicKey<M, Rng, ModOp>
|
|
where
|
|
<M as Matrix>::R: RowMut,
|
|
Rng::Seed: Copy + PartialEq,
|
|
M::MatElement: PartialEq + Copy,
|
|
{
|
|
fn from(
|
|
value: &[CommonReferenceSeededCollectivePublicKeyShare<
|
|
M::R,
|
|
Rng::Seed,
|
|
BoolParameters<M::MatElement>,
|
|
>],
|
|
) -> Self {
|
|
assert!(value.len() > 0);
|
|
|
|
let parameters = &value[0].parameters;
|
|
let mut key = M::zeros(2, parameters.rlwe_n().0);
|
|
|
|
// sample A
|
|
let seed = value[0].cr_seed;
|
|
let mut main_rng = Rng::new_with_seed(seed);
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_rng,
|
|
parameters.rlwe_q(),
|
|
key.get_row_mut(0),
|
|
);
|
|
|
|
// Sum all Bs
|
|
let rlweq_modop = ModOp::new(parameters.rlwe_q().clone());
|
|
value.iter().for_each(|share_i| {
|
|
assert!(share_i.cr_seed == seed);
|
|
assert!(&share_i.parameters == parameters);
|
|
|
|
rlweq_modop.elwise_add_mut(key.get_row_mut(1), share_i.share.as_ref());
|
|
});
|
|
|
|
PublicKey {
|
|
key,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Seeded public key
|
|
struct SeededPublicKey<Ro, S, P, ModOp> {
|
|
part_b: Ro,
|
|
seed: S,
|
|
parameters: P,
|
|
_phantom: PhantomData<ModOp>,
|
|
}
|
|
|
|
mod impl_seeded_pk {
|
|
use super::*;
|
|
|
|
impl<R, S, ModOp>
|
|
From<&[CommonReferenceSeededCollectivePublicKeyShare<R, S, BoolParameters<R::Element>>]>
|
|
for SeededPublicKey<R, S, BoolParameters<R::Element>, ModOp>
|
|
where
|
|
ModOp: VectorOps<Element = R::Element> + ModInit<M = CiphertextModulus<R::Element>>,
|
|
S: PartialEq + Clone,
|
|
R: RowMut + RowEntity + Clone,
|
|
R::Element: Clone + PartialEq,
|
|
{
|
|
fn from(
|
|
value: &[CommonReferenceSeededCollectivePublicKeyShare<
|
|
R,
|
|
S,
|
|
BoolParameters<R::Element>,
|
|
>],
|
|
) -> Self {
|
|
assert!(value.len() > 0);
|
|
|
|
let parameters = &value[0].parameters;
|
|
let cr_seed = value[0].cr_seed.clone();
|
|
|
|
// Sum all Bs
|
|
let rlweq_modop = ModOp::new(parameters.rlwe_q().clone());
|
|
let mut part_b = value[0].share.clone();
|
|
value.iter().skip(1).for_each(|share_i| {
|
|
assert!(&share_i.cr_seed == &cr_seed);
|
|
assert!(&share_i.parameters == parameters);
|
|
|
|
rlweq_modop.elwise_add_mut(part_b.as_mut(), share_i.share.as_ref());
|
|
});
|
|
|
|
Self {
|
|
part_b,
|
|
seed: cr_seed,
|
|
parameters: parameters.clone(),
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CRS seeded collective public key share
|
|
pub struct CommonReferenceSeededCollectivePublicKeyShare<Ro, S, P> {
|
|
share: Ro,
|
|
cr_seed: S,
|
|
parameters: P,
|
|
}
|
|
impl<Ro, S, P> CommonReferenceSeededCollectivePublicKeyShare<Ro, S, P> {
|
|
pub(super) fn new(share: Ro, cr_seed: S, parameters: P) -> Self {
|
|
CommonReferenceSeededCollectivePublicKeyShare {
|
|
share,
|
|
cr_seed,
|
|
parameters,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CRS seeded Multi-party server key share
|
|
pub struct CommonReferenceSeededMultiPartyServerKeyShare<M: Matrix, P, S> {
|
|
rgsw_cts: Vec<M>,
|
|
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
|
|
/// to -g is at 0
|
|
auto_keys: HashMap<usize, M>,
|
|
lwe_ksk: M::R,
|
|
/// Common reference seed
|
|
cr_seed: S,
|
|
parameters: P,
|
|
}
|
|
|
|
impl<M: Matrix, P, S> CommonReferenceSeededMultiPartyServerKeyShare<M, P, S> {
|
|
pub(super) fn new(
|
|
rgsw_cts: Vec<M>,
|
|
auto_keys: HashMap<usize, M>,
|
|
lwe_ksk: M::R,
|
|
cr_seed: S,
|
|
parameters: P,
|
|
) -> Self {
|
|
CommonReferenceSeededMultiPartyServerKeyShare {
|
|
rgsw_cts,
|
|
auto_keys,
|
|
lwe_ksk,
|
|
cr_seed,
|
|
parameters,
|
|
}
|
|
}
|
|
|
|
pub(super) fn cr_seed(&self) -> &S {
|
|
&self.cr_seed
|
|
}
|
|
|
|
pub(super) fn parameters(&self) -> &P {
|
|
&self.parameters
|
|
}
|
|
|
|
pub(super) fn auto_keys(&self) -> &HashMap<usize, M> {
|
|
&self.auto_keys
|
|
}
|
|
|
|
pub(super) fn rgsw_cts(&self) -> &[M] {
|
|
&self.rgsw_cts
|
|
}
|
|
|
|
pub(super) fn lwe_ksk(&self) -> &M::R {
|
|
&self.lwe_ksk
|
|
}
|
|
}
|
|
|
|
/// CRS seeded MultiParty server key
|
|
pub struct SeededMultiPartyServerKey<M: Matrix, S, P> {
|
|
rgsw_cts: Vec<M>,
|
|
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
|
|
/// to -g is at 0
|
|
auto_keys: HashMap<usize, M>,
|
|
lwe_ksk: M::R,
|
|
cr_seed: S,
|
|
parameters: P,
|
|
}
|
|
|
|
impl<M: Matrix, S, P> SeededMultiPartyServerKey<M, S, P> {
|
|
pub(super) fn new(
|
|
rgsw_cts: Vec<M>,
|
|
auto_keys: HashMap<usize, M>,
|
|
lwe_ksk: M::R,
|
|
cr_seed: S,
|
|
parameters: P,
|
|
) -> Self {
|
|
SeededMultiPartyServerKey {
|
|
rgsw_cts,
|
|
auto_keys,
|
|
lwe_ksk,
|
|
cr_seed,
|
|
parameters,
|
|
}
|
|
}
|
|
|
|
pub(super) fn rgsw_cts(&self) -> &[M] {
|
|
&self.rgsw_cts
|
|
}
|
|
}
|
|
|
|
/// Seeded single party server key
|
|
pub struct SeededServerKey<M: Matrix, P, S> {
|
|
/// Rgsw cts of LWE secret elements
|
|
pub(crate) rgsw_cts: Vec<M>,
|
|
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
|
|
/// to -g is at 0
|
|
pub(crate) auto_keys: HashMap<usize, M>,
|
|
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
|
|
pub(crate) lwe_ksk: M::R,
|
|
/// Parameters
|
|
pub(crate) parameters: P,
|
|
/// Main seed
|
|
pub(crate) seed: S,
|
|
}
|
|
impl<M: Matrix, S> SeededServerKey<M, BoolParameters<M::MatElement>, S> {
|
|
pub(super) fn from_raw(
|
|
auto_keys: HashMap<usize, M>,
|
|
rgsw_cts: Vec<M>,
|
|
lwe_ksk: M::R,
|
|
parameters: BoolParameters<M::MatElement>,
|
|
seed: S,
|
|
) -> Self {
|
|
// sanity checks
|
|
auto_keys.iter().for_each(|v| {
|
|
assert!(
|
|
v.1.dimension()
|
|
== (
|
|
parameters.auto_decomposition_count().0,
|
|
parameters.rlwe_n().0
|
|
)
|
|
)
|
|
});
|
|
|
|
let (part_a_d, part_b_d) = parameters.rlwe_rgsw_decomposition_count();
|
|
rgsw_cts.iter().for_each(|v| {
|
|
assert!(v.dimension() == (part_a_d.0 * 2 + part_b_d.0, parameters.rlwe_n().0))
|
|
});
|
|
assert!(
|
|
lwe_ksk.as_ref().len()
|
|
== (parameters.lwe_decomposition_count().0 * parameters.rlwe_n().0)
|
|
);
|
|
|
|
SeededServerKey {
|
|
rgsw_cts,
|
|
auto_keys,
|
|
lwe_ksk,
|
|
parameters,
|
|
seed,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Server key in evaluation domain
|
|
pub(crate) struct ServerKeyEvaluationDomain<M, R, N> {
|
|
/// Rgsw cts of LWE secret elements
|
|
rgsw_cts: Vec<M>,
|
|
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
|
|
/// to -g is at 0
|
|
galois_keys: HashMap<usize, M>,
|
|
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
|
|
lwe_ksk: M,
|
|
_phanton: PhantomData<(R, N)>,
|
|
}
|
|
|
|
pub(super) mod impl_server_key_eval_domain {
|
|
use itertools::{izip, Itertools};
|
|
|
|
use crate::{
|
|
ntt::{Ntt, NttInit},
|
|
pbs::PbsKey,
|
|
};
|
|
|
|
use super::*;
|
|
|
|
impl<M, R, N> ServerKeyEvaluationDomain<M, R, N> {
|
|
pub(in super::super) fn rgsw_cts(&self) -> &[M] {
|
|
&self.rgsw_cts
|
|
}
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
R: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>
|
|
+ NewWithSeed,
|
|
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
|
|
> From<&SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>>
|
|
for ServerKeyEvaluationDomain<M, R, N>
|
|
where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: Copy,
|
|
R::Seed: Clone,
|
|
{
|
|
fn from(value: &SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>) -> Self {
|
|
let mut main_prng = R::new_with_seed(value.seed.clone());
|
|
let parameters = &value.parameters;
|
|
let g = parameters.g() as isize;
|
|
let ring_size = value.parameters.rlwe_n().0;
|
|
let lwe_n = value.parameters.lwe_n().0;
|
|
let rlwe_q = value.parameters.rlwe_q();
|
|
let lwq_q = value.parameters.lwe_q();
|
|
|
|
let nttop = N::new(rlwe_q, ring_size);
|
|
|
|
// galois keys
|
|
let mut auto_keys = HashMap::new();
|
|
let auto_decomp_count = parameters.auto_decomposition_count().0;
|
|
let auto_element_dlogs = parameters.auto_element_dlogs();
|
|
for i in auto_element_dlogs.into_iter() {
|
|
let seeded_auto_key = value.auto_keys.get(&i).unwrap();
|
|
assert!(seeded_auto_key.dimension() == (auto_decomp_count, ring_size));
|
|
|
|
let mut data = M::zeros(auto_decomp_count * 2, ring_size);
|
|
|
|
// sample RLWE'_A(-s(X^k))
|
|
data.iter_rows_mut().take(auto_decomp_count).for_each(|ri| {
|
|
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
|
|
});
|
|
|
|
// copy over RLWE'B_(-s(X^k))
|
|
izip!(
|
|
data.iter_rows_mut().skip(auto_decomp_count),
|
|
seeded_auto_key.iter_rows()
|
|
)
|
|
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
|
|
|
|
// Send to Evaluation domain
|
|
data.iter_rows_mut()
|
|
.for_each(|ri| nttop.forward(ri.as_mut()));
|
|
|
|
auto_keys.insert(i, data);
|
|
}
|
|
|
|
// RGSW ciphertexts
|
|
let (rlrg_a_decomp, rlrg_b_decomp) = parameters.rlwe_rgsw_decomposition_count();
|
|
let rgsw_cts = value
|
|
.rgsw_cts
|
|
.iter()
|
|
.map(|seeded_rgsw_si| {
|
|
assert!(
|
|
seeded_rgsw_si.dimension()
|
|
== (rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0, ring_size)
|
|
);
|
|
|
|
let mut data = M::zeros(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0 * 2, ring_size);
|
|
|
|
// copy over RLWE'(-sm)
|
|
izip!(
|
|
data.iter_rows_mut().take(rlrg_a_decomp.0 * 2),
|
|
seeded_rgsw_si.iter_rows().take(rlrg_a_decomp.0 * 2)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
|
|
|
|
// sample RLWE'_A(m)
|
|
data.iter_rows_mut()
|
|
.skip(rlrg_a_decomp.0 * 2)
|
|
.take(rlrg_b_decomp.0)
|
|
.for_each(|ri| {
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_prng,
|
|
&rlwe_q,
|
|
ri.as_mut(),
|
|
)
|
|
});
|
|
|
|
// copy over RLWE'_B(m)
|
|
izip!(
|
|
data.iter_rows_mut()
|
|
.skip(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0),
|
|
seeded_rgsw_si.iter_rows().skip(rlrg_a_decomp.0 * 2)
|
|
)
|
|
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
|
|
|
|
// send polynomials to evaluation domain
|
|
data.iter_rows_mut()
|
|
.for_each(|ri| nttop.forward(ri.as_mut()));
|
|
|
|
data
|
|
})
|
|
.collect_vec();
|
|
|
|
// LWE ksk
|
|
let lwe_ksk = {
|
|
let d = parameters.lwe_decomposition_count().0;
|
|
assert!(value.lwe_ksk.as_ref().len() == d * ring_size);
|
|
|
|
let mut data = M::zeros(d * ring_size, lwe_n + 1);
|
|
izip!(data.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(
|
|
|(lwe_i, bi)| {
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_prng,
|
|
&lwq_q,
|
|
&mut lwe_i.as_mut()[1..],
|
|
);
|
|
lwe_i.as_mut()[0] = *bi;
|
|
},
|
|
);
|
|
|
|
data
|
|
};
|
|
|
|
ServerKeyEvaluationDomain {
|
|
rgsw_cts,
|
|
galois_keys: auto_keys,
|
|
lwe_ksk,
|
|
_phanton: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
Rng: NewWithSeed,
|
|
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
|
|
> From<&SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>>
|
|
for ServerKeyEvaluationDomain<M, Rng, N>
|
|
where
|
|
<M as Matrix>::R: RowMut,
|
|
Rng::Seed: Copy,
|
|
Rng: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
|
|
M::MatElement: Copy,
|
|
{
|
|
fn from(
|
|
value: &SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>,
|
|
) -> Self {
|
|
let g = value.parameters.g() as isize;
|
|
let rlwe_n = value.parameters.rlwe_n().0;
|
|
let lwe_n = value.parameters.lwe_n().0;
|
|
let rlwe_q = value.parameters.rlwe_q();
|
|
let lwe_q = value.parameters.lwe_q();
|
|
|
|
let mut main_prng = Rng::new_with_seed(value.cr_seed);
|
|
|
|
let rlwe_nttop = N::new(rlwe_q, rlwe_n);
|
|
|
|
// auto keys
|
|
let mut auto_keys = HashMap::new();
|
|
let auto_d_count = value.parameters.auto_decomposition_count().0;
|
|
let auto_element_dlogs = value.parameters.auto_element_dlogs();
|
|
for i in auto_element_dlogs.into_iter() {
|
|
let mut key = M::zeros(auto_d_count * 2, rlwe_n);
|
|
|
|
// sample a
|
|
key.iter_rows_mut().take(auto_d_count).for_each(|ri| {
|
|
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
|
|
});
|
|
|
|
let key_part_b = value.auto_keys.get(&i).unwrap();
|
|
assert!(key_part_b.dimension() == (auto_d_count, rlwe_n));
|
|
izip!(
|
|
key.iter_rows_mut().skip(auto_d_count),
|
|
key_part_b.iter_rows()
|
|
)
|
|
.for_each(|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
});
|
|
|
|
// send to evaluation domain
|
|
key.iter_rows_mut()
|
|
.for_each(|ri| rlwe_nttop.forward(ri.as_mut()));
|
|
|
|
auto_keys.insert(i, key);
|
|
}
|
|
|
|
// rgsw cts
|
|
let (rlrg_d_a, rlrg_d_b) = value.parameters.rlwe_rgsw_decomposition_count();
|
|
let rgsw_ct_out = rlrg_d_a.0 * 2 + rlrg_d_b.0 * 2;
|
|
let rgsw_cts = value
|
|
.rgsw_cts
|
|
.iter()
|
|
.map(|ct_i_in| {
|
|
assert!(ct_i_in.dimension() == (rgsw_ct_out, rlwe_n));
|
|
let mut eval_ct_i_out = M::zeros(rgsw_ct_out, rlwe_n);
|
|
|
|
izip!(eval_ct_i_out.iter_rows_mut(), ct_i_in.iter_rows()).for_each(
|
|
|(to_ri, from_ri)| {
|
|
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
|
|
rlwe_nttop.forward(to_ri.as_mut());
|
|
},
|
|
);
|
|
|
|
eval_ct_i_out
|
|
})
|
|
.collect_vec();
|
|
|
|
// lwe ksk
|
|
let d_lwe = value.parameters.lwe_decomposition_count().0;
|
|
let mut lwe_ksk = M::zeros(rlwe_n * d_lwe, lwe_n + 1);
|
|
izip!(lwe_ksk.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(
|
|
|(lwe_i, bi)| {
|
|
RandomFillUniformInModulus::random_fill(
|
|
&mut main_prng,
|
|
&lwe_q,
|
|
&mut lwe_i.as_mut()[1..],
|
|
);
|
|
lwe_i.as_mut()[0] = *bi;
|
|
},
|
|
);
|
|
|
|
ServerKeyEvaluationDomain {
|
|
rgsw_cts,
|
|
galois_keys: auto_keys,
|
|
lwe_ksk,
|
|
_phanton: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<M: Matrix, R, N> PbsKey for ServerKeyEvaluationDomain<M, R, N> {
|
|
type M = M;
|
|
fn galois_key_for_auto(&self, k: usize) -> &Self::M {
|
|
self.galois_keys.get(&k).unwrap()
|
|
}
|
|
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M {
|
|
&self.rgsw_cts[si]
|
|
}
|
|
|
|
fn lwe_ksk(&self) -> &Self::M {
|
|
&self.lwe_ksk
|
|
}
|
|
}
|
|
}
|