You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

661 lines
21 KiB

use std::{collections::HashMap, hash::Hash, marker::PhantomData};
use crate::{
backend::{ModInit, VectorOps},
lwe::LweSecret,
random::{NewWithSeed, RandomFillUniformInModulus},
rgsw::RlweSecret,
utils::WithLocal,
Decryptor, Encryptor, Matrix, MatrixEntity, MatrixMut, MultiPartyDecryptor, RowEntity, RowMut,
};
use super::{parameters, BoolEvaluator, BoolParameters, CiphertextModulus};
/// Client key with RLWE and LWE secrets
#[derive(Clone)]
pub struct ClientKey {
sk_rlwe: RlweSecret,
sk_lwe: LweSecret,
}
mod impl_ck {
use super::*;
// Client key
impl ClientKey {
pub(in super::super) fn random() -> Self {
let sk_rlwe = RlweSecret::random(0, 0);
let sk_lwe = LweSecret::random(0, 0);
Self { sk_rlwe, sk_lwe }
}
pub(in super::super) fn new(sk_rlwe: RlweSecret, sk_lwe: LweSecret) -> Self {
Self { sk_rlwe, sk_lwe }
}
pub(in super::super) fn sk_rlwe(&self) -> &RlweSecret {
&self.sk_rlwe
}
pub(in super::super) fn sk_lwe(&self) -> &LweSecret {
&self.sk_lwe
}
}
impl Encryptor<bool, Vec<u64>> for ClientKey {
fn encrypt(&self, m: &bool) -> Vec<u64> {
BoolEvaluator::with_local(|e| e.sk_encrypt(*m, self))
}
}
impl Decryptor<bool, Vec<u64>> for ClientKey {
fn decrypt(&self, c: &Vec<u64>) -> bool {
BoolEvaluator::with_local(|e| e.sk_decrypt(c, self))
}
}
impl MultiPartyDecryptor<bool, Vec<u64>> for ClientKey {
type DecryptionShare = u64;
fn gen_decryption_share(&self, c: &Vec<u64>) -> Self::DecryptionShare {
BoolEvaluator::with_local(|e| e.multi_party_decryption_share(c, &self))
}
fn aggregate_decryption_shares(
&self,
c: &Vec<u64>,
shares: &[Self::DecryptionShare],
) -> bool {
BoolEvaluator::with_local(|e| e.multi_party_decrypt(shares, c))
}
}
}
/// Public key
pub struct PublicKey<M, Rng, ModOp> {
key: M,
_phantom: PhantomData<(Rng, ModOp)>,
}
pub(super) mod impl_pk {
use super::*;
impl<M, R, Mo> PublicKey<M, R, Mo> {
pub(in super::super) fn key(&self) -> &M {
&self.key
}
}
impl<Rng, ModOp> Encryptor<bool, Vec<u64>> for PublicKey<Vec<Vec<u64>>, Rng, ModOp> {
fn encrypt(&self, m: &bool) -> Vec<u64> {
BoolEvaluator::with_local(|e| e.pk_encrypt(&self.key, *m))
}
}
impl<Rng, ModOp> Encryptor<[bool], Vec<Vec<u64>>> for PublicKey<Vec<Vec<u64>>, Rng, ModOp> {
fn encrypt(&self, m: &[bool]) -> Vec<Vec<u64>> {
BoolEvaluator::with_local(|e| e.pk_encrypt_batched(&self.key, m))
}
}
impl<
M: MatrixMut + MatrixEntity,
Rng: NewWithSeed
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
ModOp,
> From<SeededPublicKey<M::R, Rng::Seed, BoolParameters<M::MatElement>, ModOp>>
for PublicKey<M, Rng, ModOp>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
{
fn from(
value: SeededPublicKey<M::R, Rng::Seed, BoolParameters<M::MatElement>, ModOp>,
) -> Self {
let mut prng = Rng::new_with_seed(value.seed);
let mut key = M::zeros(2, value.parameters.rlwe_n().0);
// sample A
RandomFillUniformInModulus::random_fill(
&mut prng,
value.parameters.rlwe_q(),
key.get_row_mut(0),
);
// Copy over B
key.get_row_mut(1).copy_from_slice(value.part_b.as_ref());
PublicKey {
key,
_phantom: PhantomData,
}
}
}
impl<
M: MatrixMut + MatrixEntity,
Rng: NewWithSeed
+ RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
ModOp: VectorOps<Element = M::MatElement> + ModInit<M = CiphertextModulus<M::MatElement>>,
>
From<
&[CommonReferenceSeededCollectivePublicKeyShare<
M::R,
Rng::Seed,
BoolParameters<M::MatElement>,
>],
> for PublicKey<M, Rng, ModOp>
where
<M as Matrix>::R: RowMut,
Rng::Seed: Copy + PartialEq,
M::MatElement: PartialEq + Copy,
{
fn from(
value: &[CommonReferenceSeededCollectivePublicKeyShare<
M::R,
Rng::Seed,
BoolParameters<M::MatElement>,
>],
) -> Self {
assert!(value.len() > 0);
let parameters = &value[0].parameters;
let mut key = M::zeros(2, parameters.rlwe_n().0);
// sample A
let seed = value[0].cr_seed;
let mut main_rng = Rng::new_with_seed(seed);
RandomFillUniformInModulus::random_fill(
&mut main_rng,
parameters.rlwe_q(),
key.get_row_mut(0),
);
// Sum all Bs
let rlweq_modop = ModOp::new(parameters.rlwe_q().clone());
value.iter().for_each(|share_i| {
assert!(share_i.cr_seed == seed);
assert!(&share_i.parameters == parameters);
rlweq_modop.elwise_add_mut(key.get_row_mut(1), share_i.share.as_ref());
});
PublicKey {
key,
_phantom: PhantomData,
}
}
}
}
/// Seeded public key
struct SeededPublicKey<Ro, S, P, ModOp> {
part_b: Ro,
seed: S,
parameters: P,
_phantom: PhantomData<ModOp>,
}
mod impl_seeded_pk {
use super::*;
impl<R, S, ModOp>
From<&[CommonReferenceSeededCollectivePublicKeyShare<R, S, BoolParameters<R::Element>>]>
for SeededPublicKey<R, S, BoolParameters<R::Element>, ModOp>
where
ModOp: VectorOps<Element = R::Element> + ModInit<M = CiphertextModulus<R::Element>>,
S: PartialEq + Clone,
R: RowMut + RowEntity + Clone,
R::Element: Clone + PartialEq,
{
fn from(
value: &[CommonReferenceSeededCollectivePublicKeyShare<
R,
S,
BoolParameters<R::Element>,
>],
) -> Self {
assert!(value.len() > 0);
let parameters = &value[0].parameters;
let cr_seed = value[0].cr_seed.clone();
// Sum all Bs
let rlweq_modop = ModOp::new(parameters.rlwe_q().clone());
let mut part_b = value[0].share.clone();
value.iter().skip(1).for_each(|share_i| {
assert!(&share_i.cr_seed == &cr_seed);
assert!(&share_i.parameters == parameters);
rlweq_modop.elwise_add_mut(part_b.as_mut(), share_i.share.as_ref());
});
Self {
part_b,
seed: cr_seed,
parameters: parameters.clone(),
_phantom: PhantomData,
}
}
}
}
/// CRS seeded collective public key share
pub struct CommonReferenceSeededCollectivePublicKeyShare<Ro, S, P> {
share: Ro,
cr_seed: S,
parameters: P,
}
impl<Ro, S, P> CommonReferenceSeededCollectivePublicKeyShare<Ro, S, P> {
pub(super) fn new(share: Ro, cr_seed: S, parameters: P) -> Self {
CommonReferenceSeededCollectivePublicKeyShare {
share,
cr_seed,
parameters,
}
}
}
/// CRS seeded Multi-party server key share
pub struct CommonReferenceSeededMultiPartyServerKeyShare<M: Matrix, P, S> {
rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
/// Common reference seed
cr_seed: S,
parameters: P,
}
impl<M: Matrix, P, S> CommonReferenceSeededMultiPartyServerKeyShare<M, P, S> {
pub(super) fn new(
rgsw_cts: Vec<M>,
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
cr_seed: S,
parameters: P,
) -> Self {
CommonReferenceSeededMultiPartyServerKeyShare {
rgsw_cts,
auto_keys,
lwe_ksk,
cr_seed,
parameters,
}
}
pub(super) fn cr_seed(&self) -> &S {
&self.cr_seed
}
pub(super) fn parameters(&self) -> &P {
&self.parameters
}
pub(super) fn auto_keys(&self) -> &HashMap<usize, M> {
&self.auto_keys
}
pub(super) fn rgsw_cts(&self) -> &[M] {
&self.rgsw_cts
}
pub(super) fn lwe_ksk(&self) -> &M::R {
&self.lwe_ksk
}
}
/// CRS seeded MultiParty server key
pub struct SeededMultiPartyServerKey<M: Matrix, S, P> {
rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
cr_seed: S,
parameters: P,
}
impl<M: Matrix, S, P> SeededMultiPartyServerKey<M, S, P> {
pub(super) fn new(
rgsw_cts: Vec<M>,
auto_keys: HashMap<usize, M>,
lwe_ksk: M::R,
cr_seed: S,
parameters: P,
) -> Self {
SeededMultiPartyServerKey {
rgsw_cts,
auto_keys,
lwe_ksk,
cr_seed,
parameters,
}
}
pub(super) fn rgsw_cts(&self) -> &[M] {
&self.rgsw_cts
}
}
/// Seeded single party server key
pub struct SeededServerKey<M: Matrix, P, S> {
/// Rgsw cts of LWE secret elements
pub(crate) rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
pub(crate) auto_keys: HashMap<usize, M>,
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
pub(crate) lwe_ksk: M::R,
/// Parameters
pub(crate) parameters: P,
/// Main seed
pub(crate) seed: S,
}
impl<M: Matrix, S> SeededServerKey<M, BoolParameters<M::MatElement>, S> {
pub(super) fn from_raw(
auto_keys: HashMap<usize, M>,
rgsw_cts: Vec<M>,
lwe_ksk: M::R,
parameters: BoolParameters<M::MatElement>,
seed: S,
) -> Self {
// sanity checks
auto_keys.iter().for_each(|v| {
assert!(
v.1.dimension()
== (
parameters.auto_decomposition_count().0,
parameters.rlwe_n().0
)
)
});
let (part_a_d, part_b_d) = parameters.rlwe_rgsw_decomposition_count();
rgsw_cts.iter().for_each(|v| {
assert!(v.dimension() == (part_a_d.0 * 2 + part_b_d.0, parameters.rlwe_n().0))
});
assert!(
lwe_ksk.as_ref().len()
== (parameters.lwe_decomposition_count().0 * parameters.rlwe_n().0)
);
SeededServerKey {
rgsw_cts,
auto_keys,
lwe_ksk,
parameters,
seed,
}
}
}
/// Server key in evaluation domain
pub(crate) struct ServerKeyEvaluationDomain<M, R, N> {
/// Rgsw cts of LWE secret elements
rgsw_cts: Vec<M>,
/// Auto keys. Key corresponding to g^{k} is at index `k`. Key corresponding
/// to -g is at 0
galois_keys: HashMap<usize, M>,
/// LWE ksk to key switching LWE ciphertext from RLWE secret to LWE secret
lwe_ksk: M,
_phanton: PhantomData<(R, N)>,
}
pub(super) mod impl_server_key_eval_domain {
use itertools::{izip, Itertools};
use crate::{
ntt::{Ntt, NttInit},
pbs::PbsKey,
};
use super::*;
impl<M, R, N> ServerKeyEvaluationDomain<M, R, N> {
pub(in super::super) fn rgsw_cts(&self) -> &[M] {
&self.rgsw_cts
}
}
impl<
M: MatrixMut + MatrixEntity,
R: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>
+ NewWithSeed,
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
> From<&SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>>
for ServerKeyEvaluationDomain<M, R, N>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
R::Seed: Clone,
{
fn from(value: &SeededServerKey<M, BoolParameters<M::MatElement>, R::Seed>) -> Self {
let mut main_prng = R::new_with_seed(value.seed.clone());
let parameters = &value.parameters;
let g = parameters.g() as isize;
let ring_size = value.parameters.rlwe_n().0;
let lwe_n = value.parameters.lwe_n().0;
let rlwe_q = value.parameters.rlwe_q();
let lwq_q = value.parameters.lwe_q();
let nttop = N::new(rlwe_q, ring_size);
// galois keys
let mut auto_keys = HashMap::new();
let auto_decomp_count = parameters.auto_decomposition_count().0;
let auto_element_dlogs = parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
let seeded_auto_key = value.auto_keys.get(&i).unwrap();
assert!(seeded_auto_key.dimension() == (auto_decomp_count, ring_size));
let mut data = M::zeros(auto_decomp_count * 2, ring_size);
// sample RLWE'_A(-s(X^k))
data.iter_rows_mut().take(auto_decomp_count).for_each(|ri| {
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
});
// copy over RLWE'B_(-s(X^k))
izip!(
data.iter_rows_mut().skip(auto_decomp_count),
seeded_auto_key.iter_rows()
)
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// Send to Evaluation domain
data.iter_rows_mut()
.for_each(|ri| nttop.forward(ri.as_mut()));
auto_keys.insert(i, data);
}
// RGSW ciphertexts
let (rlrg_a_decomp, rlrg_b_decomp) = parameters.rlwe_rgsw_decomposition_count();
let rgsw_cts = value
.rgsw_cts
.iter()
.map(|seeded_rgsw_si| {
assert!(
seeded_rgsw_si.dimension()
== (rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0, ring_size)
);
let mut data = M::zeros(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0 * 2, ring_size);
// copy over RLWE'(-sm)
izip!(
data.iter_rows_mut().take(rlrg_a_decomp.0 * 2),
seeded_rgsw_si.iter_rows().take(rlrg_a_decomp.0 * 2)
)
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// sample RLWE'_A(m)
data.iter_rows_mut()
.skip(rlrg_a_decomp.0 * 2)
.take(rlrg_b_decomp.0)
.for_each(|ri| {
RandomFillUniformInModulus::random_fill(
&mut main_prng,
&rlwe_q,
ri.as_mut(),
)
});
// copy over RLWE'_B(m)
izip!(
data.iter_rows_mut()
.skip(rlrg_a_decomp.0 * 2 + rlrg_b_decomp.0),
seeded_rgsw_si.iter_rows().skip(rlrg_a_decomp.0 * 2)
)
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// send polynomials to evaluation domain
data.iter_rows_mut()
.for_each(|ri| nttop.forward(ri.as_mut()));
data
})
.collect_vec();
// LWE ksk
let lwe_ksk = {
let d = parameters.lwe_decomposition_count().0;
assert!(value.lwe_ksk.as_ref().len() == d * ring_size);
let mut data = M::zeros(d * ring_size, lwe_n + 1);
izip!(data.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(
|(lwe_i, bi)| {
RandomFillUniformInModulus::random_fill(
&mut main_prng,
&lwq_q,
&mut lwe_i.as_mut()[1..],
);
lwe_i.as_mut()[0] = *bi;
},
);
data
};
ServerKeyEvaluationDomain {
rgsw_cts,
galois_keys: auto_keys,
lwe_ksk,
_phanton: PhantomData,
}
}
}
impl<
M: MatrixMut + MatrixEntity,
Rng: NewWithSeed,
N: NttInit<CiphertextModulus<M::MatElement>> + Ntt<Element = M::MatElement>,
> From<&SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>>
for ServerKeyEvaluationDomain<M, Rng, N>
where
<M as Matrix>::R: RowMut,
Rng::Seed: Copy,
Rng: RandomFillUniformInModulus<[M::MatElement], CiphertextModulus<M::MatElement>>,
M::MatElement: Copy,
{
fn from(
value: &SeededMultiPartyServerKey<M, Rng::Seed, BoolParameters<M::MatElement>>,
) -> Self {
let g = value.parameters.g() as isize;
let rlwe_n = value.parameters.rlwe_n().0;
let lwe_n = value.parameters.lwe_n().0;
let rlwe_q = value.parameters.rlwe_q();
let lwe_q = value.parameters.lwe_q();
let mut main_prng = Rng::new_with_seed(value.cr_seed);
let rlwe_nttop = N::new(rlwe_q, rlwe_n);
// auto keys
let mut auto_keys = HashMap::new();
let auto_d_count = value.parameters.auto_decomposition_count().0;
let auto_element_dlogs = value.parameters.auto_element_dlogs();
for i in auto_element_dlogs.into_iter() {
let mut key = M::zeros(auto_d_count * 2, rlwe_n);
// sample a
key.iter_rows_mut().take(auto_d_count).for_each(|ri| {
RandomFillUniformInModulus::random_fill(&mut main_prng, &rlwe_q, ri.as_mut())
});
let key_part_b = value.auto_keys.get(&i).unwrap();
assert!(key_part_b.dimension() == (auto_d_count, rlwe_n));
izip!(
key.iter_rows_mut().skip(auto_d_count),
key_part_b.iter_rows()
)
.for_each(|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
});
// send to evaluation domain
key.iter_rows_mut()
.for_each(|ri| rlwe_nttop.forward(ri.as_mut()));
auto_keys.insert(i, key);
}
// rgsw cts
let (rlrg_d_a, rlrg_d_b) = value.parameters.rlwe_rgsw_decomposition_count();
let rgsw_ct_out = rlrg_d_a.0 * 2 + rlrg_d_b.0 * 2;
let rgsw_cts = value
.rgsw_cts
.iter()
.map(|ct_i_in| {
assert!(ct_i_in.dimension() == (rgsw_ct_out, rlwe_n));
let mut eval_ct_i_out = M::zeros(rgsw_ct_out, rlwe_n);
izip!(eval_ct_i_out.iter_rows_mut(), ct_i_in.iter_rows()).for_each(
|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
rlwe_nttop.forward(to_ri.as_mut());
},
);
eval_ct_i_out
})
.collect_vec();
// lwe ksk
let d_lwe = value.parameters.lwe_decomposition_count().0;
let mut lwe_ksk = M::zeros(rlwe_n * d_lwe, lwe_n + 1);
izip!(lwe_ksk.iter_rows_mut(), value.lwe_ksk.as_ref().iter()).for_each(
|(lwe_i, bi)| {
RandomFillUniformInModulus::random_fill(
&mut main_prng,
&lwe_q,
&mut lwe_i.as_mut()[1..],
);
lwe_i.as_mut()[0] = *bi;
},
);
ServerKeyEvaluationDomain {
rgsw_cts,
galois_keys: auto_keys,
lwe_ksk,
_phanton: PhantomData,
}
}
}
impl<M: Matrix, R, N> PbsKey for ServerKeyEvaluationDomain<M, R, N> {
type M = M;
fn galois_key_for_auto(&self, k: usize) -> &Self::M {
self.galois_keys.get(&k).unwrap()
}
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M {
&self.rgsw_cts[si]
}
fn lwe_ksk(&self) -> &Self::M {
&self.lwe_ksk
}
}
}