use std::{fmt::Display, marker::PhantomData};
|
|
|
|
use num_traits::{FromPrimitive, One, PrimInt, ToPrimitive, Zero};
|
|
|
|
use crate::{
|
|
backend::{ArithmeticOps, Modulus, VectorOps},
|
|
decomposer::Decomposer,
|
|
lwe::lwe_key_switch,
|
|
ntt::Ntt,
|
|
random::DefaultSecureRng,
|
|
rgsw::{galois_auto, rlwe_by_rgsw, IsTrivial, RlweCiphertext},
|
|
Matrix, MatrixEntity, MatrixMut, RowMut,
|
|
};
|
|
pub(crate) trait PbsKey {
|
|
type M: Matrix;
|
|
|
|
/// RGSW ciphertext of LWE secret elements
|
|
fn rgsw_ct_lwe_si(&self, si: usize) -> &Self::M;
|
|
/// Key for automorphism with g^k. For -g use k = 0
|
|
fn galois_key_for_auto(&self, k: usize) -> &Self::M;
|
|
/// LWE ksk to key switch from RLWE secret to LWE secret
|
|
fn lwe_ksk(&self) -> &Self::M;
|
|
}
|
|
|
|
pub(crate) trait PbsInfo {
|
|
type Element;
|
|
type Modulus: Modulus<Element = Self::Element>;
|
|
type NttOp: Ntt<Element = Self::Element>;
|
|
type D: Decomposer<Element = Self::Element>;
|
|
|
|
// Although both types have same bounds, they can be different types. For ex,
|
|
// type RlweModOp may only support native modulus, where LweModOp may only
|
|
// support prime modulus, etc.
|
|
type RlweModOp: VectorOps<Element = Self::Element> + ArithmeticOps<Element = Self::Element>;
|
|
type LweModOp: VectorOps<Element = Self::Element> + ArithmeticOps<Element = Self::Element>;
|
|
|
|
fn rlwe_q(&self) -> &Self::Modulus;
|
|
fn lwe_q(&self) -> &Self::Modulus;
|
|
fn br_q(&self) -> usize;
|
|
fn rlwe_n(&self) -> usize;
|
|
fn lwe_n(&self) -> usize;
|
|
/// Embedding fator for ring X^{q}+1 inside
|
|
fn embedding_factor(&self) -> usize;
|
|
/// Window size
|
|
fn w(&self) -> usize;
|
|
/// generator g
|
|
fn g(&self) -> isize;
|
|
/// Decomposers
|
|
fn lwe_decomposer(&self) -> &Self::D;
|
|
fn rlwe_rgsw_decomposer(&self) -> &(Self::D, Self::D);
|
|
fn auto_decomposer(&self) -> &Self::D;
|
|
|
|
/// Modulus operators
|
|
fn modop_lweq(&self) -> &Self::LweModOp;
|
|
fn modop_rlweq(&self) -> &Self::RlweModOp;
|
|
|
|
/// Ntt operators
|
|
fn nttop_rlweq(&self) -> &Self::NttOp;
|
|
|
|
/// Maps a \in Z^*_{q} to discrete log k, with generator g (i.e. g^k =
|
|
/// a). Returned vector is of size q that stores dlog of a at `vec[a]`.
|
|
/// For any a, if k is s.t. a = g^{k}, then k is expressed as k. If k is s.t
|
|
/// a = -g^{k}, then k is expressed as k=k+q/4
|
|
fn g_k_dlog_map(&self) -> &[usize];
|
|
/// Returns auto map and index vector for g^k. For -g use k == 0.
|
|
fn rlwe_auto_map(&self, k: usize) -> &(Vec<usize>, Vec<bool>);
|
|
}
|
|
|
|
/// - Mod down
|
|
/// - key switching
|
|
/// - mod down
|
|
/// - blind rotate
|
|
pub(crate) fn pbs<
|
|
M: MatrixMut + MatrixEntity,
|
|
P: PbsInfo<Element = M::MatElement>,
|
|
K: PbsKey<M = M>,
|
|
>(
|
|
pbs_info: &P,
|
|
test_vec: &M::R,
|
|
lwe_in: &mut M::R,
|
|
pbs_key: &K,
|
|
scratch_lwe_vec: &mut M::R,
|
|
scratch_blind_rotate_matrix: &mut M,
|
|
) where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: PrimInt + FromPrimitive + One + Copy + Zero + Display,
|
|
{
|
|
let rlwe_q = pbs_info.rlwe_q();
|
|
let lwe_q = pbs_info.lwe_q();
|
|
let br_q = pbs_info.br_q();
|
|
let rlwe_qf64 = rlwe_q.q_as_f64().unwrap();
|
|
let lwe_qf64 = lwe_q.q_as_f64().unwrap();
|
|
let br_qf64 = br_q.to_f64().unwrap();
|
|
let rlwe_n = pbs_info.rlwe_n();
|
|
|
|
// moddown Q -> Q_ks
|
|
lwe_in.as_mut().iter_mut().for_each(|v| {
|
|
*v =
|
|
M::MatElement::from_f64(((v.to_f64().unwrap() * lwe_qf64) / rlwe_qf64).round()).unwrap()
|
|
});
|
|
|
|
// key switch RLWE secret to LWE secret
|
|
scratch_lwe_vec.as_mut().fill(M::MatElement::zero());
|
|
lwe_key_switch(
|
|
scratch_lwe_vec,
|
|
lwe_in,
|
|
pbs_key.lwe_ksk(),
|
|
pbs_info.modop_lweq(),
|
|
pbs_info.lwe_decomposer(),
|
|
);
|
|
|
|
// odd mowdown Q_ks -> q
|
|
let g_k_dlog_map = pbs_info.g_k_dlog_map();
|
|
let mut g_k_si = vec![vec![]; br_q >> 1];
|
|
scratch_lwe_vec
|
|
.as_ref()
|
|
.iter()
|
|
.skip(1)
|
|
.enumerate()
|
|
.for_each(|(index, v)| {
|
|
let odd_v = mod_switch_odd(v.to_f64().unwrap(), lwe_qf64, br_qf64);
|
|
// dlog `k` for `odd_v` is stored as `k` if odd_v = +g^{k}. If odd_v = -g^{k},
|
|
// then `k` is stored as `q/4 + k`.
|
|
let k = g_k_dlog_map[odd_v];
|
|
// assert!(k != 0);
|
|
g_k_si[k].push(index);
|
|
});
|
|
|
|
// handle b and set trivial test RLWE
|
|
let g = pbs_info.g() as usize;
|
|
let g_times_b = (g * mod_switch_odd(
|
|
scratch_lwe_vec.as_ref()[0].to_f64().unwrap(),
|
|
lwe_qf64,
|
|
br_qf64,
|
|
)) % (br_q);
|
|
// v = (v(X) * X^{g*b}) mod X^{q/2}+1
|
|
let br_qby2 = br_q >> 1;
|
|
let mut gb_monomial_sign = true;
|
|
let mut gb_monomial_exp = g_times_b;
|
|
// X^{g*b} mod X^{q/2}+1
|
|
if gb_monomial_exp > br_qby2 {
|
|
gb_monomial_exp -= br_qby2;
|
|
gb_monomial_sign = false
|
|
}
|
|
// monomial mul
|
|
let mut trivial_rlwe_test_poly = RlweCiphertext::<_, DefaultSecureRng> {
|
|
data: M::zeros(2, rlwe_n),
|
|
is_trivial: true,
|
|
_phatom: PhantomData,
|
|
};
|
|
if pbs_info.embedding_factor() == 1 {
|
|
monomial_mul(
|
|
test_vec.as_ref(),
|
|
trivial_rlwe_test_poly.get_row_mut(1).as_mut(),
|
|
gb_monomial_exp,
|
|
gb_monomial_sign,
|
|
br_qby2,
|
|
pbs_info.modop_rlweq(),
|
|
);
|
|
} else {
|
|
// use lwe_in to store the `t = v(X) * X^{g*2} mod X^{q/2}+1` temporarily. This
|
|
// works because q/2 <= N (where N is lwe_in LWE dimension) always.
|
|
monomial_mul(
|
|
test_vec.as_ref(),
|
|
&mut lwe_in.as_mut()[..br_qby2],
|
|
gb_monomial_exp,
|
|
gb_monomial_sign,
|
|
br_qby2,
|
|
pbs_info.modop_rlweq(),
|
|
);
|
|
|
|
// emebed poly `t` in ring X^{q/2}+1 inside the bigger ring X^{N}+1
|
|
let embed_factor = pbs_info.embedding_factor();
|
|
let partb_trivial_rlwe = trivial_rlwe_test_poly.get_row_mut(1);
|
|
lwe_in.as_ref()[..br_qby2]
|
|
.iter()
|
|
.enumerate()
|
|
.for_each(|(index, v)| {
|
|
partb_trivial_rlwe[embed_factor * index] = *v;
|
|
});
|
|
}
|
|
|
|
// let now = std::time::Instant::now();
|
|
// blind rotate
|
|
blind_rotation(
|
|
&mut trivial_rlwe_test_poly,
|
|
scratch_blind_rotate_matrix,
|
|
pbs_info.g(),
|
|
pbs_info.w(),
|
|
br_q,
|
|
&g_k_si,
|
|
pbs_info.rlwe_rgsw_decomposer(),
|
|
pbs_info.auto_decomposer(),
|
|
pbs_info.nttop_rlweq(),
|
|
pbs_info.modop_rlweq(),
|
|
pbs_info,
|
|
pbs_key,
|
|
);
|
|
// println!("Blind rotation time: {:?}", now.elapsed());
|
|
|
|
// sample extract
|
|
sample_extract(lwe_in, &trivial_rlwe_test_poly, pbs_info.modop_rlweq(), 0);
|
|
}
|
|
|
|
/// LMKCY+ Blind rotation
|
|
///
|
|
/// gk_to_si: [g^0, ..., g^{q/2-1}, -g^0, -g^1, .., -g^{q/2-1}]
|
|
fn blind_rotation<
|
|
MT: IsTrivial + MatrixMut,
|
|
Mmut: MatrixMut<MatElement = MT::MatElement>,
|
|
D: Decomposer<Element = MT::MatElement>,
|
|
NttOp: Ntt<Element = MT::MatElement>,
|
|
ModOp: ArithmeticOps<Element = MT::MatElement> + VectorOps<Element = MT::MatElement>,
|
|
K: PbsKey<M = Mmut>,
|
|
P: PbsInfo<Element = MT::MatElement>,
|
|
>(
|
|
trivial_rlwe_test_poly: &mut MT,
|
|
scratch_matrix: &mut Mmut,
|
|
_g: isize,
|
|
w: usize,
|
|
q: usize,
|
|
gk_to_si: &[Vec<usize>],
|
|
rlwe_rgsw_decomposer: &(D, D),
|
|
auto_decomposer: &D,
|
|
ntt_op: &NttOp,
|
|
mod_op: &ModOp,
|
|
parameters: &P,
|
|
pbs_key: &K,
|
|
) where
|
|
<Mmut as Matrix>::R: RowMut,
|
|
Mmut::MatElement: Copy + Zero,
|
|
<MT as Matrix>::R: RowMut,
|
|
{
|
|
let q_by_4 = q >> 2;
|
|
let mut count = 0;
|
|
// -(g^k)
|
|
let mut v = 0;
|
|
for i in (1..q_by_4).rev() {
|
|
// dbg!(q_by_4 + i);
|
|
let s_indices = &gk_to_si[q_by_4 + i];
|
|
|
|
s_indices.iter().for_each(|s_index| {
|
|
// let new = std::time::Instant::now();
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(*s_index),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
// println!("Rlwe x Rgsw time: {:?}", new.elapsed());
|
|
});
|
|
v += 1;
|
|
|
|
if gk_to_si[q_by_4 + i - 1].len() != 0 || v == w || i == 1 {
|
|
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(v);
|
|
|
|
// let now = std::time::Instant::now();
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(v),
|
|
scratch_matrix,
|
|
&auto_map_index,
|
|
&auto_map_sign,
|
|
mod_op,
|
|
ntt_op,
|
|
auto_decomposer,
|
|
);
|
|
// println!("Auto time: {:?}", now.elapsed());
|
|
|
|
count += 1;
|
|
v = 0;
|
|
}
|
|
}
|
|
|
|
// -(g^0)
|
|
gk_to_si[q_by_4].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(*s_index),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(0);
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(0),
|
|
scratch_matrix,
|
|
&auto_map_index,
|
|
&auto_map_sign,
|
|
mod_op,
|
|
ntt_op,
|
|
auto_decomposer,
|
|
);
|
|
count += 1;
|
|
|
|
// +(g^k)
|
|
let mut v = 0;
|
|
for i in (1..q_by_4).rev() {
|
|
let s_indices = &gk_to_si[i];
|
|
s_indices.iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(*s_index),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
v += 1;
|
|
|
|
if gk_to_si[i - 1].len() != 0 || v == w || i == 1 {
|
|
let (auto_map_index, auto_map_sign) = parameters.rlwe_auto_map(v);
|
|
galois_auto(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.galois_key_for_auto(v),
|
|
scratch_matrix,
|
|
&auto_map_index,
|
|
&auto_map_sign,
|
|
mod_op,
|
|
ntt_op,
|
|
auto_decomposer,
|
|
);
|
|
v = 0;
|
|
count += 1;
|
|
}
|
|
}
|
|
|
|
// +(g^0)
|
|
gk_to_si[0].iter().for_each(|s_index| {
|
|
rlwe_by_rgsw(
|
|
trivial_rlwe_test_poly,
|
|
pbs_key.rgsw_ct_lwe_si(*s_index),
|
|
scratch_matrix,
|
|
rlwe_rgsw_decomposer,
|
|
ntt_op,
|
|
mod_op,
|
|
);
|
|
});
|
|
println!("Auto count: {count}");
|
|
}
|
|
|
|
fn mod_switch_odd(v: f64, from_q: f64, to_q: f64) -> usize {
|
|
let odd_v = (((v * to_q) / (from_q)).floor()).to_usize().unwrap();
|
|
//TODO(Jay): check correctness of this
|
|
odd_v + ((odd_v & 1) ^ 1)
|
|
}
|
|
|
|
// TODO(Jay): Add tests for sample extract
|
|
pub(crate) fn sample_extract<M: Matrix + MatrixMut, ModOp: ArithmeticOps<Element = M::MatElement>>(
|
|
lwe_out: &mut M::R,
|
|
rlwe_in: &M,
|
|
mod_op: &ModOp,
|
|
index: usize,
|
|
) where
|
|
<M as Matrix>::R: RowMut,
|
|
M::MatElement: Copy,
|
|
{
|
|
let ring_size = rlwe_in.dimension().1;
|
|
|
|
// index..=0
|
|
let to = &mut lwe_out.as_mut()[1..];
|
|
let from = rlwe_in.get_row_slice(0);
|
|
for i in 0..index + 1 {
|
|
to[i] = from[index - i];
|
|
}
|
|
|
|
// -(N..index)
|
|
for i in index + 1..ring_size {
|
|
to[i] = mod_op.neg(&from[ring_size + index - i]);
|
|
}
|
|
|
|
// set b
|
|
lwe_out.as_mut()[0] = *rlwe_in.get(1, index);
|
|
}
|
|
|
|
/// Monomial multiplication (p(X)*X^{mon_exp})
|
|
///
|
|
/// - p_out: Output is written to p_out and independent of values in p_out
|
|
fn monomial_mul<El, ModOp: ArithmeticOps<Element = El>>(
|
|
p_in: &[El],
|
|
p_out: &mut [El],
|
|
mon_exp: usize,
|
|
mon_sign: bool,
|
|
ring_size: usize,
|
|
mod_op: &ModOp,
|
|
) where
|
|
El: Copy,
|
|
{
|
|
debug_assert!(p_in.as_ref().len() == ring_size);
|
|
debug_assert!(p_in.as_ref().len() == p_out.as_ref().len());
|
|
debug_assert!(mon_exp < ring_size);
|
|
|
|
p_in.as_ref().iter().enumerate().for_each(|(index, v)| {
|
|
let mut to_index = index + mon_exp;
|
|
let mut to_sign = mon_sign;
|
|
if to_index >= ring_size {
|
|
to_index = to_index - ring_size;
|
|
to_sign = !to_sign;
|
|
}
|
|
|
|
if !to_sign {
|
|
p_out.as_mut()[to_index] = mod_op.neg(v);
|
|
} else {
|
|
p_out.as_mut()[to_index] = *v;
|
|
}
|
|
});
|
|
}
|