use std::{
|
|
cell::RefCell,
|
|
collections::btree_map::Values,
|
|
fmt::{Debug, Display},
|
|
marker::PhantomData,
|
|
};
|
|
|
|
use itertools::{izip, Itertools};
|
|
use num_traits::{abs, PrimInt, ToPrimitive, Zero};
|
|
|
|
use crate::{
|
|
backend::{ArithmeticOps, VectorOps},
|
|
decomposer::Decomposer,
|
|
lwe,
|
|
num::UnsignedInteger,
|
|
random::{DefaultSecureRng, NewWithSeed, RandomGaussianDist, RandomUniformDist, DEFAULT_RNG},
|
|
utils::{fill_random_ternary_secret_with_hamming_weight, TryConvertFrom, WithLocal},
|
|
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
|
|
};
|
|
|
|
struct SeededLweKeySwitchingKey<Ro, S>
|
|
where
|
|
Ro: Row,
|
|
{
|
|
data: Ro,
|
|
seed: S,
|
|
to_lwe_n: usize,
|
|
modulus: Ro::Element,
|
|
}
|
|
|
|
impl<Ro: RowEntity, S> SeededLweKeySwitchingKey<Ro, S> {
|
|
pub(crate) fn empty(
|
|
from_lwe_n: usize,
|
|
to_lwe_n: usize,
|
|
d: usize,
|
|
seed: S,
|
|
modulus: Ro::Element,
|
|
) -> Self {
|
|
let data = Ro::zeros(from_lwe_n * d);
|
|
SeededLweKeySwitchingKey {
|
|
data,
|
|
to_lwe_n,
|
|
seed,
|
|
modulus,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct LweKeySwitchingKey<M, R> {
|
|
data: M,
|
|
_phantom: PhantomData<R>,
|
|
}
|
|
|
|
impl<
|
|
M: MatrixMut + MatrixEntity,
|
|
R: NewWithSeed + RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
|
|
> From<&SeededLweKeySwitchingKey<M::R, R::Seed>> for LweKeySwitchingKey<M, R>
|
|
where
|
|
M::R: RowMut,
|
|
R::Seed: Clone,
|
|
M::MatElement: Copy,
|
|
{
|
|
fn from(value: &SeededLweKeySwitchingKey<M::R, R::Seed>) -> Self {
|
|
let mut p_rng = R::new_with_seed(value.seed.clone());
|
|
let mut data = M::zeros(value.data.as_ref().len(), value.to_lwe_n + 1);
|
|
izip!(value.data.as_ref().iter(), data.iter_rows_mut()).for_each(|(bi, lwe_i)| {
|
|
RandomUniformDist::random_fill(&mut p_rng, &value.modulus, &mut lwe_i.as_mut()[1..]);
|
|
lwe_i.as_mut()[0] = *bi;
|
|
});
|
|
LweKeySwitchingKey {
|
|
data,
|
|
_phantom: PhantomData,
|
|
}
|
|
}
|
|
}
|
|
|
|
trait LweCiphertext<M: Matrix> {}
|
|
|
|
#[derive(Clone)]
|
|
pub struct LweSecret {
|
|
values: Vec<i32>,
|
|
}
|
|
|
|
impl Secret for LweSecret {
|
|
type Element = i32;
|
|
fn values(&self) -> &[Self::Element] {
|
|
&self.values
|
|
}
|
|
}
|
|
|
|
impl LweSecret {
|
|
pub(crate) fn random(hw: usize, n: usize) -> LweSecret {
|
|
DefaultSecureRng::with_local_mut(|rng| {
|
|
let mut out = vec![0i32; n];
|
|
fill_random_ternary_secret_with_hamming_weight(&mut out, hw, rng);
|
|
|
|
LweSecret { values: out }
|
|
})
|
|
}
|
|
}
|
|
|
|
pub(crate) fn lwe_key_switch<
|
|
M: Matrix,
|
|
Ro: AsMut<[M::MatElement]> + AsRef<[M::MatElement]>,
|
|
Op: VectorOps<Element = M::MatElement> + ArithmeticOps<Element = M::MatElement>,
|
|
D: Decomposer<Element = M::MatElement>,
|
|
>(
|
|
lwe_out: &mut Ro,
|
|
lwe_in: &Ro,
|
|
lwe_ksk: &M,
|
|
operator: &Op,
|
|
decomposer: &D,
|
|
) {
|
|
assert!(lwe_ksk.dimension().0 == ((lwe_in.as_ref().len() - 1) * decomposer.d()));
|
|
assert!(lwe_out.as_ref().len() == lwe_ksk.dimension().1);
|
|
|
|
let lwe_in_a_decomposed = lwe_in
|
|
.as_ref()
|
|
.iter()
|
|
.skip(1)
|
|
.flat_map(|ai| decomposer.decompose(ai));
|
|
izip!(lwe_in_a_decomposed, lwe_ksk.iter_rows()).for_each(|(ai_j, beta_ij_lwe)| {
|
|
operator.elwise_fma_scalar_mut(lwe_out.as_mut(), beta_ij_lwe.as_ref(), &ai_j);
|
|
});
|
|
|
|
let out_b = operator.add(&lwe_out.as_ref()[0], &lwe_in.as_ref()[0]);
|
|
lwe_out.as_mut()[0] = out_b;
|
|
}
|
|
|
|
pub fn lwe_ksk_keygen<
|
|
Ro: Row + RowMut + RowEntity,
|
|
S,
|
|
Op: VectorOps<Element = Ro::Element> + ArithmeticOps<Element = Ro::Element>,
|
|
R: RandomGaussianDist<Ro::Element, Parameters = Ro::Element>
|
|
+ RandomUniformDist<[Ro::Element], Parameters = Ro::Element>
|
|
+ NewWithSeed,
|
|
>(
|
|
from_lwe_sk: &[S],
|
|
to_lwe_sk: &[S],
|
|
ksk_out: &mut Ro,
|
|
gadget: &[Ro::Element],
|
|
seed: R::Seed,
|
|
operator: &Op,
|
|
rng: &mut R,
|
|
) where
|
|
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
|
|
Ro::Element: Zero + Debug,
|
|
{
|
|
assert!(ksk_out.as_ref().len() == (from_lwe_sk.len() * gadget.len()));
|
|
|
|
let d = gadget.len();
|
|
|
|
let modulus = VectorOps::modulus(operator);
|
|
let mut neg_sk_in_m = Ro::try_convert_from(from_lwe_sk, &modulus);
|
|
operator.elwise_neg_mut(neg_sk_in_m.as_mut());
|
|
let sk_out_m = Ro::try_convert_from(to_lwe_sk, &modulus);
|
|
|
|
let mut scratch = Ro::zeros(to_lwe_sk.len());
|
|
let mut p_rng = R::new_with_seed(seed);
|
|
|
|
izip!(neg_sk_in_m.as_ref(), ksk_out.as_mut().chunks_mut(d)).for_each(
|
|
|(neg_sk_in_si, d_lwes_partb)| {
|
|
izip!(gadget.iter(), d_lwes_partb.into_iter()).for_each(|(f, lwe_b)| {
|
|
// sample `a`
|
|
RandomUniformDist::random_fill(&mut p_rng, &modulus, scratch.as_mut());
|
|
|
|
// a * z
|
|
let mut az = Ro::Element::zero();
|
|
izip!(scratch.as_ref().iter(), sk_out_m.as_ref()).for_each(|(ai, si)| {
|
|
let ai_si = operator.mul(ai, si);
|
|
az = operator.add(&az, &ai_si);
|
|
});
|
|
|
|
// a*z + (-s_i)*\beta^j + e
|
|
let mut b = operator.add(&az, &operator.mul(f, neg_sk_in_si));
|
|
let mut e = Ro::Element::zero();
|
|
RandomGaussianDist::random_fill(rng, &modulus, &mut e);
|
|
b = operator.add(&b, &e);
|
|
|
|
*lwe_b = b;
|
|
|
|
// dbg!(&lwe.as_mut(), &f);
|
|
})
|
|
},
|
|
);
|
|
}
|
|
|
|
/// Encrypts encoded message m as LWE ciphertext
|
|
pub fn encrypt_lwe<
|
|
Ro: Row + RowMut,
|
|
R: RandomGaussianDist<Ro::Element, Parameters = Ro::Element>
|
|
+ RandomUniformDist<[Ro::Element], Parameters = Ro::Element>,
|
|
S,
|
|
Op: ArithmeticOps<Element = Ro::Element>,
|
|
>(
|
|
lwe_out: &mut Ro,
|
|
m: &Ro::Element,
|
|
s: &[S],
|
|
operator: &Op,
|
|
rng: &mut R,
|
|
) where
|
|
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
|
|
Ro::Element: Zero,
|
|
{
|
|
let s = Ro::try_convert_from(s, &operator.modulus());
|
|
assert!(s.as_ref().len() == (lwe_out.as_ref().len() - 1));
|
|
|
|
// a*s
|
|
RandomUniformDist::random_fill(rng, &operator.modulus(), &mut lwe_out.as_mut()[1..]);
|
|
let mut sa = Ro::Element::zero();
|
|
izip!(lwe_out.as_mut().iter().skip(1), s.as_ref()).for_each(|(ai, si)| {
|
|
let tmp = operator.mul(ai, si);
|
|
sa = operator.add(&tmp, &sa);
|
|
});
|
|
|
|
// b = a*s + e + m
|
|
let mut e = Ro::Element::zero();
|
|
RandomGaussianDist::random_fill(rng, &operator.modulus(), &mut e);
|
|
let b = operator.add(&operator.add(&sa, &e), m);
|
|
lwe_out.as_mut()[0] = b;
|
|
}
|
|
|
|
pub fn decrypt_lwe<Ro: Row, Op: ArithmeticOps<Element = Ro::Element>, S>(
|
|
lwe_ct: &Ro,
|
|
s: &[S],
|
|
operator: &Op,
|
|
) -> Ro::Element
|
|
where
|
|
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
|
|
Ro::Element: Zero,
|
|
{
|
|
let s = Ro::try_convert_from(s, &operator.modulus());
|
|
|
|
let mut sa = Ro::Element::zero();
|
|
izip!(lwe_ct.as_ref().iter().skip(1), s.as_ref()).for_each(|(ai, si)| {
|
|
let tmp = operator.mul(ai, si);
|
|
sa = operator.add(&tmp, &sa);
|
|
});
|
|
|
|
let b = &lwe_ct.as_ref()[0];
|
|
operator.sub(b, &sa)
|
|
}
|
|
|
|
/// Measures noise in input LWE ciphertext with reference of `ideal_m`
|
|
///
|
|
/// - ct: Input LWE ciphertext
|
|
/// - s: corresponding secret
|
|
/// - ideal_m: Ideal `encoded` message
|
|
pub(crate) fn measure_noise_lwe<Ro: Row, Op: ArithmeticOps<Element = Ro::Element>, S>(
|
|
ct: &Ro,
|
|
s: &[S],
|
|
operator: &Op,
|
|
ideal_m: &Ro::Element,
|
|
) -> f64
|
|
where
|
|
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
|
|
Ro::Element: Zero + ToPrimitive + PrimInt + Display,
|
|
{
|
|
assert!(s.len() == ct.as_ref().len() - 1,);
|
|
|
|
let s = Ro::try_convert_from(s, &operator.modulus());
|
|
let mut sa = Ro::Element::zero();
|
|
izip!(s.as_ref().iter(), ct.as_ref().iter().skip(1)).for_each(|(si, ai)| {
|
|
sa = operator.add(&sa, &operator.mul(si, ai));
|
|
});
|
|
let m = operator.sub(&ct.as_ref()[0], &sa);
|
|
|
|
let mut diff = operator.sub(&m, ideal_m);
|
|
let q = operator.modulus();
|
|
if diff > (q >> 1) {
|
|
diff = q - diff;
|
|
}
|
|
return diff.to_f64().unwrap().log2();
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
|
|
use crate::{
|
|
backend::{ModInit, ModularOpsU64},
|
|
decomposer::{gadget_vector, DefaultDecomposer},
|
|
lwe::{lwe_key_switch, measure_noise_lwe},
|
|
random::DefaultSecureRng,
|
|
rgsw::measure_noise,
|
|
Secret,
|
|
};
|
|
|
|
use super::{
|
|
decrypt_lwe, encrypt_lwe, lwe_ksk_keygen, LweKeySwitchingKey, LweSecret,
|
|
SeededLweKeySwitchingKey,
|
|
};
|
|
|
|
const K: usize = 50;
|
|
|
|
#[test]
|
|
fn encrypt_decrypt_works() {
|
|
let logq = 16;
|
|
let q = 1u64 << logq;
|
|
let lwe_n = 1024;
|
|
let logp = 3;
|
|
|
|
let modq_op = ModularOpsU64::new(q);
|
|
let lwe_sk = LweSecret::random(lwe_n >> 1, lwe_n);
|
|
|
|
let mut rng = DefaultSecureRng::new();
|
|
|
|
// encrypt
|
|
for m in 0..1u64 << logp {
|
|
let encoded_m = m << (logq - logp);
|
|
let mut lwe_ct = vec![0u64; lwe_n + 1];
|
|
encrypt_lwe(
|
|
&mut lwe_ct,
|
|
&encoded_m,
|
|
&lwe_sk.values(),
|
|
&modq_op,
|
|
&mut rng,
|
|
);
|
|
let encoded_m_back = decrypt_lwe(&lwe_ct, &lwe_sk.values(), &modq_op);
|
|
let m_back = ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as f64).round()
|
|
as u64)
|
|
% (1u64 << logp);
|
|
assert_eq!(m, m_back, "Expected {m} but got {m_back}");
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn key_switch_works() {
|
|
let logq = 16;
|
|
let logp = 2;
|
|
let q = 1u64 << logq;
|
|
let lwe_in_n = 2048;
|
|
let lwe_out_n = 493;
|
|
let d_ks = 3;
|
|
let logb = 4;
|
|
|
|
let lwe_sk_in = LweSecret::random(lwe_in_n >> 1, lwe_in_n);
|
|
let lwe_sk_out = LweSecret::random(lwe_out_n >> 1, lwe_out_n);
|
|
|
|
let mut rng = DefaultSecureRng::new();
|
|
let modq_op = ModularOpsU64::new(q);
|
|
|
|
// genrate ksk
|
|
for _ in 0..K {
|
|
let mut ksk_seed = [0u8; 32];
|
|
rng.fill_bytes(&mut ksk_seed);
|
|
let mut seeded_ksk =
|
|
SeededLweKeySwitchingKey::empty(lwe_in_n, lwe_out_n, d_ks, ksk_seed, q);
|
|
let gadget = gadget_vector(logq, logb, d_ks);
|
|
lwe_ksk_keygen(
|
|
&lwe_sk_in.values(),
|
|
&lwe_sk_out.values(),
|
|
&mut seeded_ksk.data,
|
|
&gadget,
|
|
seeded_ksk.seed,
|
|
&modq_op,
|
|
&mut rng,
|
|
);
|
|
// println!("{:?}", ksk);
|
|
let ksk = LweKeySwitchingKey::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_ksk);
|
|
|
|
for m in 0..(1 << logp) {
|
|
// encrypt using lwe_sk_in
|
|
let encoded_m = m << (logq - logp);
|
|
let mut lwe_in_ct = vec![0u64; lwe_in_n + 1];
|
|
encrypt_lwe(
|
|
&mut lwe_in_ct,
|
|
&encoded_m,
|
|
lwe_sk_in.values(),
|
|
&modq_op,
|
|
&mut rng,
|
|
);
|
|
|
|
// key switch from lwe_sk_in to lwe_sk_out
|
|
let decomposer = DefaultDecomposer::new(1u64 << logq, logb, d_ks);
|
|
let mut lwe_out_ct = vec![0u64; lwe_out_n + 1];
|
|
lwe_key_switch(
|
|
&mut lwe_out_ct,
|
|
&lwe_in_ct,
|
|
&ksk.data,
|
|
&modq_op,
|
|
&decomposer,
|
|
);
|
|
|
|
// decrypt lwe_out_ct using lwe_sk_out
|
|
let encoded_m_back = decrypt_lwe(&lwe_out_ct, &lwe_sk_out.values(), &modq_op);
|
|
let m_back = ((((encoded_m_back as f64) * ((1 << logp) as f64)) / q as f64).round()
|
|
as u64)
|
|
% (1u64 << logp);
|
|
let noise =
|
|
measure_noise_lwe(&lwe_out_ct, lwe_sk_out.values(), &modq_op, &encoded_m);
|
|
println!("Noise: {noise}");
|
|
assert_eq!(m, m_back, "Expected {m} but got {m_back}");
|
|
// dbg!(m, m_back);
|
|
// dbg!(encoded_m, encoded_m_back);
|
|
}
|
|
}
|
|
}
|
|
}
|