use itertools::Itertools;
|
|
use num_traits::{AsPrimitive, One, PrimInt, ToPrimitive, WrappingSub, Zero};
|
|
use std::{fmt::Debug, marker::PhantomData, ops::Rem};
|
|
|
|
use crate::backend::{ArithmeticOps, ModularOpsU64};
|
|
|
|
pub fn gadget_vector<T: PrimInt>(logq: usize, logb: usize, d: usize) -> Vec<T> {
|
|
let d_ideal = (logq as f64 / logb as f64).ceil().to_usize().unwrap();
|
|
let ignored_limbs = d_ideal - d;
|
|
(ignored_limbs..ignored_limbs + d)
|
|
.into_iter()
|
|
.map(|i| T::one() << (logb * i))
|
|
.collect_vec()
|
|
}
|
|
|
|
pub trait Decomposer {
|
|
type Element;
|
|
//FIXME(Jay): there's no reason why it returns a vec instead of an iterator
|
|
fn decompose(&self, v: &Self::Element) -> Vec<Self::Element>;
|
|
fn d(&self) -> usize;
|
|
}
|
|
|
|
// TODO(Jay): Shouldn't Decompose also return corresponding gadget vector ?
|
|
pub struct DefaultDecomposer<T> {
|
|
q: T,
|
|
logq: usize,
|
|
logb: usize,
|
|
d: usize,
|
|
ignore_bits: usize,
|
|
ignore_limbs: usize,
|
|
}
|
|
|
|
pub trait NumInfo {
|
|
const BITS: u32;
|
|
}
|
|
|
|
impl NumInfo for u64 {
|
|
const BITS: u32 = u64::BITS;
|
|
}
|
|
impl NumInfo for u32 {
|
|
const BITS: u32 = u32::BITS;
|
|
}
|
|
impl NumInfo for u128 {
|
|
const BITS: u32 = u128::BITS;
|
|
}
|
|
|
|
impl<T: PrimInt + NumInfo + Debug> DefaultDecomposer<T> {
|
|
pub fn new(q: T, logb: usize, d: usize) -> DefaultDecomposer<T> {
|
|
// if q is power of 2, then `BITS - leading_zeros` outputs logq + 1.
|
|
let logq = if q & (q - T::one()) == T::zero() {
|
|
(T::BITS - q.leading_zeros() - 1) as usize
|
|
} else {
|
|
(T::BITS - q.leading_zeros()) as usize
|
|
};
|
|
|
|
let d_ideal = (logq as f64 / logb as f64).ceil().to_usize().unwrap();
|
|
let ignore_limbs = (d_ideal - d);
|
|
let ignore_bits = (d_ideal - d) * logb;
|
|
|
|
DefaultDecomposer {
|
|
q,
|
|
logq,
|
|
logb,
|
|
d,
|
|
ignore_bits,
|
|
ignore_limbs,
|
|
}
|
|
}
|
|
|
|
fn recompose<Op>(&self, limbs: &[T], modq_op: &Op) -> T
|
|
where
|
|
Op: ArithmeticOps<Element = T>,
|
|
{
|
|
let mut value = T::zero();
|
|
for i in 0..self.d {
|
|
value = modq_op.add(
|
|
&value,
|
|
&(modq_op.mul(
|
|
&limbs[i],
|
|
&(T::one() << (self.logb * (i + self.ignore_limbs))),
|
|
)),
|
|
)
|
|
}
|
|
value
|
|
}
|
|
}
|
|
|
|
impl<T: PrimInt + WrappingSub + Debug> Decomposer for DefaultDecomposer<T> {
|
|
type Element = T;
|
|
fn decompose(&self, value: &T) -> Vec<T> {
|
|
let mut value = round_value(*value, self.ignore_bits);
|
|
|
|
let q = self.q;
|
|
// if value >= (q >> 1) {
|
|
// value = value.wrapping_sub(&q);
|
|
// }
|
|
|
|
let logb = self.logb;
|
|
let b = T::one() << logb; // base
|
|
let b_by2 = T::one() << (logb - 1);
|
|
// let neg_b_by2_modq = q - b_by2;
|
|
let full_mask = (T::one() << logb) - T::one();
|
|
// let half_mask = b_by2 - T::one();
|
|
let mut carry = T::zero();
|
|
let mut out = Vec::<T>::with_capacity(self.d);
|
|
for i in 0..self.d {
|
|
let mut limb = ((value >> (logb * i)) & full_mask) + carry;
|
|
carry = T::zero();
|
|
if limb >= b_by2 {
|
|
limb = (q + limb) - b;
|
|
carry = T::one();
|
|
}
|
|
|
|
// carry = ((q + g - limb) % q) >> logb;
|
|
|
|
// carry = limb & b_by2;
|
|
// limb = (q + limb) - (carry << 1);
|
|
// if limb > q {
|
|
// limb = limb - q;
|
|
// }
|
|
out.push(limb);
|
|
|
|
// carry = carry >> (logb - 1);
|
|
}
|
|
|
|
out[self.d - 1] = out[self.d - 1] + (carry << logb);
|
|
if out[self.d - 1] > q {
|
|
out[self.d - 1] = out[self.d - 1] - q;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
fn d(&self) -> usize {
|
|
self.d
|
|
}
|
|
}
|
|
|
|
fn round_value<T: PrimInt>(value: T, ignore_bits: usize) -> T {
|
|
if ignore_bits == 0 {
|
|
return value;
|
|
}
|
|
|
|
let ignored_msb = (value & ((T::one() << ignore_bits) - T::one())) >> (ignore_bits - 1);
|
|
(value >> ignore_bits) + ignored_msb
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use rand::{thread_rng, Rng};
|
|
|
|
use crate::{
|
|
backend::{ModInit, ModularOpsU64},
|
|
decomposer::round_value,
|
|
utils::generate_prime,
|
|
};
|
|
|
|
use super::{Decomposer, DefaultDecomposer};
|
|
|
|
#[test]
|
|
fn decomposition_works() {
|
|
let logq = 55;
|
|
let logb = 9;
|
|
let d = 6;
|
|
|
|
let mut rng = thread_rng();
|
|
|
|
// q is prime of bits logq and i is true, other q = 1<<logq
|
|
// FIXME: Test fails when q is prime, albeit the difference is minute
|
|
for i in [true, false] {
|
|
let q = if i {
|
|
generate_prime(logq, 1 << 4, 1u64 << logq).unwrap()
|
|
} else {
|
|
1u64 << logq
|
|
};
|
|
let decomposer = DefaultDecomposer::new(q, logb, d);
|
|
let modq_op = ModularOpsU64::new(q);
|
|
for _ in 0..1000 {
|
|
let value = rng.gen_range(0..q);
|
|
let limbs = decomposer.decompose(&value);
|
|
let value_back = decomposer.recompose(&limbs, &modq_op);
|
|
let rounded_value =
|
|
round_value(value, decomposer.ignore_bits) << decomposer.ignore_bits;
|
|
// dbg!(&limbs, q);
|
|
assert_eq!(
|
|
rounded_value, value_back,
|
|
"Expected {rounded_value} got {value_back} for q={q}"
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|