You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2241 lines
71 KiB

use std::{
clone,
fmt::Debug,
marker::PhantomData,
ops::{Div, Neg, Sub},
};
use itertools::{izip, Itertools};
use num_traits::{PrimInt, Signed, ToPrimitive, Zero};
use crate::{
backend::{ArithmeticOps, VectorOps},
decomposer::{self, Decomposer},
ntt::{self, Ntt, NttInit},
random::{DefaultSecureRng, NewWithSeed, RandomGaussianDist, RandomUniformDist},
utils::{fill_random_ternary_secret_with_hamming_weight, TryConvertFrom, WithLocal},
Matrix, MatrixEntity, MatrixMut, Row, RowEntity, RowMut, Secret,
};
pub struct SeededAutoKey<M, S>
where
M: Matrix,
{
data: M,
seed: S,
modulus: M::MatElement,
}
impl<M: Matrix + MatrixEntity, S> SeededAutoKey<M, S> {
fn from_raw(data: M, seed: S, modulus: M::MatElement) -> Self {
assert!(data.dimension().0 % 3 == 0);
SeededAutoKey {
data,
seed,
modulus,
}
}
fn empty(ring_size: usize, d_rgsw: usize, seed: S, modulus: M::MatElement) -> Self {
SeededAutoKey {
data: M::zeros(d_rgsw, ring_size),
seed,
modulus: modulus,
}
}
}
pub struct AutoKeyEvaluationDomain<M, R, N> {
data: M,
_phantom: PhantomData<(R, N)>,
}
impl<
M: MatrixMut + MatrixEntity,
R: RandomUniformDist<[M::MatElement], Parameters = M::MatElement> + NewWithSeed,
N: NttInit<Element = M::MatElement> + Ntt<Element = M::MatElement>,
> From<&SeededAutoKey<M, R::Seed>> for AutoKeyEvaluationDomain<M, R, N>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
R::Seed: Clone,
{
fn from(value: &SeededAutoKey<M, R::Seed>) -> Self {
let (d, ring_size) = value.data.dimension();
let mut data = M::zeros(2 * d, ring_size);
// sample RLWE'_A(-s(X^k))
let mut p_rng = R::new_with_seed(value.seed.clone());
data.iter_rows_mut().take(d).for_each(|r| {
RandomUniformDist::random_fill(&mut p_rng, &value.modulus, r.as_mut());
});
// copy over RLWE'_B(-s(X^k))
izip!(data.iter_rows_mut().skip(d), value.data.iter_rows()).for_each(|(to_r, from_r)| {
to_r.as_mut().copy_from_slice(from_r.as_ref());
});
// send RLWE'(-s(X^k)) polynomials to evaluation domain
let ntt_op = N::new(value.modulus, ring_size);
data.iter_rows_mut()
.for_each(|r| ntt_op.forward(r.as_mut()));
AutoKeyEvaluationDomain {
data,
_phantom: PhantomData,
}
}
}
pub struct RgswCiphertext<M: Matrix> {
data: M,
modulus: M::MatElement,
}
pub struct SeededRgswCiphertext<M, S>
where
M: Matrix,
{
pub(crate) data: M,
seed: S,
modulus: M::MatElement,
}
impl<M: Matrix + MatrixEntity, S> SeededRgswCiphertext<M, S> {
pub(crate) fn from_raw(data: M, seed: S, modulus: M::MatElement) -> SeededRgswCiphertext<M, S> {
assert!(data.dimension().0 % 3 == 0);
SeededRgswCiphertext {
data,
seed,
modulus,
}
}
pub(crate) fn empty(
ring_size: usize,
d_rgsw: usize,
seed: S,
modulus: M::MatElement,
) -> SeededRgswCiphertext<M, S> {
SeededRgswCiphertext {
data: M::zeros(d_rgsw * 3, ring_size),
seed,
modulus: modulus,
}
}
}
impl<M: Debug + Matrix, S: Debug> Debug for SeededRgswCiphertext<M, S>
where
M::MatElement: Debug,
{
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("SeededRgswCiphertext")
.field("data", &self.data)
.field("seed", &self.seed)
.field("modulus", &self.modulus)
.finish()
}
}
pub struct RgswCiphertextEvaluationDomain<M, R, N> {
pub(crate) data: M,
_phantom: PhantomData<(R, N)>,
}
impl<
M: MatrixMut + MatrixEntity,
R: NewWithSeed + RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
N: NttInit<Element = M::MatElement> + Ntt<Element = M::MatElement> + Debug,
> From<&SeededRgswCiphertext<M, R::Seed>> for RgswCiphertextEvaluationDomain<M, R, N>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
R::Seed: Clone,
M: Debug,
{
fn from(value: &SeededRgswCiphertext<M, R::Seed>) -> Self {
let d = value.data.dimension().0.div(3);
let mut data = M::zeros(4 * d, value.data.dimension().1);
// copy RLWE'(-sm)
izip!(data.iter_rows_mut().take(2 * d), value.data.iter_rows()).for_each(
|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
},
);
// sample A polynomials of RLWE'(m) - RLWE'A(m)
// TODO(Jay): Do we want to be generic over RandomGenerator used here? I think
// not.
let mut p_rng = R::new_with_seed(value.seed.clone());
izip!(data.iter_rows_mut().skip(2 * d).take(d))
.for_each(|ri| p_rng.random_fill(&value.modulus, ri.as_mut()));
// RLWE'_B(m)
izip!(
data.iter_rows_mut().skip(3 * d),
value.data.iter_rows().skip(2 * d)
)
.for_each(|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
});
// Send polynomials to evaluation domain
let ring_size = data.dimension().1;
let nttop = N::new(value.modulus, ring_size);
data.iter_rows_mut()
.for_each(|ri| nttop.forward(ri.as_mut()));
Self {
data: data,
_phantom: PhantomData,
}
}
}
impl<
M: MatrixMut + MatrixEntity,
R,
N: NttInit<Element = M::MatElement> + Ntt<Element = M::MatElement>,
> From<&RgswCiphertext<M>> for RgswCiphertextEvaluationDomain<M, R, N>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
M: Debug,
{
fn from(value: &RgswCiphertext<M>) -> Self {
assert!(value.data.dimension().0 % 4 == 0);
let d = value.data.dimension().0.div(4);
let mut data = M::zeros(4 * d, value.data.dimension().1);
// copy RLWE'(-sm)
izip!(data.iter_rows_mut().take(2 * d), value.data.iter_rows()).for_each(
|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
},
);
// copy RLWE'(m)
izip!(
data.iter_rows_mut().skip(2 * d),
value.data.iter_rows().skip(2 * d)
)
.for_each(|(to_ri, from_ri)| {
to_ri.as_mut().copy_from_slice(from_ri.as_ref());
});
// Send polynomials to evaluation domain
let ring_size = data.dimension().1;
let nttop = N::new(value.modulus, ring_size);
data.iter_rows_mut()
.for_each(|ri| nttop.forward(ri.as_mut()));
Self {
data: data,
_phantom: PhantomData,
}
}
}
impl<M: Debug, R, N> Debug for RgswCiphertextEvaluationDomain<M, R, N> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("RgswCiphertextEvaluationDomain")
.field("data", &self.data)
.field("_phantom", &self._phantom)
.finish()
}
}
impl<M: Matrix, R, N> Matrix for RgswCiphertextEvaluationDomain<M, R, N> {
type MatElement = M::MatElement;
type R = M::R;
fn dimension(&self) -> (usize, usize) {
self.data.dimension()
}
}
impl<M: Matrix, R, N> AsRef<[M::R]> for RgswCiphertextEvaluationDomain<M, R, N> {
fn as_ref(&self) -> &[M::R] {
self.data.as_ref()
}
}
pub struct SeededRlweCiphertext<R, S>
where
R: Row,
{
pub(crate) data: R,
pub(crate) seed: S,
pub(crate) modulus: R::Element,
}
impl<R: RowEntity, S> SeededRlweCiphertext<R, S> {
pub(crate) fn empty(ring_size: usize, seed: S, modulus: R::Element) -> Self {
SeededRlweCiphertext {
data: R::zeros(ring_size),
seed,
modulus,
}
}
}
pub struct RlweCiphertext<M, Rng> {
pub(crate) data: M,
pub(crate) is_trivial: bool,
_phatom: PhantomData<Rng>,
}
impl<M, Rng> RlweCiphertext<M, Rng> {
pub(crate) fn from_raw(data: M, is_trivial: bool) -> Self {
RlweCiphertext {
data,
is_trivial,
_phatom: PhantomData,
}
}
}
impl<M: Matrix, Rng> Matrix for RlweCiphertext<M, Rng> {
type MatElement = M::MatElement;
type R = M::R;
fn dimension(&self) -> (usize, usize) {
self.data.dimension()
}
}
impl<M: MatrixMut, Rng> MatrixMut for RlweCiphertext<M, Rng> where <M as Matrix>::R: RowMut {}
impl<M: Matrix, Rng> AsRef<[<M as Matrix>::R]> for RlweCiphertext<M, Rng> {
fn as_ref(&self) -> &[<M as Matrix>::R] {
self.data.as_ref()
}
}
impl<M: MatrixMut, Rng> AsMut<[<M as Matrix>::R]> for RlweCiphertext<M, Rng>
where
<M as Matrix>::R: RowMut,
{
fn as_mut(&mut self) -> &mut [<M as Matrix>::R] {
self.data.as_mut()
}
}
impl<M, Rng> IsTrivial for RlweCiphertext<M, Rng> {
fn is_trivial(&self) -> bool {
self.is_trivial
}
fn set_not_trivial(&mut self) {
self.is_trivial = false;
}
}
impl<R: Row, M: MatrixEntity<R = R, MatElement = R::Element> + MatrixMut, Rng: NewWithSeed>
From<&SeededRlweCiphertext<R, Rng::Seed>> for RlweCiphertext<M, Rng>
where
Rng::Seed: Clone,
Rng: RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
<M as Matrix>::R: RowMut,
R::Element: Copy,
{
fn from(value: &SeededRlweCiphertext<R, Rng::Seed>) -> Self {
let mut data = M::zeros(2, value.data.as_ref().len());
// sample a
let mut p_rng = Rng::new_with_seed(value.seed.clone());
RandomUniformDist::random_fill(&mut p_rng, &value.modulus, data.get_row_mut(0));
data.get_row_mut(1).copy_from_slice(value.data.as_ref());
RlweCiphertext {
data,
is_trivial: false,
_phatom: PhantomData,
}
}
}
pub trait IsTrivial {
fn is_trivial(&self) -> bool;
fn set_not_trivial(&mut self);
}
pub struct SeededRlwePublicKey<Ro: Row, S> {
data: Ro,
seed: S,
modulus: Ro::Element,
}
impl<Ro: RowEntity, S> SeededRlwePublicKey<Ro, S> {
pub(crate) fn empty(ring_size: usize, seed: S, modulus: Ro::Element) -> Self {
Self {
data: Ro::zeros(ring_size),
seed,
modulus,
}
}
}
pub struct RlwePublicKey<M, R> {
data: M,
_phantom: PhantomData<R>,
}
impl<
M: MatrixMut + MatrixEntity,
Rng: NewWithSeed + RandomUniformDist<[M::MatElement], Parameters = M::MatElement>,
> From<&SeededRlwePublicKey<M::R, Rng::Seed>> for RlwePublicKey<M, Rng>
where
<M as Matrix>::R: RowMut,
M::MatElement: Copy,
Rng::Seed: Copy,
{
fn from(value: &SeededRlwePublicKey<M::R, Rng::Seed>) -> Self {
let mut data = M::zeros(2, value.data.as_ref().len());
// sample a
let mut p_rng = Rng::new_with_seed(value.seed);
RandomUniformDist::random_fill(&mut p_rng, &value.modulus, data.get_row_mut(0));
// copy over b
data.get_row_mut(1).copy_from_slice(value.data.as_ref());
Self {
data,
_phantom: PhantomData,
}
}
}
#[derive(Clone)]
pub struct RlweSecret {
pub(crate) values: Vec<i32>,
}
impl Secret for RlweSecret {
type Element = i32;
fn values(&self) -> &[Self::Element] {
&self.values
}
}
impl RlweSecret {
pub fn random(hw: usize, n: usize) -> RlweSecret {
DefaultSecureRng::with_local_mut(|rng| {
let mut out = vec![0i32; n];
fill_random_ternary_secret_with_hamming_weight(&mut out, hw, rng);
RlweSecret { values: out }
})
}
}
pub(crate) fn generate_auto_map(ring_size: usize, k: isize) -> (Vec<usize>, Vec<bool>) {
assert!(k & 1 == 1, "Auto {k} must be odd");
let k = if k < 0 {
// k is -ve, return k%(2*N)
(2 * ring_size) - (k.abs() as usize % (2 * ring_size))
} else {
k as usize
};
let (auto_map_index, auto_sign_index): (Vec<usize>, Vec<bool>) = (0..ring_size)
.into_iter()
.map(|i| {
let mut to_index = (i * k) % (2 * ring_size);
let mut sign = true;
// wrap around. false implies negative
if to_index >= ring_size {
to_index = to_index - ring_size;
sign = false;
}
(to_index, sign)
})
.unzip();
(auto_map_index, auto_sign_index)
}
pub(crate) fn routine<R: RowMut, ModOp: VectorOps<Element = R::Element>>(
write_to_row: &mut [R::Element],
matrix_a: &[R],
matrix_b: &[R],
mod_op: &ModOp,
) {
izip!(matrix_a.iter(), matrix_b.iter()).for_each(|(a, b)| {
mod_op.elwise_fma_mut(write_to_row, a.as_ref(), b.as_ref());
});
}
/// Decomposes ring polynomial r(X) into d polynomials using decomposer into
/// output matrix decomp_r
///
/// Note that decomposition of r(X) requires decomposition of each of
/// coefficients.
///
/// - decomp_r: must have dimensions d x ring_size. i^th decomposed polynomial
/// will be stored at i^th row.
pub(crate) fn decompose_r<R: RowMut, D: Decomposer<Element = R::Element>>(
r: &[R::Element],
decomp_r: &mut [R],
decomposer: &D,
) where
R::Element: Copy,
{
let ring_size = r.len();
let d = decomposer.d();
for ri in 0..ring_size {
let el_decomposed = decomposer.decompose(&r[ri]);
for j in 0..d {
decomp_r[j].as_mut()[ri] = el_decomposed[j];
}
}
}
/// Sends RLWE_{s}(X) -> RLWE_{s}(X^k) where k is some galois element
pub(crate) fn galois_auto<
MT: Matrix + IsTrivial + MatrixMut,
Mmut: MatrixMut<MatElement = MT::MatElement>,
ModOp: ArithmeticOps<Element = MT::MatElement> + VectorOps<Element = MT::MatElement>,
NttOp: Ntt<Element = MT::MatElement>,
D: Decomposer<Element = MT::MatElement>,
>(
rlwe_in: &mut MT,
ksk: &Mmut,
scratch_matrix_dplus2_ring: &mut Mmut,
auto_map_index: &[usize],
auto_map_sign: &[bool],
mod_op: &ModOp,
ntt_op: &NttOp,
decomposer: &D,
) where
<Mmut as Matrix>::R: RowMut,
<MT as Matrix>::R: RowMut,
MT::MatElement: Copy + Zero,
{
let d = decomposer.d();
let (scratch_matrix_d_ring, tmp_rlwe_out) = scratch_matrix_dplus2_ring.split_at_row_mut(d);
// send b(X) -> b(X^k)
izip!(
rlwe_in.get_row(1),
auto_map_index.iter(),
auto_map_sign.iter()
)
.for_each(|(el_in, to_index, sign)| {
if !*sign {
tmp_rlwe_out[1].as_mut()[*to_index] = mod_op.neg(el_in);
} else {
tmp_rlwe_out[1].as_mut()[*to_index] = *el_in;
// scratch_matrix_dplus2_ring.set(d + 1, *to_index, *el_in);
}
});
if !rlwe_in.is_trivial() {
// send a(X) -> a(X^k) and decompose a(X^k)
izip!(
rlwe_in.get_row(0),
auto_map_index.iter(),
auto_map_sign.iter()
)
.for_each(|(el_in, to_index, sign)| {
let el_out = if !*sign { mod_op.neg(el_in) } else { *el_in };
let el_out_decomposed = decomposer.decompose(&el_out);
for j in 0..d {
scratch_matrix_d_ring[j].as_mut()[*to_index] = el_out_decomposed[j];
}
});
// transform decomposed a(X^k) to evaluation domain
scratch_matrix_d_ring.iter_mut().for_each(|r| {
ntt_op.forward(r.as_mut());
});
// RLWE(m^k) = a', b'; RLWE(m) = a, b
// key switch: (a * RLWE'(s(X^k)))
let (ksk_a, ksk_b) = ksk.split_at_row(d);
tmp_rlwe_out[0].as_mut().fill(Mmut::MatElement::zero());
// a' = decomp<a> * RLWE'_A(s(X^k))
routine(
tmp_rlwe_out[0].as_mut(),
scratch_matrix_d_ring,
ksk_a,
mod_op,
);
// send b(X^k) to evaluation domain
ntt_op.forward(tmp_rlwe_out[1].as_mut());
// b' = b(X^k)
// b' += decomp<a(X^k)> * RLWE'_B(s(X^k))
routine(
tmp_rlwe_out[1].as_mut(),
scratch_matrix_d_ring,
ksk_b,
mod_op,
);
// transform RLWE(m^k) to coefficient domain
tmp_rlwe_out
.iter_mut()
.for_each(|r| ntt_op.backward(r.as_mut()));
rlwe_in
.get_row_mut(0)
.copy_from_slice(tmp_rlwe_out[0].as_ref());
}
rlwe_in
.get_row_mut(1)
.copy_from_slice(tmp_rlwe_out[1].as_ref());
}
/// Returns RLWE(m0m1) = RLWE(m0) x RGSW(m1). Mutates rlwe_in inplace to equal
/// RLWE(m0m1)
///
/// - rlwe_in: is RLWE(m0) with polynomials in coefficient domain
/// - rgsw_in: is RGSW(m1) with polynomials in evaluation domain
/// - scratch_matrix_d_ring: is a matrix of dimension (d_rgsw, ring_size) used
/// as scratch space to store decomposed Ring elements temporarily
pub(crate) fn less1_rlwe_by_rgsw<
Mmut: MatrixMut,
MT: Matrix<MatElement = Mmut::MatElement> + MatrixMut<MatElement = Mmut::MatElement> + IsTrivial,
D: Decomposer<Element = Mmut::MatElement>,
ModOp: VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
>(
rlwe_in: &mut MT,
rgsw_in: &Mmut,
scratch_matrix_dplus2_ring: &mut Mmut,
decomposer: &D,
ntt_op: &NttOp,
mod_op: &ModOp,
skip0: usize,
skip1: usize,
) where
Mmut::MatElement: Copy + Zero,
<Mmut as Matrix>::R: RowMut,
<MT as Matrix>::R: RowMut,
{
let d_rgsw = decomposer.d();
assert!(scratch_matrix_dplus2_ring.dimension() == (d_rgsw + 2, rlwe_in.dimension().1));
assert!(rgsw_in.dimension() == (d_rgsw * 4, rlwe_in.dimension().1));
// decomposed RLWE x RGSW
let (rlwe_dash_nsm, rlwe_dash_m) = rgsw_in.split_at_row(d_rgsw * 2);
let (scratch_matrix_d_ring, scratch_rlwe_out) =
scratch_matrix_dplus2_ring.split_at_row_mut(d_rgsw);
scratch_rlwe_out[0].as_mut().fill(Mmut::MatElement::zero());
scratch_rlwe_out[1].as_mut().fill(Mmut::MatElement::zero());
// RLWE_in = a_in, b_in; RLWE_out = a_out, b_out
if !rlwe_in.is_trivial() {
// a_in = 0 when RLWE_in is trivial RLWE ciphertext
// decomp<a_in>
decompose_r(rlwe_in.get_row_slice(0), scratch_matrix_d_ring, decomposer);
scratch_matrix_d_ring
.iter_mut()
.for_each(|r| ntt_op.forward(r.as_mut()));
// a_out += decomp<a_in> \cdot RLWE_A'(-sm)
routine(
scratch_rlwe_out[0].as_mut(),
scratch_matrix_d_ring[skip0..].as_ref(),
&rlwe_dash_nsm[skip0..d_rgsw],
mod_op,
);
// b_out += decomp<a_in> \cdot RLWE_B'(-sm)
routine(
scratch_rlwe_out[1].as_mut(),
scratch_matrix_d_ring[skip0..].as_ref(),
&rlwe_dash_nsm[d_rgsw + skip0..],
mod_op,
);
}
// decomp<b_in>
decompose_r(rlwe_in.get_row_slice(1), scratch_matrix_d_ring, decomposer);
scratch_matrix_d_ring
.iter_mut()
.for_each(|r| ntt_op.forward(r.as_mut()));
// a_out += decomp<b_in> \cdot RLWE_A'(m)
routine(
scratch_rlwe_out[0].as_mut(),
scratch_matrix_d_ring[skip1..].as_ref(),
&rlwe_dash_m[skip1..d_rgsw],
mod_op,
);
// b_out += decomp<b_in> \cdot RLWE_B'(m)
routine(
scratch_rlwe_out[1].as_mut(),
scratch_matrix_d_ring[skip1..].as_ref(),
&rlwe_dash_m[d_rgsw + skip1..],
mod_op,
);
// transform rlwe_out to coefficient domain
scratch_rlwe_out
.iter_mut()
.for_each(|r| ntt_op.backward(r.as_mut()));
rlwe_in
.get_row_mut(0)
.copy_from_slice(scratch_rlwe_out[0].as_mut());
rlwe_in
.get_row_mut(1)
.copy_from_slice(scratch_rlwe_out[1].as_mut());
rlwe_in.set_not_trivial();
}
/// Returns RLWE(m0m1) = RLWE(m0) x RGSW(m1). Mutates rlwe_in inplace to equal
/// RLWE(m0m1)
///
/// - rlwe_in: is RLWE(m0) with polynomials in coefficient domain
/// - rgsw_in: is RGSW(m1) with polynomials in evaluation domain
/// - scratch_matrix_d_ring: is a matrix of dimension (d_rgsw, ring_size) used
/// as scratch space to store decomposed Ring elements temporarily
pub(crate) fn rlwe_by_rgsw<
Mmut: MatrixMut,
MT: Matrix<MatElement = Mmut::MatElement> + MatrixMut<MatElement = Mmut::MatElement> + IsTrivial,
D: Decomposer<Element = Mmut::MatElement>,
ModOp: VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
>(
rlwe_in: &mut MT,
rgsw_in: &Mmut,
scratch_matrix_dplus2_ring: &mut Mmut,
decomposer: &D,
ntt_op: &NttOp,
mod_op: &ModOp,
) where
Mmut::MatElement: Copy + Zero,
<Mmut as Matrix>::R: RowMut,
<MT as Matrix>::R: RowMut,
{
let d_rgsw = decomposer.d();
assert!(scratch_matrix_dplus2_ring.dimension() == (d_rgsw + 2, rlwe_in.dimension().1));
assert!(rgsw_in.dimension() == (d_rgsw * 4, rlwe_in.dimension().1));
// decomposed RLWE x RGSW
let (rlwe_dash_nsm, rlwe_dash_m) = rgsw_in.split_at_row(d_rgsw * 2);
let (scratch_matrix_d_ring, scratch_rlwe_out) =
scratch_matrix_dplus2_ring.split_at_row_mut(d_rgsw);
scratch_rlwe_out[0].as_mut().fill(Mmut::MatElement::zero());
scratch_rlwe_out[1].as_mut().fill(Mmut::MatElement::zero());
// RLWE_in = a_in, b_in; RLWE_out = a_out, b_out
if !rlwe_in.is_trivial() {
// a_in = 0 when RLWE_in is trivial RLWE ciphertext
// decomp<a_in>
decompose_r(rlwe_in.get_row_slice(0), scratch_matrix_d_ring, decomposer);
scratch_matrix_d_ring
.iter_mut()
.for_each(|r| ntt_op.forward(r.as_mut()));
// a_out += decomp<a_in> \cdot RLWE_A'(-sm)
routine(
scratch_rlwe_out[0].as_mut(),
scratch_matrix_d_ring.as_ref(),
&rlwe_dash_nsm[..d_rgsw],
mod_op,
);
// b_out += decomp<a_in> \cdot RLWE_B'(-sm)
routine(
scratch_rlwe_out[1].as_mut(),
scratch_matrix_d_ring.as_ref(),
&rlwe_dash_nsm[d_rgsw..],
mod_op,
);
}
// decomp<b_in>
decompose_r(rlwe_in.get_row_slice(1), scratch_matrix_d_ring, decomposer);
scratch_matrix_d_ring
.iter_mut()
.for_each(|r| ntt_op.forward(r.as_mut()));
// a_out += decomp<b_in> \cdot RLWE_A'(m)
routine(
scratch_rlwe_out[0].as_mut(),
scratch_matrix_d_ring.as_ref(),
&rlwe_dash_m[..d_rgsw],
mod_op,
);
// b_out += decomp<b_in> \cdot RLWE_B'(m)
routine(
scratch_rlwe_out[1].as_mut(),
scratch_matrix_d_ring.as_ref(),
&rlwe_dash_m[d_rgsw..],
mod_op,
);
// transform rlwe_out to coefficient domain
scratch_rlwe_out
.iter_mut()
.for_each(|r| ntt_op.backward(r.as_mut()));
rlwe_in
.get_row_mut(0)
.copy_from_slice(scratch_rlwe_out[0].as_mut());
rlwe_in
.get_row_mut(1)
.copy_from_slice(scratch_rlwe_out[1].as_mut());
rlwe_in.set_not_trivial();
}
/// Inplace mutates rlwe_0 to equal RGSW(m0m1) = RGSW(m0)xRGSW(m1)
/// in evaluation domain
///
/// Warning -
/// Pass a fresh RGSW ciphertext as the second operand, i.e. as `rgsw_1`.
/// This is to assure minimal error growth in the resulting RGSW ciphertext.
/// RGSWxRGSW boils down to d_rgsw*2 RLWExRGSW multiplications. Hence, the noise
/// growth in resulting ciphertext depends on the norm of second RGSW
/// ciphertext, not the first. This is useful in cases where one is accumulating
/// multiple RGSW ciphertexts into 1. In which case, pass the accumulating RGSW
/// ciphertext as rlwe_0 (the one with higher noise) and subsequent RGSW
/// ciphertexts, with lower noise, to be accumulated as second
/// operand.
///
/// - rgsw_0: RGSW(m0)
/// - rgsw_1_eval: RGSW(m1) in Evaluation domain
/// - scratch_matrix_d_plus_rgsw_by_ring: scratch space matrix of size
/// (d+(d*4))xring_size, where d equals d_rgsw
pub(crate) fn rgsw_by_rgsw_inplace<
Mmut: MatrixMut,
D: Decomposer<Element = Mmut::MatElement>,
ModOp: VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
>(
rgsw_0: &mut Mmut,
rgsw_1_eval: &Mmut,
decomposer: &D,
scratch_matrix_d_plus_rgsw_by_ring: &mut Mmut,
ntt_op: &NttOp,
mod_op: &ModOp,
) where
<Mmut as Matrix>::R: RowMut,
Mmut::MatElement: Copy + Zero,
{
let d_rgsw = decomposer.d();
assert!(rgsw_0.dimension().0 == 4 * d_rgsw);
let ring_size = rgsw_0.dimension().1;
assert!(rgsw_1_eval.dimension() == (4 * d_rgsw, ring_size));
assert!(scratch_matrix_d_plus_rgsw_by_ring.dimension() == (d_rgsw + (d_rgsw * 4), ring_size));
let (decomp_r_space, rgsw_space) = scratch_matrix_d_plus_rgsw_by_ring.split_at_row_mut(d_rgsw);
// zero rgsw_space
rgsw_space
.iter_mut()
.for_each(|ri| ri.as_mut().fill(Mmut::MatElement::zero()));
let (rlwe_dash_space_nsm, rlwe_dash_space_m) = rgsw_space.split_at_mut(d_rgsw * 2);
let (rlwe_dash_space_nsm_parta, rlwe_dash_space_nsm_partb) =
rlwe_dash_space_nsm.split_at_mut(d_rgsw);
let (rlwe_dash_space_m_parta, rlwe_dash_space_m_partb) = rlwe_dash_space_m.split_at_mut(d_rgsw);
let (rgsw0_nsm, rgsw0_m) = rgsw_0.split_at_row(d_rgsw * 2);
let (rgsw1_nsm, rgsw1_m) = rgsw_1_eval.split_at_row(d_rgsw * 2);
// RGSW x RGSW
izip!(
rgsw0_nsm
.iter()
.take(d_rgsw)
.chain(rgsw0_m.iter().take(d_rgsw)),
rgsw0_nsm
.iter()
.skip(d_rgsw)
.chain(rgsw0_m.iter().skip(d_rgsw)),
rlwe_dash_space_nsm_parta
.iter_mut()
.chain(rlwe_dash_space_m_parta.iter_mut()),
rlwe_dash_space_nsm_partb
.iter_mut()
.chain(rlwe_dash_space_m_partb.iter_mut()),
)
.for_each(|(rlwe_a, rlwe_b, rlwe_out_a, rlwe_out_b)| {
// Part A
decompose_r(rlwe_a.as_ref(), decomp_r_space.as_mut(), decomposer);
decomp_r_space
.iter_mut()
.for_each(|ri| ntt_op.forward(ri.as_mut()));
routine(
rlwe_out_a.as_mut(),
decomp_r_space,
&rgsw1_nsm[..d_rgsw],
mod_op,
);
routine(
rlwe_out_b.as_mut(),
decomp_r_space,
&rgsw1_nsm[d_rgsw..],
mod_op,
);
// Part B
decompose_r(rlwe_b.as_ref(), decomp_r_space.as_mut(), decomposer);
decomp_r_space
.iter_mut()
.for_each(|ri| ntt_op.forward(ri.as_mut()));
routine(
rlwe_out_a.as_mut(),
decomp_r_space,
&rgsw1_m[..d_rgsw],
mod_op,
);
routine(
rlwe_out_b.as_mut(),
decomp_r_space,
&rgsw1_m[d_rgsw..],
mod_op,
);
});
// copy over RGSW(m0m1) into RGSW(m0)
izip!(rgsw_0.iter_rows_mut(), rgsw_space.iter())
.for_each(|(to_ri, from_ri)| to_ri.as_mut().copy_from_slice(from_ri.as_ref()));
// send back to coefficient domain
rgsw_0
.iter_rows_mut()
.for_each(|ri| ntt_op.backward(ri.as_mut()));
}
/// Encrypts message m as a RGSW ciphertext.
///
/// - m_eval: is `m` is evaluation domain
/// - out_rgsw: RGSW(m) is stored as single matrix of dimension (d_rgsw * 3,
/// ring_size). The matrix has the following structure [RLWE'_A(-sm) ||
/// RLWE'_B(-sm) || RLWE'_B(m)]^T and RLWE'_A(m) is generated via seed (where
/// p_rng is assumed to be seeded with seed)
pub(crate) fn secret_key_encrypt_rgsw<
Mmut: MatrixMut + MatrixEntity,
S,
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
+ RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
PR: RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
ModOp: VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
>(
out_rgsw: &mut Mmut,
m: &[Mmut::MatElement],
gadget_vector: &[Mmut::MatElement],
s: &[S],
mod_op: &ModOp,
ntt_op: &NttOp,
p_rng: &mut PR,
rng: &mut R,
) where
<Mmut as Matrix>::R:
RowMut + RowEntity + TryConvertFrom<[S], Parameters = Mmut::MatElement> + Debug,
Mmut::MatElement: Copy + Debug,
{
let d = gadget_vector.len();
let q = mod_op.modulus();
let ring_size = s.len();
assert!(out_rgsw.dimension() == (d * 3, ring_size));
assert!(m.as_ref().len() == ring_size);
// RLWE(-sm), RLWE(m)
let (rlwe_dash_nsm, b_rlwe_dash_m) = out_rgsw.split_at_row_mut(d * 2);
let mut s_eval = Mmut::R::try_convert_from(s, &q);
ntt_op.forward(s_eval.as_mut());
let mut scratch_space = Mmut::R::zeros(ring_size);
// RLWE'(-sm)
let (a_rlwe_dash_nsm, b_rlwe_dash_nsm) = rlwe_dash_nsm.split_at_mut(d);
izip!(
a_rlwe_dash_nsm.iter_mut(),
b_rlwe_dash_nsm.iter_mut(),
gadget_vector.iter()
)
.for_each(|(ai, bi, beta_i)| {
// Sample a_i
RandomUniformDist::random_fill(rng, &q, ai.as_mut());
// a_i * s
scratch_space.as_mut().copy_from_slice(ai.as_ref());
ntt_op.forward(scratch_space.as_mut());
mod_op.elwise_mul_mut(scratch_space.as_mut(), s_eval.as_ref());
ntt_op.backward(scratch_space.as_mut());
// b_i = e_i + a_i * s
RandomGaussianDist::random_fill(rng, &q, bi.as_mut());
mod_op.elwise_add_mut(bi.as_mut(), scratch_space.as_ref());
// a_i + \beta_i * m
mod_op.elwise_scalar_mul(scratch_space.as_mut(), m.as_ref(), beta_i);
mod_op.elwise_add_mut(ai.as_mut(), scratch_space.as_ref());
});
// RLWE(m)
let mut a_rlwe_dash_m = {
// polynomials of part A of RLWE'(m) are sampled from seed
let mut a = Mmut::zeros(d, ring_size);
a.iter_rows_mut()
.for_each(|ai| RandomUniformDist::random_fill(p_rng, &q, ai.as_mut()));
a
};
izip!(
a_rlwe_dash_m.iter_rows_mut(),
b_rlwe_dash_m.iter_mut(),
gadget_vector.iter()
)
.for_each(|(ai, bi, beta_i)| {
// ai * s
ntt_op.forward(ai.as_mut());
mod_op.elwise_mul_mut(ai.as_mut(), s_eval.as_ref());
ntt_op.backward(ai.as_mut());
// beta_i * m
mod_op.elwise_scalar_mul(scratch_space.as_mut(), m.as_ref(), beta_i);
// Sample e_i
RandomGaussianDist::random_fill(rng, &q, bi.as_mut());
// e_i + beta_i * m + ai*s
mod_op.elwise_add_mut(bi.as_mut(), scratch_space.as_ref());
mod_op.elwise_add_mut(bi.as_mut(), ai.as_ref());
});
}
pub(crate) fn public_key_encrypt_rgsw<
Mmut: MatrixMut + MatrixEntity,
M: Matrix<MatElement = Mmut::MatElement>,
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>
+ RandomUniformDist<[u8], Parameters = u8>
+ RandomUniformDist<usize, Parameters = usize>,
ModOp: VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
>(
out_rgsw: &mut Mmut,
m: &[M::MatElement],
public_key: &M,
gadget_vector: &[Mmut::MatElement],
mod_op: &ModOp,
ntt_op: &NttOp,
rng: &mut R,
) where
<Mmut as Matrix>::R: RowMut + RowEntity + TryConvertFrom<[i32], Parameters = Mmut::MatElement>,
Mmut::MatElement: Copy,
{
let ring_size = public_key.dimension().1;
let d = gadget_vector.len();
assert!(public_key.dimension().0 == 2);
assert!(out_rgsw.dimension() == (d * 4, ring_size));
let mut pk_eval = Mmut::zeros(2, ring_size);
izip!(pk_eval.iter_rows_mut(), public_key.iter_rows()).for_each(|(to_i, from_i)| {
to_i.as_mut().copy_from_slice(from_i.as_ref());
ntt_op.forward(to_i.as_mut());
});
let p0 = pk_eval.get_row_slice(0);
let p1 = pk_eval.get_row_slice(1);
let q = mod_op.modulus();
// RGSW(m) = RLWE'(-sm), RLWE(m)
let (rlwe_dash_nsm, rlwe_dash_m) = out_rgsw.split_at_row_mut(2 * d);
// RLWE(-sm)
let (rlwe_dash_nsm_parta, rlwe_dash_nsm_partb) = rlwe_dash_nsm.split_at_mut(d);
izip!(
rlwe_dash_nsm_parta.iter_mut(),
rlwe_dash_nsm_partb.iter_mut(),
gadget_vector.iter()
)
.for_each(|(ai, bi, beta_i)| {
// sample ephemeral secret u_i
let mut u = vec![0i32; ring_size];
fill_random_ternary_secret_with_hamming_weight(u.as_mut(), ring_size >> 1, rng);
let mut u_eval = Mmut::R::try_convert_from(u.as_ref(), &q);
ntt_op.forward(u_eval.as_mut());
let mut u_eval_copy = Mmut::R::zeros(ring_size);
u_eval_copy.as_mut().copy_from_slice(u_eval.as_ref());
// p0 * u
mod_op.elwise_mul_mut(u_eval.as_mut(), p0.as_ref());
// p1 * u
mod_op.elwise_mul_mut(u_eval_copy.as_mut(), p1.as_ref());
ntt_op.backward(u_eval.as_mut());
ntt_op.backward(u_eval_copy.as_mut());
// sample error
RandomGaussianDist::random_fill(rng, &q, ai.as_mut());
RandomGaussianDist::random_fill(rng, &q, bi.as_mut());
// a = p0*u+e0
mod_op.elwise_add_mut(ai.as_mut(), u_eval.as_ref());
// b = p1*u+e1
mod_op.elwise_add_mut(bi.as_mut(), u_eval_copy.as_ref());
// a = p0*u + e0 + \beta*m
// use u_eval as scratch
mod_op.elwise_scalar_mul(u_eval.as_mut(), m.as_ref(), beta_i);
mod_op.elwise_add_mut(ai.as_mut(), u_eval.as_ref());
});
// RLWE(m)
let (rlwe_dash_m_parta, rlwe_dash_m_partb) = rlwe_dash_m.split_at_mut(d);
izip!(
rlwe_dash_m_parta.iter_mut(),
rlwe_dash_m_partb.iter_mut(),
gadget_vector.iter()
)
.for_each(|(ai, bi, beta_i)| {
// sample ephemeral secret u_i
let mut u = vec![0i32; ring_size];
fill_random_ternary_secret_with_hamming_weight(u.as_mut(), ring_size >> 1, rng);
let mut u_eval = Mmut::R::try_convert_from(u.as_ref(), &q);
ntt_op.forward(u_eval.as_mut());
let mut u_eval_copy = Mmut::R::zeros(ring_size);
u_eval_copy.as_mut().copy_from_slice(u_eval.as_ref());
// p0 * u
mod_op.elwise_mul_mut(u_eval.as_mut(), p0.as_ref());
// p1 * u
mod_op.elwise_mul_mut(u_eval_copy.as_mut(), p1.as_ref());
ntt_op.backward(u_eval.as_mut());
ntt_op.backward(u_eval_copy.as_mut());
// sample error
RandomGaussianDist::random_fill(rng, &q, ai.as_mut());
RandomGaussianDist::random_fill(rng, &q, bi.as_mut());
// a = p0*u+e0
mod_op.elwise_add_mut(ai.as_mut(), u_eval.as_ref());
// b = p1*u+e1
mod_op.elwise_add_mut(bi.as_mut(), u_eval_copy.as_ref());
// b = p1*u + e0 + \beta*m
// use u_eval as scratch
mod_op.elwise_scalar_mul(u_eval.as_mut(), m.as_ref(), beta_i);
mod_op.elwise_add_mut(bi.as_mut(), u_eval.as_ref());
});
}
/// Generates RLWE Key switching key to key switch ciphertext RLWE_{from_s}(m)
/// to RLWE_{to_s}(m).
///
/// Key switching equals
/// \sum decompose(c_1)_i * RLWE_{to_s}(\beta^i -from_s)
/// Hence, key switchin key equals RLWE'(-from_s) = RLWE(-from_s), RLWE(beta^1
/// -from_s), ..., RLWE(beta^{d-1} -from_s).
///
/// - ksk_out: Output Key switching key. Key switching key stores only part B
/// polynomials of ksk RLWE ciphertexts (i.e. RLWE'_B(-from_s)) in coefficient
/// domain
/// - neg_from_s: Negative of secret polynomial to key switch from
/// - to_s: secret polynomial to key switch to.
pub(crate) fn rlwe_ksk_gen<
Mmut: MatrixMut + MatrixEntity,
ModOp: ArithmeticOps<Element = Mmut::MatElement> + VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
PR: RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
>(
ksk_out: &mut Mmut,
neg_from_s: Mmut::R,
mut to_s: Mmut::R,
gadget_vector: &[Mmut::MatElement],
mod_op: &ModOp,
ntt_op: &NttOp,
p_rng: &mut PR,
rng: &mut R,
) where
<Mmut as Matrix>::R: RowMut,
{
let ring_size = neg_from_s.as_ref().len();
let d = gadget_vector.len();
assert!(ksk_out.dimension() == (d, ring_size));
let q = ArithmeticOps::modulus(mod_op);
ntt_op.forward(to_s.as_mut());
// RLWE'_{to_s}(-from_s)
let mut part_a = {
let mut a = Mmut::zeros(d, ring_size);
a.iter_rows_mut()
.for_each(|ai| RandomUniformDist::random_fill(p_rng, &q, ai.as_mut()));
a
};
izip!(
part_a.iter_rows_mut(),
ksk_out.iter_rows_mut(),
gadget_vector.iter(),
)
.for_each(|(ai, bi, beta_i)| {
// si * ai
ntt_op.forward(ai.as_mut());
mod_op.elwise_mul_mut(ai.as_mut(), to_s.as_ref());
ntt_op.backward(ai.as_mut());
// ei + to_s*ai
RandomGaussianDist::random_fill(rng, &q, bi.as_mut());
mod_op.elwise_add_mut(bi.as_mut(), ai.as_ref());
// beta_i * -from_s
// use ai as scratch space
mod_op.elwise_scalar_mul(ai.as_mut(), neg_from_s.as_ref(), beta_i);
// bi = ei + to_s*ai + beta_i*-from_s
mod_op.elwise_add_mut(bi.as_mut(), ai.as_ref());
});
}
pub(crate) fn galois_key_gen<
Mmut: MatrixMut + MatrixEntity,
ModOp: ArithmeticOps<Element = Mmut::MatElement> + VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
S,
R: RandomGaussianDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
PR: RandomUniformDist<[Mmut::MatElement], Parameters = Mmut::MatElement>,
>(
ksk_out: &mut Mmut,
s: &[S],
auto_k: isize,
gadget_vector: &[Mmut::MatElement],
mod_op: &ModOp,
ntt_op: &NttOp,
p_rng: &mut PR,
rng: &mut R,
) where
<Mmut as Matrix>::R: RowMut,
Mmut::R: TryConvertFrom<[S], Parameters = Mmut::MatElement> + RowEntity,
Mmut::MatElement: Copy + Sub<Output = Mmut::MatElement>,
{
let ring_size = s.len();
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size, auto_k);
let q = ArithmeticOps::modulus(mod_op);
// s(X) -> -s(X^k)
let s = Mmut::R::try_convert_from(s, &q);
let mut neg_s_auto = Mmut::R::zeros(s.as_ref().len());
izip!(s.as_ref(), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|(el, to_index, sign)| {
// if sign is +ve (true), then negate because we need -s(X) (i.e. do the
// opposite than the usual case)
if *sign {
neg_s_auto.as_mut()[*to_index] = q - *el;
} else {
neg_s_auto.as_mut()[*to_index] = *el;
}
},
);
// Ksk from -s(X^k) to s(X)
rlwe_ksk_gen(
ksk_out,
neg_s_auto,
s,
gadget_vector,
mod_op,
ntt_op,
p_rng,
rng,
);
}
/// Encrypt polynomial m(X) as RLWE ciphertext.
///
/// - rlwe_out: returned RLWE ciphertext RLWE(m) in coefficient domain. RLWE
/// ciphertext is a matirx with first row consiting polynomial `a` and the
/// second rows consting polynomial `b`
pub(crate) fn secret_key_encrypt_rlwe<
Ro: Row + RowMut + RowEntity,
ModOp: VectorOps<Element = Ro::Element>,
NttOp: Ntt<Element = Ro::Element>,
S,
R: RandomGaussianDist<[Ro::Element], Parameters = Ro::Element>,
PR: RandomUniformDist<[Ro::Element], Parameters = Ro::Element>,
>(
m: &[Ro::Element],
b_rlwe_out: &mut Ro,
s: &[S],
mod_op: &ModOp,
ntt_op: &NttOp,
p_rng: &mut PR,
rng: &mut R,
) where
Ro: TryConvertFrom<[S], Parameters = Ro::Element> + Debug,
{
let ring_size = s.len();
assert!(m.as_ref().len() == ring_size);
assert!(b_rlwe_out.as_ref().len() == ring_size);
let q = mod_op.modulus();
// sample a
let mut a = {
let mut a = Ro::zeros(ring_size);
RandomUniformDist::random_fill(p_rng, &q, a.as_mut());
a
};
// s * a
let mut sa = Ro::try_convert_from(s, &q);
ntt_op.forward(sa.as_mut());
ntt_op.forward(a.as_mut());
mod_op.elwise_mul_mut(sa.as_mut(), a.as_ref());
ntt_op.backward(sa.as_mut());
// sample e
RandomGaussianDist::random_fill(rng, &q, b_rlwe_out.as_mut());
mod_op.elwise_add_mut(b_rlwe_out.as_mut(), m.as_ref());
mod_op.elwise_add_mut(b_rlwe_out.as_mut(), sa.as_ref());
}
pub(crate) fn public_key_encrypt_rlwe<
M: Matrix,
Mmut: MatrixMut<MatElement = M::MatElement>,
ModOp: VectorOps<Element = M::MatElement>,
NttOp: Ntt<Element = M::MatElement>,
S,
R: RandomGaussianDist<[M::MatElement], Parameters = M::MatElement>
+ RandomUniformDist<[M::MatElement], Parameters = M::MatElement>
+ RandomUniformDist<[u8], Parameters = u8>
+ RandomUniformDist<usize, Parameters = usize>,
>(
rlwe_out: &mut Mmut,
pk: &M,
m: &[M::MatElement],
mod_op: &ModOp,
ntt_op: &NttOp,
rng: &mut R,
) where
<Mmut as Matrix>::R: RowMut + TryConvertFrom<[S], Parameters = M::MatElement> + RowEntity,
M::MatElement: Copy,
S: Zero + Signed + Copy,
{
let ring_size = m.len();
assert!(rlwe_out.dimension() == (2, ring_size));
let q = mod_op.modulus();
let mut u = vec![S::zero(); ring_size];
fill_random_ternary_secret_with_hamming_weight(u.as_mut(), ring_size >> 1, rng);
let mut u = Mmut::R::try_convert_from(&u, &q);
ntt_op.forward(u.as_mut());
let mut ua = Mmut::R::zeros(ring_size);
ua.as_mut().copy_from_slice(pk.get_row_slice(0));
let mut ub = Mmut::R::zeros(ring_size);
ub.as_mut().copy_from_slice(pk.get_row_slice(1));
// a*u
ntt_op.forward(ua.as_mut());
mod_op.elwise_mul_mut(ua.as_mut(), u.as_ref());
ntt_op.backward(ua.as_mut());
// b*u
ntt_op.forward(ub.as_mut());
mod_op.elwise_mul_mut(ub.as_mut(), u.as_ref());
ntt_op.backward(ub.as_mut());
// sample error
rlwe_out.iter_rows_mut().for_each(|ri| {
RandomGaussianDist::random_fill(rng, &q, ri.as_mut());
});
// a*u + e0
mod_op.elwise_add_mut(rlwe_out.get_row_mut(0), ua.as_ref());
// b*u + e1
mod_op.elwise_add_mut(rlwe_out.get_row_mut(1), ub.as_ref());
// b*u + e1 + m
mod_op.elwise_add_mut(rlwe_out.get_row_mut(1), m);
}
/// Generates RLWE public key
pub(crate) fn gen_rlwe_public_key<
Ro: RowMut + RowEntity,
S,
ModOp: VectorOps<Element = Ro::Element>,
NttOp: Ntt<Element = Ro::Element>,
PRng: RandomUniformDist<[Ro::Element], Parameters = Ro::Element>,
Rng: RandomGaussianDist<[Ro::Element], Parameters = Ro::Element>,
>(
part_b_out: &mut Ro,
s: &[S],
ntt_op: &NttOp,
mod_op: &ModOp,
p_rng: &mut PRng,
rng: &mut Rng,
) where
Ro: TryConvertFrom<[S], Parameters = Ro::Element>,
{
let ring_size = s.len();
assert!(part_b_out.as_ref().len() == ring_size);
let q = mod_op.modulus();
// sample a
let mut a = {
let mut tmp = Ro::zeros(ring_size);
RandomUniformDist::random_fill(p_rng, &q, tmp.as_mut());
tmp
};
ntt_op.forward(a.as_mut());
// s*a
let mut sa = Ro::try_convert_from(s, &q);
ntt_op.forward(sa.as_mut());
mod_op.elwise_mul_mut(sa.as_mut(), a.as_ref());
ntt_op.backward(sa.as_mut());
// s*a + e
RandomGaussianDist::random_fill(rng, &q, part_b_out.as_mut());
mod_op.elwise_add_mut(part_b_out.as_mut(), sa.as_ref());
}
/// Decrypts degree 1 RLWE ciphertext RLWE(m) and returns m
///
/// - rlwe_ct: input degree 1 ciphertext RLWE(m).
pub(crate) fn decrypt_rlwe<
R: RowMut,
M: Matrix<MatElement = R::Element>,
ModOp: VectorOps<Element = R::Element>,
NttOp: Ntt<Element = R::Element>,
S,
>(
rlwe_ct: &M,
s: &[S],
m_out: &mut R,
ntt_op: &NttOp,
mod_op: &ModOp,
) where
R: TryConvertFrom<[S], Parameters = R::Element>,
R::Element: Copy,
{
let ring_size = s.len();
assert!(rlwe_ct.dimension() == (2, ring_size));
assert!(m_out.as_ref().len() == ring_size);
// transform a to evluation form
m_out.as_mut().copy_from_slice(rlwe_ct.get_row_slice(0));
ntt_op.forward(m_out.as_mut());
// -s*a
let mut s = R::try_convert_from(&s, &mod_op.modulus());
ntt_op.forward(s.as_mut());
mod_op.elwise_mul_mut(m_out.as_mut(), s.as_ref());
mod_op.elwise_neg_mut(m_out.as_mut());
ntt_op.backward(m_out.as_mut());
// m+e = b - s*a
mod_op.elwise_add_mut(m_out.as_mut(), rlwe_ct.get_row_slice(1));
}
// Measures noise in degree 1 RLWE ciphertext against encoded ideal message
// encoded_m
pub(crate) fn measure_noise<
Mmut: MatrixMut + Matrix,
ModOp: VectorOps<Element = Mmut::MatElement>,
NttOp: Ntt<Element = Mmut::MatElement>,
S,
>(
rlwe_ct: &Mmut,
encoded_m_ideal: &Mmut::R,
ntt_op: &NttOp,
mod_op: &ModOp,
s: &[S],
) -> f64
where
<Mmut as Matrix>::R: RowMut,
Mmut::R: RowEntity + TryConvertFrom<[S], Parameters = Mmut::MatElement>,
Mmut::MatElement: PrimInt + ToPrimitive + Debug,
{
let ring_size = s.len();
assert!(rlwe_ct.dimension() == (2, ring_size));
assert!(encoded_m_ideal.as_ref().len() == ring_size);
// -(s * a)
let q = VectorOps::modulus(mod_op);
let mut s = Mmut::R::try_convert_from(s, &q);
ntt_op.forward(s.as_mut());
let mut a = Mmut::R::zeros(ring_size);
a.as_mut().copy_from_slice(rlwe_ct.get_row_slice(0));
ntt_op.forward(a.as_mut());
mod_op.elwise_mul_mut(s.as_mut(), a.as_ref());
mod_op.elwise_neg_mut(s.as_mut());
ntt_op.backward(s.as_mut());
// m+e = b - s*a
let mut m_plus_e = s;
mod_op.elwise_add_mut(m_plus_e.as_mut(), rlwe_ct.get_row_slice(1));
// difference
mod_op.elwise_sub_mut(m_plus_e.as_mut(), encoded_m_ideal.as_ref());
let mut max_diff_bits = f64::MIN;
m_plus_e.as_ref().iter().for_each(|v| {
let mut v = *v;
if v >= (q >> 1) {
// v is -ve
v = q - v;
}
let bits = (v.to_f64().unwrap()).log2();
if max_diff_bits < bits {
max_diff_bits = bits;
}
});
return max_diff_bits;
}
#[cfg(test)]
pub(crate) mod tests {
use std::{ops::Mul, vec};
use itertools::{izip, Itertools};
use rand::{thread_rng, Rng};
use crate::{
backend::{ModInit, ModularOpsU64, VectorOps},
decomposer::{gadget_vector, DefaultDecomposer},
ntt::{self, Ntt, NttBackendU64, NttInit},
random::{DefaultSecureRng, NewWithSeed, RandomUniformDist},
rgsw::{
gen_rlwe_public_key, measure_noise, public_key_encrypt_rgsw, AutoKeyEvaluationDomain,
RgswCiphertext, RgswCiphertextEvaluationDomain, RlweCiphertext, RlwePublicKey,
SeededAutoKey, SeededRgswCiphertext, SeededRlweCiphertext, SeededRlwePublicKey,
},
utils::{generate_prime, negacyclic_mul, TryConvertFrom},
Matrix, Secret,
};
use super::{
decrypt_rlwe, galois_auto, galois_key_gen, generate_auto_map, public_key_encrypt_rlwe,
rgsw_by_rgsw_inplace, rlwe_by_rgsw, secret_key_encrypt_rgsw, secret_key_encrypt_rlwe,
RlweSecret,
};
#[test]
fn rlwe_encrypt_decryption() {
let logq = 50;
let logp = 2;
let ring_size = 1 << 4;
let q = generate_prime(logq, ring_size, 1u64 << logq).unwrap();
let p = 1u64 << logp;
let mut rng = DefaultSecureRng::new();
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
// sample m0
let mut m0 = vec![0u64; ring_size as usize];
RandomUniformDist::<[u64]>::random_fill(&mut rng, &(1u64 << logp), m0.as_mut_slice());
let ntt_op = NttBackendU64::new(q, ring_size as usize);
let mod_op = ModularOpsU64::new(q);
// encrypt m0
let mut rlwe_seed = [0u8; 32];
rng.fill_bytes(&mut rlwe_seed);
let mut seeded_rlwe_in_ct =
SeededRlweCiphertext::<_, [u8; 32]>::empty(ring_size as usize, rlwe_seed, q);
let mut p_rng = DefaultSecureRng::new_with_seed(rlwe_seed);
let encoded_m = m0
.iter()
.map(|v| (((*v as f64) * q as f64) / (p as f64)).round() as u64)
.collect_vec();
secret_key_encrypt_rlwe(
&encoded_m,
&mut seeded_rlwe_in_ct.data,
s.values(),
&mod_op,
&ntt_op,
&mut p_rng,
&mut rng,
);
let rlwe_in_ct =
RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_in_ct);
let mut encoded_m_back = vec![0u64; ring_size as usize];
decrypt_rlwe(
&rlwe_in_ct,
s.values(),
&mut encoded_m_back,
&ntt_op,
&mod_op,
);
let m_back = encoded_m_back
.iter()
.map(|v| (((*v as f64 * p as f64) / q as f64).round() as u64) % p)
.collect_vec();
assert_eq!(m0, m_back);
let noise = measure_noise(&rlwe_in_ct, &encoded_m, &ntt_op, &mod_op, s.values());
println!("Noise: {noise}");
}
#[test]
fn rlwe_by_rgsw_works() {
let logq = 50;
let logp = 2;
let ring_size = 1 << 9;
let q = generate_prime(logq, ring_size, 1u64 << logq).unwrap();
let p = 1u64 << logp;
let d_rgsw = 10;
let logb = 5;
let mut rng = DefaultSecureRng::new_seeded([0u8; 32]);
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
let mut m0 = vec![0u64; ring_size as usize];
RandomUniformDist::<[u64]>::random_fill(&mut rng, &(1u64 << logp), m0.as_mut_slice());
let mut m1 = vec![0u64; ring_size as usize];
m1[thread_rng().gen_range(0..ring_size) as usize] = 1;
let ntt_op = NttBackendU64::new(q, ring_size as usize);
let mod_op = ModularOpsU64::new(q);
let gadget_vector = gadget_vector(logq, logb, d_rgsw);
// Encrypt m1 as RGSW(m1)
let rgsw_ct = {
//TODO(Jay): Figure out better way to test secret key and public key variant of
// RGSW ciphertext encryption within the same test
if true {
// Encryption m1 as RGSW(m1) using secret key
_sk_encrypt_rgsw(&m1, s.values(), &gadget_vector, &mod_op, &ntt_op)
} else {
// Encrypt m1 as RGSW(m1) as public key
// first create public key
let mut pk_seed = [0u8; 32];
rng.fill_bytes(&mut pk_seed);
let mut pk_prng = DefaultSecureRng::new_seeded(pk_seed);
let mut seeded_pk =
SeededRlwePublicKey::<Vec<u64>, _>::empty(ring_size as usize, pk_seed, q);
gen_rlwe_public_key(
&mut seeded_pk.data,
s.values(),
&ntt_op,
&mod_op,
&mut pk_prng,
&mut rng,
);
let pk = RlwePublicKey::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_pk);
let rgsw_ct = _pk_encrypt_rgsw(&m1, &pk, &gadget_vector, &mod_op, &ntt_op);
RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
&RgswCiphertext {
data: rgsw_ct.data,
modulus: q,
},
)
}
};
// Encrypt m0 as RLWE(m0)
let mut rlwe_in_ct = {
let mut rlwe_seed = [0u8; 32];
rng.fill_bytes(&mut rlwe_seed);
let mut seeded_rlwe_in_ct =
SeededRlweCiphertext::<_, [u8; 32]>::empty(ring_size as usize, rlwe_seed, q);
let mut p_rng = DefaultSecureRng::new_seeded(rlwe_seed);
let encoded_m = m0
.iter()
.map(|v| (((*v as f64) * q as f64) / (p as f64)).round() as u64)
.collect_vec();
secret_key_encrypt_rlwe(
&encoded_m,
&mut seeded_rlwe_in_ct.data,
s.values(),
&mod_op,
&ntt_op,
&mut p_rng,
&mut rng,
);
RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_in_ct)
};
// RLWE(m0m1) = RLWE(m0) x RGSW(m1)
let mut scratch_space = vec![vec![0u64; ring_size as usize]; d_rgsw + 2];
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
rlwe_by_rgsw(
&mut rlwe_in_ct,
&rgsw_ct.data,
&mut scratch_space,
&decomposer,
&ntt_op,
&mod_op,
);
// Decrypt RLWE(m0m1)
let mut encoded_m0m1_back = vec![0u64; ring_size as usize];
decrypt_rlwe(
&rlwe_in_ct,
s.values(),
&mut encoded_m0m1_back,
&ntt_op,
&mod_op,
);
let m0m1_back = encoded_m0m1_back
.iter()
.map(|v| (((*v as f64 * p as f64) / (q as f64)).round() as u64) % p)
.collect_vec();
let mul_mod = |v0: &u64, v1: &u64| (v0 * v1) % p;
let m0m1 = negacyclic_mul(&m0, &m1, mul_mod, p);
{
// measure noise
let encoded_m_ideal = m0m1
.iter()
.map(|v| (((*v as f64) * q as f64) / (p as f64)).round() as u64)
.collect_vec();
let noise = measure_noise(&rlwe_in_ct, &encoded_m_ideal, &ntt_op, &mod_op, s.values());
println!("Noise RLWE(m0m1)(= RLWE(m0)xRGSW(m1)) : {noise}");
}
assert!(
m0m1 == m0m1_back,
"Expected {:?} \n Got {:?}",
m0m1,
m0m1_back
);
}
pub(crate) fn _secret_encrypt_rlwe(
m: &[u64],
s: &[i32],
ntt_op: &NttBackendU64,
mod_op: &ModularOpsU64,
) -> RlweCiphertext<Vec<Vec<u64>>, DefaultSecureRng> {
let ring_size = m.len();
let q = mod_op.modulus();
assert!(s.len() == ring_size);
let mut rng = DefaultSecureRng::new();
let mut rlwe_seed = [0u8; 32];
rng.fill_bytes(&mut rlwe_seed);
let mut seeded_rlwe_ct =
SeededRlweCiphertext::<_, [u8; 32]>::empty(ring_size as usize, rlwe_seed, q);
let mut p_rng = DefaultSecureRng::new_seeded(rlwe_seed);
secret_key_encrypt_rlwe(
&m,
&mut seeded_rlwe_ct.data,
s,
mod_op,
ntt_op,
&mut p_rng,
&mut rng,
);
RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_ct)
}
#[test]
fn rlwe_by_rgsw_noise_growth() {
let logq = 28;
let ring_size = 1 << 10;
let q = generate_prime(logq, ring_size * 2, 1u64 << logq).unwrap();
let d_rgsw = 2;
let logb = 7;
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
let ntt_op = NttBackendU64::new(q, ring_size as usize);
let mod_op = ModularOpsU64::new(q);
let gadget_vector = gadget_vector(logq, logb, d_rgsw);
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
let mul_mod = |v0: &u64, v1: &u64| ((*v0 as u128 * *v1 as u128) % (q as u128)) as u64;
let mut carry_m = vec![0u64; ring_size as usize];
carry_m[thread_rng().gen_range(0..ring_size) as usize] = 1;
let mut rlwe = _secret_encrypt_rlwe(&carry_m, s.values(), &ntt_op, &mod_op);
let mut scratch_matrix_dplus2_ring = vec![vec![0u64; ring_size as usize]; d_rgsw + 2];
for i in 0..1000usize {
// Encrypt monomial as RGSW
let mut m = vec![0u64; ring_size as usize];
m[thread_rng().gen_range(0..ring_size) as usize] = if i & 1 == 1 { 1 } else { q - 1 };
let rgsw_ct = _sk_encrypt_rgsw(&m, s.values(), &gadget_vector, &mod_op, &ntt_op);
// RLWE(carry_m * m) = RLWE(carry_m) x RGSW(m)
rlwe_by_rgsw(
&mut rlwe,
&rgsw_ct.data,
&mut scratch_matrix_dplus2_ring,
&decomposer,
&ntt_op,
&mod_op,
);
carry_m = negacyclic_mul(&carry_m, &m, mul_mod, q);
let noise = measure_noise(&rlwe, &carry_m, &ntt_op, &mod_op, s.values());
println!("Noise RLWE(carry_m) after {i}^th iteration: {noise}");
}
}
// Encrypt m as RGSW ciphertext RGSW(m) using supplied public key
pub(crate) fn _pk_encrypt_rgsw(
m: &[u64],
public_key: &RlwePublicKey<Vec<Vec<u64>>, DefaultSecureRng>,
gadget_vector: &[u64],
mod_op: &ModularOpsU64,
ntt_op: &NttBackendU64,
) -> RgswCiphertext<Vec<Vec<u64>>> {
let (_, ring_size) = Matrix::dimension(&public_key.data);
let d_rgsw = gadget_vector.len();
let mut rng = DefaultSecureRng::new();
assert!(m.len() == ring_size);
// public key encrypt RGSW(m1)
let mut rgsw_ct = vec![vec![0u64; ring_size]; d_rgsw * 4];
public_key_encrypt_rgsw(
&mut rgsw_ct,
m,
&public_key.data,
gadget_vector,
mod_op,
ntt_op,
&mut rng,
);
RgswCiphertext {
data: rgsw_ct,
modulus: mod_op.modulus(),
}
}
/// Encrypts m as RGSW ciphertext RGSW(m) using supplied secret key. Returns
/// unseeded RGSW ciphertext in coefficient domain
pub(crate) fn _sk_encrypt_rgsw(
m: &[u64],
s: &[i32],
gadget_vector: &[u64],
mod_op: &ModularOpsU64,
ntt_op: &NttBackendU64,
) -> RgswCiphertextEvaluationDomain<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64> {
let ring_size = s.len();
assert!(m.len() == s.len());
let d_rgsw = gadget_vector.len();
let q = mod_op.modulus();
let mut rng = DefaultSecureRng::new();
let mut rgsw_seed = [0u8; 32];
rng.fill_bytes(&mut rgsw_seed);
let mut seeded_rgsw_ct = SeededRgswCiphertext::<Vec<Vec<u64>>, [u8; 32]>::empty(
ring_size as usize,
d_rgsw,
rgsw_seed,
q,
);
let mut p_rng = DefaultSecureRng::new_seeded(rgsw_seed);
secret_key_encrypt_rgsw(
&mut seeded_rgsw_ct.data,
m,
&gadget_vector,
s,
mod_op,
ntt_op,
&mut p_rng,
&mut rng,
);
RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(&seeded_rgsw_ct)
}
/// Prints noise in RGSW ciphertext RGSW(m).
///
/// - rgsw_ct: RGSW ciphertext in coefficient domain
pub(crate) fn _measure_noise_rgsw(
rgsw_ct: &[Vec<u64>],
m: &[u64],
s: &[i32],
gadget_vector: &[u64],
q: u64,
) {
let d_rgsw = gadget_vector.len();
let ring_size = s.len();
assert!(Matrix::dimension(&rgsw_ct) == (d_rgsw * 2 * 2, ring_size));
assert!(m.len() == ring_size);
let mod_op = ModularOpsU64::new(q);
let ntt_op = NttBackendU64::new(q, ring_size);
let mul_mod = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % q as u128) as u64;
let s_poly = Vec::<u64>::try_convert_from(s, &q);
let mut neg_s = s_poly.clone();
mod_op.elwise_neg_mut(neg_s.as_mut());
let neg_sm0m1 = negacyclic_mul(&neg_s, &m, mul_mod, q);
for i in 0..2 {
for j in 0..d_rgsw {
let ideal_m = {
if i == 0 {
// RLWE(\beta^j -s * m)
let mut beta_neg_sm0m1 = vec![0u64; ring_size as usize];
mod_op.elwise_scalar_mul(
beta_neg_sm0m1.as_mut(),
&neg_sm0m1,
&gadget_vector[j],
);
beta_neg_sm0m1
} else {
// RLWE(\beta^j m)
let mut beta_m0m1 = vec![0u64; ring_size as usize];
mod_op.elwise_scalar_mul(beta_m0m1.as_mut(), &m, &gadget_vector[j]);
beta_m0m1
}
};
let mut rlwe = vec![vec![0u64; ring_size as usize]; 2];
rlwe[0].copy_from_slice(rgsw_ct.get_row_slice((i * 2 * d_rgsw) + j));
rlwe[1].copy_from_slice(rgsw_ct.get_row_slice((i * 2 * d_rgsw) + d_rgsw + j));
let noise = measure_noise(&rlwe, &ideal_m, &ntt_op, &mod_op, s);
if i == 0 {
println!(r"Noise RLWE(\beta^{j} -sm0m1): {noise}");
} else {
println!(r"Noise RLWE(\beta^{j} m0m1): {noise}");
}
}
// m0m1
}
}
#[test]
fn pk_rgsw_by_rgsw() {
let logq = 60;
let logp = 2;
let ring_size = 1 << 11;
let q = generate_prime(logq, ring_size, 1u64 << logq).unwrap();
let p = 1u64 << logp;
let d_rgsw = 3;
let logb = 15;
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
let mut rng = DefaultSecureRng::new();
let ntt_op = NttBackendU64::new(q, ring_size as usize);
let mod_op = ModularOpsU64::new(q);
let gadget_vector = gadget_vector(logq, logb, d_rgsw);
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
let mul_mod = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % q as u128) as u64;
// Public Key
let public_key = {
let mut pk_seed = [0u8; 32];
rng.fill_bytes(&mut pk_seed);
let mut pk_prng = DefaultSecureRng::new_seeded(pk_seed);
let mut seeded_pk =
SeededRlwePublicKey::<Vec<u64>, _>::empty(ring_size as usize, pk_seed, q);
gen_rlwe_public_key(
&mut seeded_pk.data,
s.values(),
&ntt_op,
&mod_op,
&mut pk_prng,
&mut rng,
);
RlwePublicKey::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_pk)
};
let mut carry_m = vec![0u64; ring_size as usize];
carry_m[thread_rng().gen_range(0..ring_size) as usize] = 1;
// RGSW(carry_m)
let mut rgsw_carrym =
_pk_encrypt_rgsw(&carry_m, &public_key, &gadget_vector, &mod_op, &ntt_op);
// let mut rgsw_carrym = {
// let mut rgsw_eval =
// _sk_encrypt_rgsw(&carry_m, s.values(), &gadget_vector, &mod_op,
// &ntt_op); rgsw_eval
// .data
// .iter_mut()
// .for_each(|ri| ntt_op.backward(ri.as_mut()));
// rgsw_eval.data
// };
println!("########### Noise RGSW(carrym) at start ###########");
_measure_noise_rgsw(&rgsw_carrym.data, &carry_m, s.values(), &gadget_vector, q);
let mut scratch_matrix_d_plus_rgsw_by_ring =
vec![vec![0u64; ring_size as usize]; d_rgsw + (d_rgsw * 4)];
for i in 0..1 {
let mut m = vec![0u64; ring_size as usize];
m[thread_rng().gen_range(0..ring_size) as usize] = q - 1;
let rgsw_m = {
RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
&_pk_encrypt_rgsw(&m, &public_key, &gadget_vector, &mod_op, &ntt_op),
)
};
rgsw_by_rgsw_inplace(
&mut rgsw_carrym.data,
&rgsw_m.data,
&decomposer,
&mut scratch_matrix_d_plus_rgsw_by_ring,
&ntt_op,
&mod_op,
);
// measure noise
carry_m = negacyclic_mul(&carry_m, &m, mul_mod, q);
println!("########### Noise RGSW(carrym) in {i}^th loop ###########");
_measure_noise_rgsw(&rgsw_carrym.data, &carry_m, s.values(), &gadget_vector, q);
}
{
// RLWE(m) x RGSW(carry_m)
let mut m = vec![0u64; ring_size as usize];
RandomUniformDist::random_fill(&mut rng, &q, m.as_mut_slice());
let mut rlwe_ct = RlweCiphertext::<_, DefaultSecureRng>::from_raw(
vec![vec![0u64; ring_size as usize]; 2],
false,
);
let mut scratch_matrix_dplus2_ring = vec![vec![0u64; ring_size as usize]; d_rgsw + 2];
public_key_encrypt_rlwe(
&mut rlwe_ct,
&public_key.data,
&m,
&mod_op,
&ntt_op,
&mut rng,
);
rlwe_by_rgsw(
&mut rlwe_ct,
&RgswCiphertextEvaluationDomain::<_, DefaultSecureRng, NttBackendU64>::from(
&rgsw_carrym,
)
.data,
&mut scratch_matrix_dplus2_ring,
&decomposer,
&ntt_op,
&mod_op,
);
let m_expected = negacyclic_mul(&carry_m, &m, mul_mod, q);
let noise = measure_noise(&rlwe_ct, &m_expected, &ntt_op, &mod_op, s.values());
println!(
"RLWE(m) x RGSW(carry_m):
{noise}"
);
}
}
#[test]
fn sk_rgsw_by_rgsw() {
let logq = 60;
let logp = 2;
let ring_size = 1 << 11;
let q = generate_prime(logq, ring_size, 1u64 << logq).unwrap();
let p = 1u64 << logp;
let d_rgsw = 5;
let logb = 12;
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
let mut rng = DefaultSecureRng::new();
let ntt_op = NttBackendU64::new(q, ring_size as usize);
let mod_op = ModularOpsU64::new(q);
let gadget_vector = gadget_vector(logq, logb, d_rgsw);
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
let mul_mod = |a: &u64, b: &u64| ((*a as u128 * *b as u128) % q as u128) as u64;
let mut carry_m = vec![0u64; ring_size as usize];
carry_m[thread_rng().gen_range(0..ring_size) as usize] = 1;
// RGSW(carry_m)
let mut rgsw_carrym = {
let mut rgsw_eval =
_sk_encrypt_rgsw(&carry_m, s.values(), &gadget_vector, &mod_op, &ntt_op);
rgsw_eval
.data
.iter_mut()
.for_each(|ri| ntt_op.backward(ri.as_mut()));
rgsw_eval.data
};
println!("########### Noise RGSW(carrym) at start ###########");
_measure_noise_rgsw(&rgsw_carrym, &carry_m, s.values(), &gadget_vector, q);
let mut scratch_matrix_d_plus_rgsw_by_ring =
vec![vec![0u64; ring_size as usize]; d_rgsw + (d_rgsw * 4)];
for i in 0..1 {
let mut m = vec![0u64; ring_size as usize];
m[thread_rng().gen_range(0..ring_size) as usize] = if (i & 1) == 1 { q - 1 } else { 1 };
let rgsw_m = _sk_encrypt_rgsw(&m, s.values(), &gadget_vector, &mod_op, &ntt_op);
rgsw_by_rgsw_inplace(
&mut rgsw_carrym,
&rgsw_m.data,
&decomposer,
&mut scratch_matrix_d_plus_rgsw_by_ring,
&ntt_op,
&mod_op,
);
// measure noise
carry_m = negacyclic_mul(&carry_m, &m, mul_mod, q);
println!("########### Noise RGSW(carrym) in {i}^th loop ###########");
_measure_noise_rgsw(&rgsw_carrym, &carry_m, s.values(), &gadget_vector, q);
}
{
// RLWE(m) x RGSW(carry_m)
let mut m = vec![0u64; ring_size as usize];
RandomUniformDist::random_fill(&mut rng, &q, m.as_mut_slice());
let mut rlwe_ct = _secret_encrypt_rlwe(&m, s.values(), &ntt_op, &mod_op);
let mut scratch_matrix_dplus2_ring = vec![vec![0u64; ring_size as usize]; d_rgsw + 2];
// send rgsw to evaluation domain
rgsw_carrym
.iter_mut()
.for_each(|ri| ntt_op.forward(ri.as_mut_slice()));
rlwe_by_rgsw(
&mut rlwe_ct,
&rgsw_carrym,
&mut scratch_matrix_dplus2_ring,
&decomposer,
&ntt_op,
&mod_op,
);
let m_expected = negacyclic_mul(&carry_m, &m, mul_mod, q);
let noise = measure_noise(&rlwe_ct, &m_expected, &ntt_op, &mod_op, s.values());
println!(
"RLWE(m) x RGSW(carry_m):
{noise}"
);
}
}
#[test]
fn galois_auto_works() {
let logq = 50;
let ring_size = 1 << 4;
let q = generate_prime(logq, 2 * ring_size, 1u64 << logq).unwrap();
let logp = 3;
let p = 1u64 << logp;
let d_rgsw = 10;
let logb = 5;
let mut rng = DefaultSecureRng::new();
let s = RlweSecret::random((ring_size >> 1) as usize, ring_size as usize);
let mut m = vec![0u64; ring_size as usize];
RandomUniformDist::random_fill(&mut rng, &p, m.as_mut_slice());
let encoded_m = m
.iter()
.map(|v| (((*v as f64 * q as f64) / (p as f64)).round() as u64))
.collect_vec();
let ntt_op = NttBackendU64::new(q, ring_size as usize);
let mod_op = ModularOpsU64::new(q);
// RLWE_{s}(m)
let mut seed_rlwe = [0u8; 32];
rng.fill_bytes(&mut seed_rlwe);
let mut seeded_rlwe_m = SeededRlweCiphertext::empty(ring_size as usize, seed_rlwe, q);
let mut p_rng = DefaultSecureRng::new_seeded(seed_rlwe);
secret_key_encrypt_rlwe(
&encoded_m,
&mut seeded_rlwe_m.data,
s.values(),
&mod_op,
&ntt_op,
&mut p_rng,
&mut rng,
);
let mut rlwe_m = RlweCiphertext::<Vec<Vec<u64>>, DefaultSecureRng>::from(&seeded_rlwe_m);
let auto_k = -5;
// Generate galois key to key switch from s^k to s
let mut seed_auto = [0u8; 32];
rng.fill_bytes(&mut seed_auto);
let mut seeded_auto_key = SeededAutoKey::empty(ring_size as usize, d_rgsw, seed_auto, q);
let mut p_rng = DefaultSecureRng::new_seeded(seed_auto);
let gadget_vector = gadget_vector(logq, logb, d_rgsw);
galois_key_gen(
&mut seeded_auto_key.data,
s.values(),
auto_k,
&gadget_vector,
&mod_op,
&ntt_op,
&mut p_rng,
&mut rng,
);
let auto_key =
AutoKeyEvaluationDomain::<Vec<Vec<u64>>, DefaultSecureRng, NttBackendU64>::from(
&seeded_auto_key,
);
// Send RLWE_{s}(m) -> RLWE_{s}(m^k)
let mut scratch_space = vec![vec![0u64; ring_size as usize]; d_rgsw + 2];
let (auto_map_index, auto_map_sign) = generate_auto_map(ring_size as usize, auto_k);
let decomposer = DefaultDecomposer::new(q, logb, d_rgsw);
galois_auto(
&mut rlwe_m,
&auto_key.data,
&mut scratch_space,
&auto_map_index,
&auto_map_sign,
&mod_op,
&ntt_op,
&decomposer,
);
let rlwe_m_k = rlwe_m;
// Decrypt RLWE_{s}(m^k) and check
let mut encoded_m_k_back = vec![0u64; ring_size as usize];
decrypt_rlwe(
&rlwe_m_k,
s.values(),
&mut encoded_m_k_back,
&ntt_op,
&mod_op,
);
let m_k_back = encoded_m_k_back
.iter()
.map(|v| (((*v as f64 * p as f64) / q as f64).round() as u64) % p)
.collect_vec();
let mut m_k = vec![0u64; ring_size as usize];
// Send \delta m -> \delta m^k
izip!(m.iter(), auto_map_index.iter(), auto_map_sign.iter()).for_each(
|(v, to_index, sign)| {
if !*sign {
m_k[*to_index] = (p - *v) % p;
} else {
m_k[*to_index] = *v;
}
},
);
{
let encoded_m_k = m_k
.iter()
.map(|v| ((*v as f64 * q as f64) / p as f64).round() as u64)
.collect_vec();
let noise = measure_noise(&rlwe_m_k, &encoded_m_k, &ntt_op, &mod_op, s.values());
println!("Ksk noise: {noise}");
}
assert_eq!(m_k_back, m_k);
}
}