implemented Encoding for VecZnxBorrow

This commit is contained in:
Jean-Philippe Bossuat
2025-02-24 17:19:43 +01:00
parent 1a583ea0db
commit 18ca4801ae
2 changed files with 215 additions and 142 deletions

View File

@@ -1,5 +1,5 @@
use crate::ffi::znx::znx_zero_i64_ref;
use crate::{Infos, VecZnx, VecZnxApi};
use crate::{VecZnx, VecZnxBorrow, VecZnxCommon};
use itertools::izip;
use rug::{Assign, Float};
use std::cmp::min;
@@ -62,103 +62,15 @@ pub trait Encoding {
impl Encoding for VecZnx {
fn encode_vec_i64(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize) {
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(cols <= self.cols(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.cols()={}", cols, self.cols());
let size: usize = min(data.len(), self.n());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..self.cols()).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
self.at_mut(cols - 1)[..size].copy_from_slice(&data[..size]);
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
(cols - steps..cols)
.rev()
.enumerate()
.for_each(|(i, i_rev)| {
let shift: usize = i * log_base2k;
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
.for_each(|(y, x)| *y = (x >> shift) & mask);
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let cols = self.cols();
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(cols - steps..cols).rev().for_each(|i| {
self.at_mut(i)[..size]
.iter_mut()
.for_each(|x| *x <<= log_k_rem);
})
}
encode_vec_i64(self, log_base2k, log_k, data, log_max)
}
fn decode_vec_i64(&self, log_base2k: usize, log_k: usize, data: &mut [i64]) {
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(
data.len() >= self.n,
"invalid data: data.len()={} < self.n()={}",
data.len(),
self.n
);
data.copy_from_slice(self.at(0));
let rem: usize = log_base2k - (log_k % log_base2k);
(1..cols).for_each(|i| {
if i == cols - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << log_base2k) + x;
});
}
})
decode_vec_i64(self, log_base2k, log_k, data)
}
fn decode_vec_float(&self, log_base2k: usize, data: &mut [Float]) {
let cols: usize = self.cols();
assert!(
data.len() >= self.n(),
"invalid data: data.len()={} < self.n()={}",
data.len(),
self.n()
);
let prec: u32 = (log_base2k * cols) as u32;
// 2^{log_base2k}
let base = Float::with_val(prec, (1 << log_base2k) as f64);
// y[i] = sum x[j][i] * 2^{-log_base2k*j}
(0..cols).for_each(|i| {
if i == 0 {
izip!(self.at(cols - i - 1).iter(), data.iter_mut()).for_each(|(x, y)| {
y.assign(*x);
*y /= &base;
});
} else {
izip!(self.at(cols - i - 1).iter(), data.iter_mut()).for_each(|(x, y)| {
*y += Float::with_val(prec, *x);
*y /= &base;
});
}
});
decode_vec_float(self, log_base2k, data)
}
fn encode_coeff_i64(
@@ -169,61 +81,222 @@ impl Encoding for VecZnx {
value: i64,
log_max: usize,
) {
assert!(i < self.n());
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(cols <= self.cols(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.cols()={}", cols, self.cols());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
let cols = self.cols();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..cols - 1).for_each(|j| self.at_mut(j)[i] = 0);
self.at_mut(self.cols() - 1)[i] = value;
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(0..cols - steps).for_each(|j| self.at_mut(j)[i] = 0);
(cols - steps..cols)
.rev()
.enumerate()
.for_each(|(j, j_rev)| {
self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let cols = self.cols();
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(cols - steps..cols).rev().for_each(|j| {
self.at_mut(j)[i] <<= log_k_rem;
})
}
encode_coeff_i64(self, log_base2k, log_k, i, value, log_max)
}
fn decode_coeff_i64(&self, log_base2k: usize, log_k: usize, i: usize) -> i64 {
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(i < self.n());
let mut res: i64 = self.data[i];
let rem: usize = log_base2k - (log_k % log_base2k);
(1..cols).for_each(|i| {
let x = self.data[i * self.n];
if i == cols - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
res = (res << k_rem) + (x >> rem);
} else {
res = (res << log_base2k) + x;
}
});
res
decode_coeff_i64(self, log_base2k, log_k, i)
}
}
impl Encoding for VecZnxBorrow {
fn encode_vec_i64(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize) {
encode_vec_i64(self, log_base2k, log_k, data, log_max)
}
fn decode_vec_i64(&self, log_base2k: usize, log_k: usize, data: &mut [i64]) {
decode_vec_i64(self, log_base2k, log_k, data)
}
fn decode_vec_float(&self, log_base2k: usize, data: &mut [Float]) {
decode_vec_float(self, log_base2k, data)
}
fn encode_coeff_i64(
&mut self,
log_base2k: usize,
log_k: usize,
i: usize,
value: i64,
log_max: usize,
) {
encode_coeff_i64(self, log_base2k, log_k, i, value, log_max)
}
fn decode_coeff_i64(&self, log_base2k: usize, log_k: usize, i: usize) -> i64 {
decode_coeff_i64(self, log_base2k, log_k, i)
}
}
fn encode_vec_i64<T: VecZnxCommon>(
a: &mut T,
log_base2k: usize,
log_k: usize,
data: &[i64],
log_max: usize,
) {
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(
cols <= a.cols(),
"invalid argument log_k: (log_k + a.log_base2k - 1)/a.log_base2k={} > a.cols()={}",
cols,
a.cols()
);
let size: usize = min(data.len(), a.n());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..a.cols()).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, a.at_mut(i).as_mut_ptr());
});
a.at_mut(cols - 1)[..size].copy_from_slice(&data[..size]);
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, a.at_mut(i).as_mut_ptr());
});
(cols - steps..cols)
.rev()
.enumerate()
.for_each(|(i, i_rev)| {
let shift: usize = i * log_base2k;
izip!(a.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
.for_each(|(y, x)| *y = (x >> shift) & mask);
})
}
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let cols = a.cols();
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(cols - steps..cols).rev().for_each(|i| {
a.at_mut(i)[..size]
.iter_mut()
.for_each(|x| *x <<= log_k_rem);
})
}
}
fn decode_vec_i64<T: VecZnxCommon>(a: &T, log_base2k: usize, log_k: usize, data: &mut [i64]) {
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(
data.len() >= a.n(),
"invalid data: data.len()={} < a.n()={}",
data.len(),
a.n()
);
data.copy_from_slice(a.at(0));
let rem: usize = log_base2k - (log_k % log_base2k);
(1..cols).for_each(|i| {
if i == cols - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
izip!(a.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(a.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << log_base2k) + x;
});
}
})
}
fn decode_vec_float<T: VecZnxCommon>(a: &T, log_base2k: usize, data: &mut [Float]) {
let cols: usize = a.cols();
assert!(
data.len() >= a.n(),
"invalid data: data.len()={} < a.n()={}",
data.len(),
a.n()
);
let prec: u32 = (log_base2k * cols) as u32;
// 2^{log_base2k}
let base = Float::with_val(prec, (1 << log_base2k) as f64);
// y[i] = sum x[j][i] * 2^{-log_base2k*j}
(0..cols).for_each(|i| {
if i == 0 {
izip!(a.at(cols - i - 1).iter(), data.iter_mut()).for_each(|(x, y)| {
y.assign(*x);
*y /= &base;
});
} else {
izip!(a.at(cols - i - 1).iter(), data.iter_mut()).for_each(|(x, y)| {
*y += Float::with_val(prec, *x);
*y /= &base;
});
}
});
}
fn encode_coeff_i64<T: VecZnxCommon>(
a: &mut T,
log_base2k: usize,
log_k: usize,
i: usize,
value: i64,
log_max: usize,
) {
assert!(i < a.n());
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(
cols <= a.cols(),
"invalid argument log_k: (log_k + a.log_base2k - 1)/a.log_base2k={} > a.cols()={}",
cols,
a.cols()
);
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
let cols = a.cols();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..cols - 1).for_each(|j| a.at_mut(j)[i] = 0);
a.at_mut(a.cols() - 1)[i] = value;
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(0..cols - steps).for_each(|j| a.at_mut(j)[i] = 0);
(cols - steps..cols)
.rev()
.enumerate()
.for_each(|(j, j_rev)| {
a.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
})
}
// Case where prec % k != 0.
if log_k_rem != log_base2k {
let cols = a.cols();
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(cols - steps..cols).rev().for_each(|j| {
a.at_mut(j)[i] <<= log_k_rem;
})
}
}
fn decode_coeff_i64<T: VecZnxCommon>(a: &T, log_base2k: usize, log_k: usize, i: usize) -> i64 {
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(i < a.n());
let data: &[i64] = a.raw();
let mut res: i64 = data[i];
let rem: usize = log_base2k - (log_k % log_base2k);
(1..cols).for_each(|i| {
let x = data[i * a.n()];
if i == cols - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
res = (res << k_rem) + (x >> rem);
} else {
res = (res << log_base2k) + x;
}
});
res
}
#[cfg(test)]
mod tests {
use crate::{Encoding, VecZnx};