mirror of
https://github.com/arnaucube/poulpy.git
synced 2026-02-10 05:06:44 +01:00
wip
This commit is contained in:
committed by
Jean-Philippe Bossuat
parent
f72363cc4b
commit
2b2b994f7d
@@ -1,186 +1,179 @@
|
||||
use poulpy_hal::{
|
||||
api::{
|
||||
ScratchAvailable, TakeVecZnx, TakeVecZnxDft, VecZnxBigAddSmallInplace, VecZnxBigNormalize, VecZnxBigNormalizeTmpBytes,
|
||||
VecZnxDftAllocBytes, VecZnxDftApply, VecZnxIdftApplyConsume, VecZnxNormalize, VecZnxNormalizeTmpBytes, VmpApplyDftToDft,
|
||||
ModuleN, ScratchAvailable, ScratchTakeBasic, VecZnxBigAddSmallInplace, VecZnxBigNormalize, VecZnxBigNormalizeTmpBytes,
|
||||
VecZnxDftApply, VecZnxDftBytesOf, VecZnxIdftApplyConsume, VecZnxNormalize, VecZnxNormalizeTmpBytes, VmpApplyDftToDft,
|
||||
VmpApplyDftToDftAdd, VmpApplyDftToDftTmpBytes,
|
||||
},
|
||||
layouts::{Backend, DataMut, DataRef, DataViewMut, Module, Scratch, VecZnx, VecZnxBig, VecZnxDft, VmpPMat, ZnxInfos},
|
||||
};
|
||||
|
||||
use crate::layouts::{GGLWEInfos, GLWECiphertext, GLWEInfos, LWEInfos, prepared::GGLWESwitchingKeyPrepared};
|
||||
use crate::{
|
||||
ScratchTakeCore,
|
||||
layouts::{
|
||||
GGLWEInfos, GLWE, GLWEInfos, GLWEToMut, GLWEToRef, LWEInfos,
|
||||
prepared::{GLWESwitchingKeyPrepared, GLWESwitchingKeyPreparedToRef},
|
||||
},
|
||||
};
|
||||
|
||||
impl GLWECiphertext<Vec<u8>> {
|
||||
pub fn keyswitch_scratch_space<B: Backend, OUT, IN, KEY>(
|
||||
module: &Module<B>,
|
||||
out_infos: &OUT,
|
||||
in_infos: &IN,
|
||||
key_apply: &KEY,
|
||||
) -> usize
|
||||
impl GLWE<Vec<u8>> {
|
||||
pub fn keyswitch_tmp_bytes<M, R, A, B, BE: Backend>(module: &M, res_infos: &R, a_infos: &A, b_infos: &B) -> usize
|
||||
where
|
||||
OUT: GLWEInfos,
|
||||
IN: GLWEInfos,
|
||||
KEY: GGLWEInfos,
|
||||
Module<B>: VecZnxDftAllocBytes + VmpApplyDftToDftTmpBytes + VecZnxBigNormalizeTmpBytes + VecZnxNormalizeTmpBytes,
|
||||
R: GLWEInfos,
|
||||
A: GLWEInfos,
|
||||
B: GGLWEInfos,
|
||||
M: GLWEKeySwitch<BE>,
|
||||
{
|
||||
let in_size: usize = in_infos
|
||||
module.glwe_keyswitch_tmp_bytes(res_infos, a_infos, b_infos)
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: DataMut> GLWE<D> {
|
||||
pub fn keyswitch<A, B, M, BE: Backend>(&mut self, module: &M, a: &A, b: &B, scratch: &mut Scratch<BE>)
|
||||
where
|
||||
A: GLWEToRef,
|
||||
B: GLWESwitchingKeyPreparedToRef<BE>,
|
||||
M: GLWEKeySwitch<BE>,
|
||||
Scratch<BE>: ScratchTakeCore<BE>,
|
||||
{
|
||||
module.glwe_keyswitch(self, a, b, scratch);
|
||||
}
|
||||
|
||||
pub fn keyswitch_inplace<A, M, BE: Backend>(&mut self, module: &M, a: &A, scratch: &mut Scratch<BE>)
|
||||
where
|
||||
A: GLWESwitchingKeyPreparedToRef<BE>,
|
||||
M: GLWEKeySwitch<BE>,
|
||||
Scratch<BE>: ScratchTakeCore<BE>,
|
||||
{
|
||||
module.glwe_keyswitch_inplace(self, a, scratch);
|
||||
}
|
||||
}
|
||||
|
||||
impl<BE: Backend> GLWEKeySwitch<BE> for Module<BE> where
|
||||
Self: Sized
|
||||
+ ModuleN
|
||||
+ VecZnxDftBytesOf
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VecZnxNormalizeTmpBytes
|
||||
+ VecZnxDftBytesOf
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VmpApplyDftToDft<BE>
|
||||
+ VmpApplyDftToDftAdd<BE>
|
||||
+ VecZnxDftApply<BE>
|
||||
+ VecZnxIdftApplyConsume<BE>
|
||||
+ VecZnxBigAddSmallInplace<BE>
|
||||
+ VecZnxBigNormalize<BE>
|
||||
+ VecZnxNormalize<BE>
|
||||
+ VecZnxNormalizeTmpBytes
|
||||
{
|
||||
}
|
||||
|
||||
pub trait GLWEKeySwitch<BE: Backend>
|
||||
where
|
||||
Self: Sized
|
||||
+ ModuleN
|
||||
+ VecZnxDftBytesOf
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VecZnxNormalizeTmpBytes
|
||||
+ VecZnxDftBytesOf
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VmpApplyDftToDft<BE>
|
||||
+ VmpApplyDftToDftAdd<BE>
|
||||
+ VecZnxDftApply<BE>
|
||||
+ VecZnxIdftApplyConsume<BE>
|
||||
+ VecZnxBigAddSmallInplace<BE>
|
||||
+ VecZnxBigNormalize<BE>
|
||||
+ VecZnxNormalize<BE>
|
||||
+ VecZnxNormalizeTmpBytes,
|
||||
{
|
||||
fn glwe_keyswitch_tmp_bytes<R, A, B>(&self, res_infos: &R, a_infos: &A, b_infos: &B) -> usize
|
||||
where
|
||||
R: GLWEInfos,
|
||||
A: GLWEInfos,
|
||||
B: GGLWEInfos,
|
||||
{
|
||||
let in_size: usize = a_infos
|
||||
.k()
|
||||
.div_ceil(key_apply.base2k())
|
||||
.div_ceil(key_apply.dsize().into()) as usize;
|
||||
let out_size: usize = out_infos.size();
|
||||
let ksk_size: usize = key_apply.size();
|
||||
let res_dft: usize = module.vec_znx_dft_alloc_bytes((key_apply.rank_out() + 1).into(), ksk_size); // TODO OPTIMIZE
|
||||
let ai_dft: usize = module.vec_znx_dft_alloc_bytes((key_apply.rank_in()).into(), in_size);
|
||||
let vmp: usize = module.vmp_apply_dft_to_dft_tmp_bytes(
|
||||
.div_ceil(b_infos.base2k())
|
||||
.div_ceil(b_infos.dsize().into()) as usize;
|
||||
let out_size: usize = res_infos.size();
|
||||
let ksk_size: usize = b_infos.size();
|
||||
let res_dft: usize = self.bytes_of_vec_znx_dft((b_infos.rank_out() + 1).into(), ksk_size); // TODO OPTIMIZE
|
||||
let ai_dft: usize = self.bytes_of_vec_znx_dft((b_infos.rank_in()).into(), in_size);
|
||||
let vmp: usize = self.vmp_apply_dft_to_dft_tmp_bytes(
|
||||
out_size,
|
||||
in_size,
|
||||
in_size,
|
||||
(key_apply.rank_in()).into(),
|
||||
(key_apply.rank_out() + 1).into(),
|
||||
(b_infos.rank_in()).into(),
|
||||
(b_infos.rank_out() + 1).into(),
|
||||
ksk_size,
|
||||
) + module.vec_znx_dft_alloc_bytes((key_apply.rank_in()).into(), in_size);
|
||||
let normalize_big: usize = module.vec_znx_big_normalize_tmp_bytes();
|
||||
if in_infos.base2k() == key_apply.base2k() {
|
||||
) + self.bytes_of_vec_znx_dft((b_infos.rank_in()).into(), in_size);
|
||||
let normalize_big: usize = self.vec_znx_big_normalize_tmp_bytes();
|
||||
if a_infos.base2k() == b_infos.base2k() {
|
||||
res_dft + ((ai_dft + vmp) | normalize_big)
|
||||
} else if key_apply.dsize() == 1 {
|
||||
} else if b_infos.dsize() == 1 {
|
||||
// In this case, we only need one column, temporary, that we can drop once a_dft is computed.
|
||||
let normalize_conv: usize = VecZnx::alloc_bytes(module.n(), 1, in_size) + module.vec_znx_normalize_tmp_bytes();
|
||||
let normalize_conv: usize = VecZnx::bytes_of(self.n(), 1, in_size) + self.vec_znx_normalize_tmp_bytes();
|
||||
res_dft + (((ai_dft + normalize_conv) | vmp) | normalize_big)
|
||||
} else {
|
||||
// Since we stride over a to get a_dft when dsize > 1, we need to store the full columns of a with in the base conversion.
|
||||
let normalize_conv: usize = VecZnx::alloc_bytes(module.n(), (key_apply.rank_in()).into(), in_size);
|
||||
res_dft + ((ai_dft + normalize_conv + (module.vec_znx_normalize_tmp_bytes() | vmp)) | normalize_big)
|
||||
let normalize_conv: usize = VecZnx::bytes_of(self.n(), (b_infos.rank_in()).into(), in_size);
|
||||
res_dft + ((ai_dft + normalize_conv + (self.vec_znx_normalize_tmp_bytes() | vmp)) | normalize_big)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn keyswitch_inplace_scratch_space<B: Backend, OUT, KEY>(module: &Module<B>, out_infos: &OUT, key_apply: &KEY) -> usize
|
||||
fn glwe_keyswitch<R, A, B>(&self, res: &mut R, a: &A, b: &B, scratch: &mut Scratch<BE>)
|
||||
where
|
||||
OUT: GLWEInfos,
|
||||
KEY: GGLWEInfos,
|
||||
Module<B>: VecZnxDftAllocBytes + VmpApplyDftToDftTmpBytes + VecZnxBigNormalizeTmpBytes + VecZnxNormalizeTmpBytes,
|
||||
R: GLWEToMut,
|
||||
A: GLWEToRef,
|
||||
B: GLWESwitchingKeyPreparedToRef<BE>,
|
||||
Scratch<BE>: ScratchTakeCore<BE>,
|
||||
{
|
||||
Self::keyswitch_scratch_space(module, out_infos, out_infos, key_apply)
|
||||
}
|
||||
}
|
||||
let res: &mut GLWE<&mut [u8]> = &mut res.to_mut();
|
||||
let a: &GLWE<&[u8]> = &a.to_ref();
|
||||
let b: &GLWESwitchingKeyPrepared<&[u8], BE> = &b.to_ref();
|
||||
|
||||
impl<DataSelf: DataRef> GLWECiphertext<DataSelf> {
|
||||
#[allow(dead_code)]
|
||||
pub(crate) fn assert_keyswitch<B: Backend, DataLhs, DataRhs>(
|
||||
&self,
|
||||
module: &Module<B>,
|
||||
lhs: &GLWECiphertext<DataLhs>,
|
||||
rhs: &GGLWESwitchingKeyPrepared<DataRhs, B>,
|
||||
scratch: &Scratch<B>,
|
||||
) where
|
||||
DataLhs: DataRef,
|
||||
DataRhs: DataRef,
|
||||
Module<B>: VecZnxDftAllocBytes + VmpApplyDftToDftTmpBytes + VecZnxBigNormalizeTmpBytes + VecZnxNormalizeTmpBytes,
|
||||
Scratch<B>: ScratchAvailable,
|
||||
{
|
||||
assert_eq!(
|
||||
lhs.rank(),
|
||||
rhs.rank_in(),
|
||||
"lhs.rank(): {} != rhs.rank_in(): {}",
|
||||
lhs.rank(),
|
||||
rhs.rank_in()
|
||||
a.rank(),
|
||||
b.rank_in(),
|
||||
"a.rank(): {} != b.rank_in(): {}",
|
||||
a.rank(),
|
||||
b.rank_in()
|
||||
);
|
||||
assert_eq!(
|
||||
self.rank(),
|
||||
rhs.rank_out(),
|
||||
"self.rank(): {} != rhs.rank_out(): {}",
|
||||
self.rank(),
|
||||
rhs.rank_out()
|
||||
res.rank(),
|
||||
b.rank_out(),
|
||||
"res.rank(): {} != b.rank_out(): {}",
|
||||
res.rank(),
|
||||
b.rank_out()
|
||||
);
|
||||
assert_eq!(rhs.n(), self.n());
|
||||
assert_eq!(lhs.n(), self.n());
|
||||
|
||||
let scrach_needed: usize = GLWECiphertext::keyswitch_scratch_space(module, self, lhs, rhs);
|
||||
assert_eq!(res.n(), self.n() as u32);
|
||||
assert_eq!(a.n(), self.n() as u32);
|
||||
assert_eq!(b.n(), self.n() as u32);
|
||||
|
||||
let scrach_needed: usize = self.glwe_keyswitch_tmp_bytes(res, a, b);
|
||||
|
||||
assert!(
|
||||
scratch.available() >= scrach_needed,
|
||||
"scratch.available()={} < GLWECiphertext::keyswitch_scratch_space(
|
||||
module,
|
||||
self.base2k(),
|
||||
self.k(),
|
||||
lhs.base2k(),
|
||||
lhs.k(),
|
||||
rhs.base2k(),
|
||||
rhs.k(),
|
||||
rhs.dsize(),
|
||||
rhs.rank_in(),
|
||||
rhs.rank_out(),
|
||||
)={scrach_needed}",
|
||||
"scratch.available()={} < glwe_keyswitch_tmp_bytes={scrach_needed}",
|
||||
scratch.available(),
|
||||
);
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub(crate) fn assert_keyswitch_inplace<B: Backend, DataRhs>(
|
||||
&self,
|
||||
module: &Module<B>,
|
||||
rhs: &GGLWESwitchingKeyPrepared<DataRhs, B>,
|
||||
scratch: &Scratch<B>,
|
||||
) where
|
||||
DataRhs: DataRef,
|
||||
Module<B>: VecZnxDftAllocBytes + VmpApplyDftToDftTmpBytes + VecZnxBigNormalizeTmpBytes + VecZnxNormalizeTmpBytes,
|
||||
Scratch<B>: ScratchAvailable,
|
||||
{
|
||||
assert_eq!(
|
||||
self.rank(),
|
||||
rhs.rank_out(),
|
||||
"self.rank(): {} != rhs.rank_out(): {}",
|
||||
self.rank(),
|
||||
rhs.rank_out()
|
||||
);
|
||||
let basek_out: usize = res.base2k().into();
|
||||
let base2k_out: usize = b.base2k().into();
|
||||
|
||||
assert_eq!(rhs.n(), self.n());
|
||||
|
||||
let scrach_needed: usize = GLWECiphertext::keyswitch_inplace_scratch_space(module, self, rhs);
|
||||
|
||||
assert!(
|
||||
scratch.available() >= scrach_needed,
|
||||
"scratch.available()={} < GLWECiphertext::keyswitch_scratch_space()={scrach_needed}",
|
||||
scratch.available(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
impl<DataSelf: DataMut> GLWECiphertext<DataSelf> {
|
||||
pub fn keyswitch<DataLhs: DataRef, DataRhs: DataRef, B: Backend>(
|
||||
&mut self,
|
||||
module: &Module<B>,
|
||||
glwe_in: &GLWECiphertext<DataLhs>,
|
||||
rhs: &GGLWESwitchingKeyPrepared<DataRhs, B>,
|
||||
scratch: &mut Scratch<B>,
|
||||
) where
|
||||
Module<B>: VecZnxDftAllocBytes
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VmpApplyDftToDft<B>
|
||||
+ VmpApplyDftToDftAdd<B>
|
||||
+ VecZnxDftApply<B>
|
||||
+ VecZnxIdftApplyConsume<B>
|
||||
+ VecZnxBigAddSmallInplace<B>
|
||||
+ VecZnxBigNormalize<B>
|
||||
+ VecZnxNormalize<B>
|
||||
+ VecZnxNormalizeTmpBytes,
|
||||
Scratch<B>: ScratchAvailable + TakeVecZnxDft<B> + TakeVecZnx,
|
||||
{
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
self.assert_keyswitch(module, glwe_in, rhs, scratch);
|
||||
}
|
||||
|
||||
let basek_out: usize = self.base2k().into();
|
||||
let basek_ksk: usize = rhs.base2k().into();
|
||||
|
||||
let (res_dft, scratch_1) = scratch.take_vec_znx_dft(self.n().into(), (self.rank() + 1).into(), rhs.size()); // Todo optimise
|
||||
let res_big: VecZnxBig<_, B> = glwe_in.keyswitch_internal(module, res_dft, rhs, scratch_1);
|
||||
(0..(self.rank() + 1).into()).for_each(|i| {
|
||||
module.vec_znx_big_normalize(
|
||||
let (res_dft, scratch_1) = scratch.take_vec_znx_dft(self, (res.rank() + 1).into(), b.size()); // Todo optimise
|
||||
let res_big: VecZnxBig<&mut [u8], BE> = keyswitch_internal(self, res_dft, a, b, scratch_1);
|
||||
(0..(res.rank() + 1).into()).for_each(|i| {
|
||||
self.vec_znx_big_normalize(
|
||||
basek_out,
|
||||
&mut self.data,
|
||||
&mut res.data,
|
||||
i,
|
||||
basek_ksk,
|
||||
base2k_out,
|
||||
&res_big,
|
||||
i,
|
||||
scratch_1,
|
||||
@@ -188,227 +181,190 @@ impl<DataSelf: DataMut> GLWECiphertext<DataSelf> {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn keyswitch_inplace<DataRhs: DataRef, B: Backend>(
|
||||
&mut self,
|
||||
module: &Module<B>,
|
||||
rhs: &GGLWESwitchingKeyPrepared<DataRhs, B>,
|
||||
scratch: &mut Scratch<B>,
|
||||
) where
|
||||
Module<B>: VecZnxDftAllocBytes
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VmpApplyDftToDft<B>
|
||||
+ VmpApplyDftToDftAdd<B>
|
||||
+ VecZnxDftApply<B>
|
||||
+ VecZnxIdftApplyConsume<B>
|
||||
+ VecZnxBigAddSmallInplace<B>
|
||||
+ VecZnxBigNormalize<B>
|
||||
+ VecZnxNormalize<B>
|
||||
+ VecZnxNormalizeTmpBytes,
|
||||
Scratch<B>: ScratchAvailable + TakeVecZnxDft<B> + TakeVecZnx,
|
||||
{
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
self.assert_keyswitch_inplace(module, rhs, scratch);
|
||||
}
|
||||
|
||||
let basek_in: usize = self.base2k().into();
|
||||
let basek_ksk: usize = rhs.base2k().into();
|
||||
|
||||
let (res_dft, scratch_1) = scratch.take_vec_znx_dft(self.n().into(), (self.rank() + 1).into(), rhs.size()); // Todo optimise
|
||||
let res_big: VecZnxBig<_, B> = self.keyswitch_internal(module, res_dft, rhs, scratch_1);
|
||||
(0..(self.rank() + 1).into()).for_each(|i| {
|
||||
module.vec_znx_big_normalize(
|
||||
basek_in,
|
||||
&mut self.data,
|
||||
i,
|
||||
basek_ksk,
|
||||
&res_big,
|
||||
i,
|
||||
scratch_1,
|
||||
);
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<D: DataRef> GLWECiphertext<D> {
|
||||
pub(crate) fn keyswitch_internal<B: Backend, DataRes, DataKey>(
|
||||
&self,
|
||||
module: &Module<B>,
|
||||
res_dft: VecZnxDft<DataRes, B>,
|
||||
rhs: &GGLWESwitchingKeyPrepared<DataKey, B>,
|
||||
scratch: &mut Scratch<B>,
|
||||
) -> VecZnxBig<DataRes, B>
|
||||
fn glwe_keyswitch_inplace<R, A>(&self, res: &mut R, a: &A, scratch: &mut Scratch<BE>)
|
||||
where
|
||||
DataRes: DataMut,
|
||||
DataKey: DataRef,
|
||||
Module<B>: VecZnxDftAllocBytes
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VmpApplyDftToDft<B>
|
||||
+ VmpApplyDftToDftAdd<B>
|
||||
+ VecZnxDftApply<B>
|
||||
+ VecZnxIdftApplyConsume<B>
|
||||
+ VecZnxBigAddSmallInplace<B>
|
||||
+ VecZnxBigNormalize<B>
|
||||
+ VecZnxNormalize<B>,
|
||||
Scratch<B>: TakeVecZnxDft<B> + TakeVecZnx,
|
||||
R: GLWEToMut,
|
||||
A: GLWESwitchingKeyPreparedToRef<BE>,
|
||||
Scratch<BE>: ScratchTakeCore<BE>,
|
||||
{
|
||||
if rhs.dsize() == 1 {
|
||||
return keyswitch_vmp_one_digit(
|
||||
module,
|
||||
self.base2k().into(),
|
||||
rhs.base2k().into(),
|
||||
res_dft,
|
||||
&self.data,
|
||||
&rhs.key.data,
|
||||
scratch,
|
||||
let res: &mut GLWE<&mut [u8]> = &mut res.to_mut();
|
||||
let a: &GLWESwitchingKeyPrepared<&[u8], BE> = &a.to_ref();
|
||||
|
||||
assert_eq!(
|
||||
res.rank(),
|
||||
a.rank_in(),
|
||||
"res.rank(): {} != a.rank_in(): {}",
|
||||
res.rank(),
|
||||
a.rank_in()
|
||||
);
|
||||
assert_eq!(
|
||||
res.rank(),
|
||||
a.rank_out(),
|
||||
"res.rank(): {} != b.rank_out(): {}",
|
||||
res.rank(),
|
||||
a.rank_out()
|
||||
);
|
||||
|
||||
assert_eq!(res.n(), self.n() as u32);
|
||||
assert_eq!(a.n(), self.n() as u32);
|
||||
|
||||
let scrach_needed: usize = self.glwe_keyswitch_tmp_bytes(res, res, a);
|
||||
|
||||
assert!(
|
||||
scratch.available() >= scrach_needed,
|
||||
"scratch.available()={} < glwe_keyswitch_tmp_bytes={scrach_needed}",
|
||||
scratch.available(),
|
||||
);
|
||||
|
||||
let base2k_in: usize = res.base2k().into();
|
||||
let base2k_out: usize = a.base2k().into();
|
||||
|
||||
let (res_dft, scratch_1) = scratch.take_vec_znx_dft(self, (res.rank() + 1).into(), a.size()); // Todo optimise
|
||||
let res_big: VecZnxBig<&mut [u8], BE> = keyswitch_internal(self, res_dft, res, a, scratch_1);
|
||||
(0..(res.rank() + 1).into()).for_each(|i| {
|
||||
self.vec_znx_big_normalize(
|
||||
base2k_in,
|
||||
&mut res.data,
|
||||
i,
|
||||
base2k_out,
|
||||
&res_big,
|
||||
i,
|
||||
scratch_1,
|
||||
);
|
||||
}
|
||||
|
||||
keyswitch_vmp_multiple_digits(
|
||||
module,
|
||||
self.base2k().into(),
|
||||
rhs.base2k().into(),
|
||||
res_dft,
|
||||
&self.data,
|
||||
&rhs.key.data,
|
||||
rhs.dsize().into(),
|
||||
scratch,
|
||||
)
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
fn keyswitch_vmp_one_digit<B: Backend, DataRes, DataIn, DataVmp>(
|
||||
module: &Module<B>,
|
||||
basek_in: usize,
|
||||
basek_ksk: usize,
|
||||
mut res_dft: VecZnxDft<DataRes, B>,
|
||||
a: &VecZnx<DataIn>,
|
||||
mat: &VmpPMat<DataVmp, B>,
|
||||
scratch: &mut Scratch<B>,
|
||||
) -> VecZnxBig<DataRes, B>
|
||||
impl GLWE<Vec<u8>> {}
|
||||
|
||||
impl<DataSelf: DataMut> GLWE<DataSelf> {}
|
||||
|
||||
fn keyswitch_internal<BE: Backend, M, DR, DA, DB>(
|
||||
module: &M,
|
||||
mut res: VecZnxDft<DR, BE>,
|
||||
a: &GLWE<DA>,
|
||||
b: &GLWESwitchingKeyPrepared<DB, BE>,
|
||||
scratch: &mut Scratch<BE>,
|
||||
) -> VecZnxBig<DR, BE>
|
||||
where
|
||||
DataRes: DataMut,
|
||||
DataIn: DataRef,
|
||||
DataVmp: DataRef,
|
||||
Module<B>: VecZnxDftAllocBytes
|
||||
+ VecZnxDftApply<B>
|
||||
+ VmpApplyDftToDft<B>
|
||||
+ VecZnxIdftApplyConsume<B>
|
||||
+ VecZnxBigAddSmallInplace<B>
|
||||
+ VecZnxNormalize<B>,
|
||||
Scratch<B>: TakeVecZnxDft<B> + TakeVecZnx,
|
||||
DR: DataMut,
|
||||
DA: DataRef,
|
||||
DB: DataRef,
|
||||
M: ModuleN
|
||||
+ VecZnxDftBytesOf
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VecZnxBigNormalizeTmpBytes
|
||||
+ VmpApplyDftToDftTmpBytes
|
||||
+ VmpApplyDftToDft<BE>
|
||||
+ VmpApplyDftToDftAdd<BE>
|
||||
+ VecZnxDftApply<BE>
|
||||
+ VecZnxIdftApplyConsume<BE>
|
||||
+ VecZnxBigAddSmallInplace<BE>
|
||||
+ VecZnxBigNormalize<BE>
|
||||
+ VecZnxNormalize<BE>,
|
||||
Scratch<BE>: ScratchTakeCore<BE>,
|
||||
{
|
||||
let cols: usize = a.cols();
|
||||
let base2k_in: usize = a.base2k().into();
|
||||
let base2k_out: usize = b.base2k().into();
|
||||
let cols: usize = (a.rank() + 1).into();
|
||||
let a_size: usize = (a.size() * base2k_in).div_ceil(base2k_out);
|
||||
let pmat: &VmpPMat<DB, BE> = &b.key.data;
|
||||
|
||||
let a_size: usize = (a.size() * basek_in).div_ceil(basek_ksk);
|
||||
let (mut ai_dft, scratch_1) = scratch.take_vec_znx_dft(a.n(), cols - 1, a.size());
|
||||
if b.dsize() == 1 {
|
||||
let (mut ai_dft, scratch_1) = scratch.take_vec_znx_dft(module, cols - 1, a.size());
|
||||
|
||||
if basek_in == basek_ksk {
|
||||
(0..cols - 1).for_each(|col_i| {
|
||||
module.vec_znx_dft_apply(1, 0, &mut ai_dft, col_i, a, col_i + 1);
|
||||
});
|
||||
if base2k_in == base2k_out {
|
||||
(0..cols - 1).for_each(|col_i| {
|
||||
module.vec_znx_dft_apply(1, 0, &mut ai_dft, col_i, a.data(), col_i + 1);
|
||||
});
|
||||
} else {
|
||||
let (mut a_conv, scratch_2) = scratch_1.take_vec_znx(module, 1, a_size);
|
||||
(0..cols - 1).for_each(|col_i| {
|
||||
module.vec_znx_normalize(
|
||||
base2k_out,
|
||||
&mut a_conv,
|
||||
0,
|
||||
base2k_in,
|
||||
a.data(),
|
||||
col_i + 1,
|
||||
scratch_2,
|
||||
);
|
||||
module.vec_znx_dft_apply(1, 0, &mut ai_dft, col_i, &a_conv, 0);
|
||||
});
|
||||
}
|
||||
|
||||
module.vmp_apply_dft_to_dft(&mut res, &ai_dft, pmat, scratch_1);
|
||||
} else {
|
||||
let (mut a_conv, scratch_2) = scratch_1.take_vec_znx(a.n(), 1, a_size);
|
||||
(0..cols - 1).for_each(|col_i| {
|
||||
module.vec_znx_normalize(basek_ksk, &mut a_conv, 0, basek_in, a, col_i + 1, scratch_2);
|
||||
module.vec_znx_dft_apply(1, 0, &mut ai_dft, col_i, &a_conv, 0);
|
||||
});
|
||||
let dsize: usize = b.dsize().into();
|
||||
|
||||
let (mut ai_dft, scratch_1) = scratch.take_vec_znx_dft(module, cols - 1, a_size.div_ceil(dsize));
|
||||
ai_dft.data_mut().fill(0);
|
||||
|
||||
if base2k_in == base2k_out {
|
||||
for di in 0..dsize {
|
||||
ai_dft.set_size((a_size + di) / dsize);
|
||||
|
||||
// Small optimization for dsize > 2
|
||||
// VMP produce some error e, and since we aggregate vmp * 2^{di * B}, then
|
||||
// we also aggregate ei * 2^{di * B}, with the largest error being ei * 2^{(dsize-1) * B}.
|
||||
// As such we can ignore the last dsize-2 limbs safely of the sum of vmp products.
|
||||
// It is possible to further ignore the last dsize-1 limbs, but this introduce
|
||||
// ~0.5 to 1 bit of additional noise, and thus not chosen here to ensure that the same
|
||||
// noise is kept with respect to the ideal functionality.
|
||||
res.set_size(pmat.size() - ((dsize - di) as isize - 2).max(0) as usize);
|
||||
|
||||
for j in 0..cols - 1 {
|
||||
module.vec_znx_dft_apply(dsize, dsize - di - 1, &mut ai_dft, j, a.data(), j + 1);
|
||||
}
|
||||
|
||||
if di == 0 {
|
||||
module.vmp_apply_dft_to_dft(&mut res, &ai_dft, pmat, scratch_1);
|
||||
} else {
|
||||
module.vmp_apply_dft_to_dft_add(&mut res, &ai_dft, pmat, di, scratch_1);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
let (mut a_conv, scratch_2) = scratch_1.take_vec_znx(module, cols - 1, a_size);
|
||||
for j in 0..cols - 1 {
|
||||
module.vec_znx_normalize(
|
||||
base2k_out,
|
||||
&mut a_conv,
|
||||
j,
|
||||
base2k_in,
|
||||
a.data(),
|
||||
j + 1,
|
||||
scratch_2,
|
||||
);
|
||||
}
|
||||
|
||||
for di in 0..dsize {
|
||||
ai_dft.set_size((a_size + di) / dsize);
|
||||
|
||||
// Small optimization for dsize > 2
|
||||
// VMP produce some error e, and since we aggregate vmp * 2^{di * B}, then
|
||||
// we also aggregate ei * 2^{di * B}, with the largest error being ei * 2^{(dsize-1) * B}.
|
||||
// As such we can ignore the last dsize-2 limbs safely of the sum of vmp products.
|
||||
// It is possible to further ignore the last dsize-1 limbs, but this introduce
|
||||
// ~0.5 to 1 bit of additional noise, and thus not chosen here to ensure that the same
|
||||
// noise is kept with respect to the ideal functionality.
|
||||
res.set_size(pmat.size() - ((dsize - di) as isize - 2).max(0) as usize);
|
||||
|
||||
for j in 0..cols - 1 {
|
||||
module.vec_znx_dft_apply(dsize, dsize - di - 1, &mut ai_dft, j, &a_conv, j);
|
||||
}
|
||||
|
||||
if di == 0 {
|
||||
module.vmp_apply_dft_to_dft(&mut res, &ai_dft, pmat, scratch_2);
|
||||
} else {
|
||||
module.vmp_apply_dft_to_dft_add(&mut res, &ai_dft, pmat, di, scratch_2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res.set_size(res.max_size());
|
||||
}
|
||||
|
||||
module.vmp_apply_dft_to_dft(&mut res_dft, &ai_dft, mat, scratch_1);
|
||||
let mut res_big: VecZnxBig<DataRes, B> = module.vec_znx_idft_apply_consume(res_dft);
|
||||
module.vec_znx_big_add_small_inplace(&mut res_big, 0, a, 0);
|
||||
res_big
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn keyswitch_vmp_multiple_digits<B: Backend, DataRes, DataIn, DataVmp>(
|
||||
module: &Module<B>,
|
||||
basek_in: usize,
|
||||
basek_ksk: usize,
|
||||
mut res_dft: VecZnxDft<DataRes, B>,
|
||||
a: &VecZnx<DataIn>,
|
||||
mat: &VmpPMat<DataVmp, B>,
|
||||
dsize: usize,
|
||||
scratch: &mut Scratch<B>,
|
||||
) -> VecZnxBig<DataRes, B>
|
||||
where
|
||||
DataRes: DataMut,
|
||||
DataIn: DataRef,
|
||||
DataVmp: DataRef,
|
||||
Module<B>: VecZnxDftAllocBytes
|
||||
+ VecZnxDftApply<B>
|
||||
+ VmpApplyDftToDft<B>
|
||||
+ VmpApplyDftToDftAdd<B>
|
||||
+ VecZnxIdftApplyConsume<B>
|
||||
+ VecZnxBigAddSmallInplace<B>
|
||||
+ VecZnxNormalize<B>,
|
||||
Scratch<B>: TakeVecZnxDft<B> + TakeVecZnx,
|
||||
{
|
||||
let cols: usize = a.cols();
|
||||
let a_size: usize = (a.size() * basek_in).div_ceil(basek_ksk);
|
||||
let (mut ai_dft, scratch_1) = scratch.take_vec_znx_dft(a.n(), cols - 1, a_size.div_ceil(dsize));
|
||||
ai_dft.data_mut().fill(0);
|
||||
|
||||
if basek_in == basek_ksk {
|
||||
for di in 0..dsize {
|
||||
ai_dft.set_size((a_size + di) / dsize);
|
||||
|
||||
// Small optimization for dsize > 2
|
||||
// VMP produce some error e, and since we aggregate vmp * 2^{di * B}, then
|
||||
// we also aggregate ei * 2^{di * B}, with the largest error being ei * 2^{(dsize-1) * B}.
|
||||
// As such we can ignore the last dsize-2 limbs safely of the sum of vmp products.
|
||||
// It is possible to further ignore the last dsize-1 limbs, but this introduce
|
||||
// ~0.5 to 1 bit of additional noise, and thus not chosen here to ensure that the same
|
||||
// noise is kept with respect to the ideal functionality.
|
||||
res_dft.set_size(mat.size() - ((dsize - di) as isize - 2).max(0) as usize);
|
||||
|
||||
for j in 0..cols - 1 {
|
||||
module.vec_znx_dft_apply(dsize, dsize - di - 1, &mut ai_dft, j, a, j + 1);
|
||||
}
|
||||
|
||||
if di == 0 {
|
||||
module.vmp_apply_dft_to_dft(&mut res_dft, &ai_dft, mat, scratch_1);
|
||||
} else {
|
||||
module.vmp_apply_dft_to_dft_add(&mut res_dft, &ai_dft, mat, di, scratch_1);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
let (mut a_conv, scratch_2) = scratch_1.take_vec_znx(a.n(), cols - 1, a_size);
|
||||
for j in 0..cols - 1 {
|
||||
module.vec_znx_normalize(basek_ksk, &mut a_conv, j, basek_in, a, j + 1, scratch_2);
|
||||
}
|
||||
|
||||
for di in 0..dsize {
|
||||
ai_dft.set_size((a_size + di) / dsize);
|
||||
|
||||
// Small optimization for dsize > 2
|
||||
// VMP produce some error e, and since we aggregate vmp * 2^{di * B}, then
|
||||
// we also aggregate ei * 2^{di * B}, with the largest error being ei * 2^{(dsize-1) * B}.
|
||||
// As such we can ignore the last dsize-2 limbs safely of the sum of vmp products.
|
||||
// It is possible to further ignore the last dsize-1 limbs, but this introduce
|
||||
// ~0.5 to 1 bit of additional noise, and thus not chosen here to ensure that the same
|
||||
// noise is kept with respect to the ideal functionality.
|
||||
res_dft.set_size(mat.size() - ((dsize - di) as isize - 2).max(0) as usize);
|
||||
|
||||
for j in 0..cols - 1 {
|
||||
module.vec_znx_dft_apply(dsize, dsize - di - 1, &mut ai_dft, j, &a_conv, j);
|
||||
}
|
||||
|
||||
if di == 0 {
|
||||
module.vmp_apply_dft_to_dft(&mut res_dft, &ai_dft, mat, scratch_2);
|
||||
} else {
|
||||
module.vmp_apply_dft_to_dft_add(&mut res_dft, &ai_dft, mat, di, scratch_2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
res_dft.set_size(res_dft.max_size());
|
||||
let mut res_big: VecZnxBig<DataRes, B> = module.vec_znx_idft_apply_consume(res_dft);
|
||||
module.vec_znx_big_add_small_inplace(&mut res_big, 0, a, 0);
|
||||
let mut res_big: VecZnxBig<DR, BE> = module.vec_znx_idft_apply_consume(res);
|
||||
module.vec_znx_big_add_small_inplace(&mut res_big, 0, a.data(), 0);
|
||||
res_big
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user