finalized raw gadget product test with noise equations

This commit is contained in:
Jean-Philippe Bossuat
2025-02-24 10:17:08 +01:00
parent 26c2bcbc05
commit 3634ab7746

View File

@@ -67,7 +67,7 @@ pub fn gadget_product_core<const OVERWRITE: bool, T>(
Elem<T>: ElemVecZnx<T>,
{
assert!(b_cols <= b.cols());
module.vec_znx_dft(res_dft_1, a, a_cols);
module.vec_znx_dft(res_dft_1, a, min(a_cols, b_cols));
module.vmp_apply_dft_to_dft(res_dft_0, res_dft_1, b.at(0), tmp_bytes);
module.vmp_apply_dft_to_dft_inplace(res_dft_1, b.at(1), tmp_bytes);
}
@@ -108,6 +108,7 @@ mod test {
VecZnxDftOps, VecZnxOps, VmpPMat,
};
use sampling::source::{Source, new_seed};
use std::cmp::min;
#[test]
fn test_gadget_product_core() {
@@ -220,11 +221,12 @@ mod test {
// Iterates over all possible cols values for input/output polynomials and gadget ciphertext.
(1..a.cols() + 1).for_each(|a_cols| {
(1..gadget_ct.cols() + 1).for_each(|b_cols| {
pt.elem_mut().zero();
elem_res.zero();
let a_cols: usize = a.cols() - 1;
let b_cols: usize = gadget_ct.cols();
//let b_cols: usize = min(a_cols+1, gadget_ct.cols());
println!("a_cols: {} b_cols: {}", a_cols, b_cols);
@@ -281,9 +283,9 @@ mod test {
.vec_znx_sub_inplace(pt.at_mut(0), &mut a_times_s);
pt.at_mut(0).normalize(log_base2k, &mut tmp_bytes);
pt.at(0).print(pt.elem().cols(), 16);
//pt.at(0).print(pt.elem().cols(), 16);
println!("noise_have: {}", pt.at(0).std(log_base2k).log2());
let noise_have: f64 = pt.at(0).std(log_base2k).log2();
let var_a_err: f64;
@@ -296,10 +298,16 @@ mod test {
let a_logq: usize = a_cols * log_base2k;
let b_logq: usize = b_cols * log_base2k;
let var_msg: f64 = params.xs() as f64;
println!(
"noise_pred: {}",
params.noise_grlwe_product(var_msg, var_a_err, a_logq, b_logq)
);
let noise_pred: f64 =
params.noise_grlwe_product(var_msg, var_a_err, a_logq, b_logq);
assert!(noise_have <= noise_pred + 1.0);
println!("noise_pred: {}", noise_have);
println!("noise_have: {}", noise_pred);
});
});
}
}
@@ -350,15 +358,14 @@ pub fn noise_grlwe_product(
a_logq: usize,
b_logq: usize,
) -> f64 {
let a_logq: usize = min(a_logq, b_logq);
let a_cols: usize = (a_logq + log_base2k - 1) / log_base2k;
let b_cols: usize = (b_logq + log_base2k - 1) / log_base2k;
let b_scale = 2.0f64.powi(b_logq as i32);
let a_scale: f64 = 2.0f64.powi((b_logq - a_logq) as i32);
let base: f64 = (1 << (log_base2k)) as f64;
let var_base: f64 = base * base / 12f64;
let var_round: f64 = 1f64 / 12f64;
// lhs = a_cols * n * (var_base * var_gct_err_lhs + var_e_a * var_msg * p^2)
// rhs = a_cols * n * var_base * var_gct_err_rhs * var_xs
@@ -367,5 +374,5 @@ pub fn noise_grlwe_product(
noise += var_msg * var_a_err * a_scale * a_scale;
noise = noise.sqrt();
noise /= b_scale;
noise.log2()
noise.log2().min(-1.0) // max noise is [-2^{-1}, 2^{-1}]
}