Re-organized code for glwe testing

This commit is contained in:
Jean-Philippe Bossuat
2025-06-13 09:20:14 +02:00
parent 989ea077a9
commit 4d4b43a4e5
9 changed files with 191 additions and 3 deletions

View File

@@ -29,3 +29,6 @@ pub use public_key::*;
pub use secret::*;
#[allow(unused_imports)]
pub use trace::*;
#[cfg(test)]
mod test_fft64;

View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,180 @@
use backend::{Decoding, Encoding, FFT64, Module, ScratchOwned, Stats, VecZnxOps, ZnxZero};
use itertools::izip;
use sampling::source::Source;
use crate::{FourierGLWECiphertext, GLWECiphertext, GLWEPlaintext, GLWEPublicKey, GLWESecret, Infos};
#[test]
fn encrypt_sk() {
let log_n: usize = 8;
(1..4).for_each(|rank| {
println!("test encrypt_sk rank: {}", rank);
test_encrypt_sk(log_n, 8, 54, 30, 3.2, rank);
});
}
#[test]
fn encrypt_zero_sk() {
let log_n: usize = 8;
(1..4).for_each(|rank| {
println!("test encrypt_zero_sk rank: {}", rank);
test_encrypt_zero_sk(log_n, 8, 64, 3.2, rank);
});
}
#[test]
fn encrypt_pk() {
let log_n: usize = 8;
(1..4).for_each(|rank| {
println!("test encrypt_pk rank: {}", rank);
test_encrypt_pk(log_n, 8, 64, 64, 3.2, rank)
});
}
fn test_encrypt_sk(log_n: usize, basek: usize, k_ct: usize, k_pt: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_pt);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k()),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0xFF);
pt.data.encode_vec_i64(0, basek, k_pt, &data_want, 10);
ct.encrypt_sk(
&module,
&pt,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
pt.data.zero();
ct.decrypt(&module, &mut pt, &sk, scratch.borrow());
let mut data_have: Vec<i64> = vec![0i64; module.n()];
pt.data
.decode_vec_i64(0, basek, pt.size() * basek, &mut data_have);
// TODO: properly assert the decryption noise through std(dec(ct) - pt)
let scale: f64 = (1 << (pt.size() * basek - k_pt)) as f64;
izip!(data_want.iter(), data_have.iter()).for_each(|(a, b)| {
let b_scaled = (*b as f64) / scale;
assert!(
(*a as f64 - b_scaled).abs() < 0.1,
"{} {}",
*a as f64,
b_scaled
)
});
}
fn test_encrypt_zero_sk(log_n: usize, basek: usize, k_ct: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([1u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut ct_dft: FourierGLWECiphertext<Vec<u8>, FFT64> = FourierGLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut scratch: ScratchOwned = ScratchOwned::new(
FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_ct)
| FourierGLWECiphertext::encrypt_sk_scratch_space(&module, basek, k_ct, rank),
);
ct_dft.encrypt_zero_sk(
&module,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_dft.decrypt(&module, &mut pt, &sk, scratch.borrow());
assert!((sigma - pt.data.std(0, basek) * (k_ct as f64).exp2()) <= 0.2);
}
fn test_encrypt_pk(log_n: usize, basek: usize, k_ct: usize, k_pk: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xu: Source = Source::new([0u8; 32]);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut pk: GLWEPublicKey<Vec<u8>, FFT64> = GLWEPublicKey::alloc(&module, basek, k_pk, rank);
pk.generate_from_sk(&module, &sk, &mut source_xa, &mut source_xe, sigma);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| GLWECiphertext::encrypt_pk_scratch_space(&module, basek, pk.k()),
);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0);
pt_want.data.encode_vec_i64(0, basek, k_ct, &data_want, 10);
ct.encrypt_pk(
&module,
&pt_want,
&pk,
&mut source_xu,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
ct.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_want.data, 0, &pt_have.data, 0);
let noise_have: f64 = pt_want.data.std(0, basek).log2();
let noise_want: f64 = ((((rank as f64) + 1.0) * module.n() as f64 * 0.5 * sigma * sigma).sqrt()).log2() - (k_ct as f64);
assert!(
(noise_have - noise_want).abs() < 0.2,
"{} {}",
noise_have,
noise_want
);
}

View File

@@ -0,0 +1,856 @@
use backend::{
Decoding, Encoding, FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, ZnxViewMut,
ZnxZero,
};
use itertools::izip;
use sampling::source::Source;
use crate::{
FourierGLWECiphertext, GGSWCiphertext, GLWECiphertext, GLWEPlaintext, GLWEPublicKey, GLWESecret, Infos,
automorphism::AutomorphismKey,
keyswitch_key::GLWESwitchingKey,
test_fft64::{log2_std_noise_gglwe_product, noise_ggsw_product},
};
#[test]
fn encrypt_sk() {
let log_n: usize = 8;
(1..4).for_each(|rank| {
println!("test encrypt_sk rank: {}", rank);
test_encrypt_sk(log_n, 8, 54, 30, 3.2, rank);
});
}
#[test]
fn encrypt_zero_sk() {
let log_n: usize = 8;
(1..4).for_each(|rank| {
println!("test encrypt_zero_sk rank: {}", rank);
test_encrypt_zero_sk(log_n, 8, 64, 3.2, rank);
});
}
#[test]
fn encrypt_pk() {
let log_n: usize = 8;
(1..4).for_each(|rank| {
println!("test encrypt_pk rank: {}", rank);
test_encrypt_pk(log_n, 8, 64, 64, 3.2, rank)
});
}
#[test]
fn keyswitch() {
let log_n: usize = 8;
let basek: usize = 12;
let k_in: usize = 45;
let digits: usize = k_in.div_ceil(basek);
(1..4).for_each(|rank_in| {
(1..4).for_each(|rank_out| {
(1..digits + 1).for_each(|di| {
let k_ksk: usize = k_in + basek * di;
let k_out: usize = k_ksk; // better capture noise
println!(
"test keyswitch digits: {} rank_in: {} rank_out: {}",
di, rank_in, rank_out
);
test_keyswitch(log_n, basek, k_out, k_in, k_ksk, di, rank_in, rank_out, 3.2);
})
});
});
}
#[test]
fn keyswitch_inplace() {
let log_n: usize = 8;
let basek: usize = 12;
let k_ct: usize = 45;
let digits: usize = k_ct.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ksk: usize = k_ct + basek * di;
println!("test keyswitch_inplace digits: {} rank: {}", di, rank);
test_keyswitch_inplace(log_n, basek, k_ct, k_ksk, di, rank, 3.2);
});
});
}
#[test]
fn external_product() {
let log_n: usize = 8;
let basek: usize = 12;
let k_in: usize = 45;
let digits: usize = k_in.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ggsw: usize = k_in + basek * di;
let k_out: usize = k_ggsw; // Better capture noise
println!("test external_product digits: {} rank: {}", di, rank);
test_external_product(log_n, basek, k_out, k_in, k_ggsw, di, rank, 3.2);
});
});
}
#[test]
fn external_product_inplace() {
let log_n: usize = 8;
let basek: usize = 12;
let k_ct: usize = 60;
let digits: usize = k_ct.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ggsw: usize = k_ct + basek * di;
println!("test external_product digits: {} rank: {}", di, rank);
test_external_product_inplace(log_n, basek, k_ct, k_ggsw, di, rank, 3.2);
});
});
}
#[test]
fn automorphism_inplace() {
let log_n: usize = 8;
let basek: usize = 12;
let k_ct: usize = 60;
let digits: usize = k_ct.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ksk: usize = k_ct + basek * di;
println!("test automorphism_inplace digits: {} rank: {}", di, rank);
test_automorphism_inplace(log_n, basek, -5, k_ct, k_ksk, di, rank, 3.2);
});
});
}
#[test]
fn automorphism() {
let log_n: usize = 8;
let basek: usize = 12;
let k_in: usize = 60;
let digits: usize = k_in.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ksk: usize = k_in + basek * di;
let k_out: usize = k_ksk; // Better capture noise.
println!("test automorphism digits: {} rank: {}", di, rank);
test_automorphism(log_n, basek, -5, k_out, k_in, k_ksk, di, rank, 3.2);
})
});
}
fn test_encrypt_sk(log_n: usize, basek: usize, k_ct: usize, k_pt: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_pt);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k()),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0xFF);
pt.data.encode_vec_i64(0, basek, k_pt, &data_want, 10);
ct.encrypt_sk(
&module,
&pt,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
pt.data.zero();
ct.decrypt(&module, &mut pt, &sk, scratch.borrow());
let mut data_have: Vec<i64> = vec![0i64; module.n()];
pt.data
.decode_vec_i64(0, basek, pt.size() * basek, &mut data_have);
// TODO: properly assert the decryption noise through std(dec(ct) - pt)
let scale: f64 = (1 << (pt.size() * basek - k_pt)) as f64;
izip!(data_want.iter(), data_have.iter()).for_each(|(a, b)| {
let b_scaled = (*b as f64) / scale;
assert!(
(*a as f64 - b_scaled).abs() < 0.1,
"{} {}",
*a as f64,
b_scaled
)
});
}
fn test_encrypt_zero_sk(log_n: usize, basek: usize, k_ct: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([1u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut ct_dft: FourierGLWECiphertext<Vec<u8>, FFT64> = FourierGLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut scratch: ScratchOwned = ScratchOwned::new(
FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_ct)
| FourierGLWECiphertext::encrypt_sk_scratch_space(&module, basek, k_ct, rank),
);
ct_dft.encrypt_zero_sk(
&module,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_dft.decrypt(&module, &mut pt, &sk, scratch.borrow());
assert!((sigma - pt.data.std(0, basek) * (k_ct as f64).exp2()) <= 0.2);
}
fn test_encrypt_pk(log_n: usize, basek: usize, k_ct: usize, k_pk: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xu: Source = Source::new([0u8; 32]);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut pk: GLWEPublicKey<Vec<u8>, FFT64> = GLWEPublicKey::alloc(&module, basek, k_pk, rank);
pk.generate_from_sk(&module, &sk, &mut source_xa, &mut source_xe, sigma);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| GLWECiphertext::encrypt_pk_scratch_space(&module, basek, pk.k()),
);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0);
pt_want.data.encode_vec_i64(0, basek, k_ct, &data_want, 10);
ct.encrypt_pk(
&module,
&pt_want,
&pk,
&mut source_xu,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
ct.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_want.data, 0, &pt_have.data, 0);
let noise_have: f64 = pt_want.data.std(0, basek).log2();
let noise_want: f64 = ((((rank as f64) + 1.0) * module.n() as f64 * 0.5 * sigma * sigma).sqrt()).log2() - (k_ct as f64);
assert!(
(noise_have - noise_want).abs() < 0.2,
"{} {}",
noise_have,
noise_want
);
}
fn test_keyswitch(
log_n: usize,
basek: usize,
k_out: usize,
k_in: usize,
k_ksk: usize,
digits: usize,
rank_in: usize,
rank_out: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_in.div_ceil(basek * digits);
let mut ksk: GLWESwitchingKey<Vec<u8>, FFT64> =
GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, digits, rank_in, rank_out);
let mut ct_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_in, rank_in);
let mut ct_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_out, rank_out);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank_out)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_out.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_in.k())
| GLWECiphertext::keyswitch_scratch_space(
&module,
basek,
ct_out.k(),
ct_in.k(),
ksk.k(),
digits,
rank_in,
rank_out,
),
);
let mut sk_in: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank_in);
sk_in.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut sk_out: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank_out);
sk_out.fill_ternary_prob(&module, 0.5, &mut source_xs);
ksk.generate_from_sk(
&module,
&sk_in,
&sk_out,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.encrypt_sk(
&module,
&pt_want,
&sk_in,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_out.keyswitch(&module, &ct_in, &ksk, scratch.borrow());
ct_out.decrypt(&module, &mut pt_have, &sk_out, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek * digits,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank_in as f64,
k_in,
k_ksk,
);
println!("{} vs. {}", noise_have, noise_want);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}
fn test_keyswitch_inplace(log_n: usize, basek: usize, k_ct: usize, k_ksk: usize, digits: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_ct.div_ceil(basek * digits);
let mut ct_grlwe: GLWESwitchingKey<Vec<u8>, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, digits, rank, rank);
let mut ct_glwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ct_grlwe.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::keyswitch_inplace_scratch_space(&module, basek, ct_glwe.k(), ct_grlwe.k(), digits, rank),
);
let mut sk0: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk0.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut sk1: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk1.fill_ternary_prob(&module, 0.5, &mut source_xs);
ct_grlwe.generate_from_sk(
&module,
&sk0,
&sk1,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.encrypt_sk(
&module,
&pt_want,
&sk0,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.keyswitch_inplace(&module, &ct_grlwe, scratch.borrow());
ct_glwe.decrypt(&module, &mut pt_have, &sk1, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek * digits,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_ct,
k_ksk,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}
fn test_automorphism(
log_n: usize,
basek: usize,
p: i64,
k_out: usize,
k_in: usize,
k_ksk: usize,
digits: usize,
rank: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_in.div_ceil(basek * digits);
let mut autokey: AutomorphismKey<Vec<u8>, FFT64> = AutomorphismKey::alloc(&module, basek, k_ksk, rows, digits, rank);
let mut ct_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_in, rank);
let mut ct_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_out, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
AutomorphismKey::generate_from_sk_scratch_space(&module, basek, autokey.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_out.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_in.k())
| GLWECiphertext::automorphism_scratch_space(
&module,
basek,
ct_out.k(),
ct_in.k(),
autokey.k(),
digits,
rank,
),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
autokey.generate_from_sk(
&module,
p,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_out.automorphism(&module, &ct_in, &autokey, scratch.borrow());
ct_out.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
module.vec_znx_automorphism_inplace(p, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
module.vec_znx_normalize_inplace(basek, &mut pt_have.data, 0, scratch.borrow());
let noise_have: f64 = pt_have.data.std(0, basek).log2();
println!("{}", noise_have);
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek * digits,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_in,
k_ksk,
);
assert!(
noise_have <= noise_want + 1.0,
"{} {}",
noise_have,
noise_want
);
}
fn test_automorphism_inplace(
log_n: usize,
basek: usize,
p: i64,
k_ct: usize,
k_ksk: usize,
digits: usize,
rank: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_ct.div_ceil(basek * digits);
let mut autokey: AutomorphismKey<Vec<u8>, FFT64> = AutomorphismKey::alloc(&module, basek, k_ksk, rows, digits, rank);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
AutomorphismKey::generate_from_sk_scratch_space(&module, basek, autokey.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::automorphism_inplace_scratch_space(&module, basek, ct.k(), autokey.k(), digits, rank),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
autokey.generate_from_sk(
&module,
p,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.automorphism_inplace(&module, &autokey, scratch.borrow());
ct.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
module.vec_znx_automorphism_inplace(p, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
module.vec_znx_normalize_inplace(basek, &mut pt_have.data, 0, scratch.borrow());
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek * digits,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_ct,
k_ksk,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product(
log_n: usize,
basek: usize,
k_out: usize,
k_in: usize,
k_ggsw: usize,
digits: usize,
rank: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_in.div_ceil(basek * digits);
let mut ct_ggsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, digits, rank);
let mut ct_glwe_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_in, rank);
let mut ct_glwe_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_out, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, ct_ggsw.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_glwe_out.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_glwe_in.k())
| GLWECiphertext::external_product_scratch_space(
&module,
basek,
ct_glwe_out.k(),
ct_glwe_in.k(),
ct_ggsw.k(),
digits,
rank,
),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
ct_ggsw.encrypt_sk(
&module,
&pt_rgsw,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe_in.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe_out.external_product(&module, &ct_glwe_in, &ct_ggsw, scratch.borrow());
ct_glwe_out.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek * digits,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_in,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product_inplace(log_n: usize, basek: usize, k_ct: usize, k_ggsw: usize, digits: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_ct.div_ceil(basek * digits);
let mut ct_ggsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, digits, rank);
let mut ct_glwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: usize = 1;
pt_rgsw.raw_mut()[k] = 1; // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, ct_ggsw.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::external_product_inplace_scratch_space(&module, basek, ct_glwe.k(), ct_ggsw.k(), digits, rank),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
ct_ggsw.encrypt_sk(
&module,
&pt_rgsw,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.external_product_inplace(&module, &ct_ggsw, scratch.borrow());
ct_glwe.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
module.vec_znx_rotate_inplace(k as i64, &mut pt_want.data, 0);
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek * digits,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_ct,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}

View File

@@ -0,0 +1 @@

View File

@@ -0,0 +1,6 @@
pub mod automorphism;
pub mod encryption;
pub mod external_product;
pub mod keyswitch;
pub mod packing;
pub mod trace;

View File

@@ -0,0 +1,139 @@
use crate::{AutomorphismKey, GLWECiphertext, GLWEOps, GLWEPlaintext, GLWESecret, StreamPacker};
use std::collections::HashMap;
use backend::{Encoding, FFT64, Module, ScratchOwned, Stats};
use sampling::source::Source;
#[test]
fn packing() {
let log_n: usize = 5;
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let basek: usize = 18;
let k_ct: usize = 36;
let pt_k: usize = 18;
let rank: usize = 3;
let sigma: f64 = 3.2;
let digits: usize = 1;
let k_ksk: usize = k_ct + basek * digits;
let rows: usize = k_ct.div_ceil(basek * digits);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, k_ct)
| GLWECiphertext::decrypt_scratch_space(&module, basek, k_ct)
| AutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_ksk, rank)
| StreamPacker::scratch_space(&module, basek, k_ct, k_ksk, digits, rank),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut data: Vec<i64> = vec![0i64; module.n()];
data.iter_mut().enumerate().for_each(|(i, x)| {
*x = i as i64;
});
pt.data.encode_vec_i64(0, basek, pt_k, &data, 32);
let gal_els: Vec<i64> = StreamPacker::galois_elements(&module);
let mut auto_keys: HashMap<i64, AutomorphismKey<Vec<u8>, FFT64>> = HashMap::new();
gal_els.iter().for_each(|gal_el| {
let mut key: AutomorphismKey<Vec<u8>, FFT64> = AutomorphismKey::alloc(&module, basek, k_ksk, rows, digits, rank);
key.generate_from_sk(
&module,
*gal_el,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
auto_keys.insert(*gal_el, key);
});
let log_batch: usize = 0;
let mut packer: StreamPacker = StreamPacker::new(&module, log_batch, basek, k_ct, rank);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
ct.encrypt_sk(
&module,
&pt,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut res: Vec<GLWECiphertext<Vec<u8>>> = Vec::new();
(0..module.n() >> log_batch).for_each(|i| {
ct.encrypt_sk(
&module,
&pt,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
pt.rotate_inplace(&module, -(1 << log_batch)); // X^-batch * pt
if reverse_bits_msb(i, log_n as u32) % 5 == 0 {
packer.add(&module, &mut res, Some(&ct), &auto_keys, scratch.borrow());
} else {
packer.add(
&module,
&mut res,
None::<&GLWECiphertext<Vec<u8>>>,
&auto_keys,
scratch.borrow(),
)
}
});
packer.flush(&module, &mut res, &auto_keys, scratch.borrow());
packer.reset();
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
res.iter().enumerate().for_each(|(i, res_i)| {
let mut data: Vec<i64> = vec![0i64; module.n()];
data.iter_mut().enumerate().for_each(|(i, x)| {
if i % 5 == 0 {
*x = reverse_bits_msb(i, log_n as u32) as i64;
}
});
pt_want.data.encode_vec_i64(0, basek, pt_k, &data, 32);
res_i.decrypt(&module, &mut pt, &sk, scratch.borrow());
if i & 1 == 0 {
pt.sub_inplace_ab(&module, &pt_want);
} else {
pt.add_inplace(&module, &pt_want);
}
let noise_have = pt.data.std(0, basek).log2();
// println!("noise_have: {}", noise_have);
assert!(
noise_have < -((k_ct - basek) as f64),
"noise: {}",
noise_have
);
});
}
#[inline(always)]
fn reverse_bits_msb(x: usize, n: u32) -> usize {
x.reverse_bits() >> (usize::BITS - n)
}

View File

@@ -0,0 +1,113 @@
use std::collections::HashMap;
use backend::{FFT64, FillUniform, Module, ScratchOwned, Stats, VecZnxOps, ZnxView, ZnxViewMut};
use sampling::source::Source;
use crate::{AutomorphismKey, GLWECiphertext, GLWEPlaintext, GLWESecret, Infos, test_fft64::var_noise_gglwe_product};
#[test]
fn trace_inplace() {
let log_n: usize = 8;
(1..4).for_each(|rank| {
println!("test trace_inplace rank: {}", rank);
test_trace_inplace(log_n, 8, 54, 3.2, rank);
});
}
fn test_trace_inplace(log_n: usize, basek: usize, k: usize, sigma: f64, rank: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let k_autokey: usize = k + basek;
let digits: usize = 1;
let rows: usize = k.div_ceil(basek * digits);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| AutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_autokey, rank)
| GLWECiphertext::trace_inplace_scratch_space(&module, basek, ct.k(), k_autokey, digits, rank),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&&module, 0.5, &mut source_xs);
let mut data_want: Vec<i64> = vec![0i64; module.n()];
data_want
.iter_mut()
.for_each(|x| *x = source_xa.next_i64() & 0xFF);
pt_have
.data
.fill_uniform(basek, 0, pt_have.size(), &mut source_xa);
ct.encrypt_sk(
&module,
&pt_have,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut auto_keys: HashMap<i64, AutomorphismKey<Vec<u8>, FFT64>> = HashMap::new();
let gal_els: Vec<i64> = GLWECiphertext::trace_galois_elements(&module);
gal_els.iter().for_each(|gal_el| {
let mut key: AutomorphismKey<Vec<u8>, FFT64> = AutomorphismKey::alloc(&module, basek, k_autokey, rows, digits, rank);
key.generate_from_sk(
&module,
*gal_el,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
auto_keys.insert(*gal_el, key);
});
ct.trace_inplace(&module, 0, 5, &auto_keys, scratch.borrow());
ct.trace_inplace(&module, 5, log_n, &auto_keys, scratch.borrow());
(0..pt_want.size()).for_each(|i| pt_want.data.at_mut(0, i)[0] = pt_have.data.at(0, i)[0]);
ct.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_want.data, 0, &pt_have.data, 0);
module.vec_znx_normalize_inplace(basek, &mut pt_want.data, 0, scratch.borrow());
let noise_have = pt_want.data.std(0, basek).log2();
let mut noise_want: f64 = var_noise_gglwe_product(
module.n() as f64,
basek,
0.5,
0.5,
1.0 / 12.0,
sigma * sigma,
0.0,
rank as f64,
k,
k_autokey,
);
noise_want += sigma * sigma * (-2.0 * (k) as f64).exp2();
noise_want += module.n() as f64 * 1.0 / 12.0 * 0.5 * rank as f64 * (-2.0 * (k) as f64).exp2();
noise_want = noise_want.sqrt().log2();
assert!(
(noise_have - noise_want).abs() < 1.0,
"{} > {}",
noise_have,
noise_want
);
}