mirror of
https://github.com/arnaucube/poulpy.git
synced 2026-02-10 13:16:44 +01:00
split mat_znx into struct and ops + added missing ops on module
This commit is contained in:
@@ -3,6 +3,7 @@ pub mod encoding;
|
||||
// Other modules and exports
|
||||
pub mod ffi;
|
||||
pub mod mat_znx_dft;
|
||||
pub mod mat_znx_dft_ops;
|
||||
pub mod module;
|
||||
pub mod sampling;
|
||||
pub mod scalar_znx;
|
||||
@@ -19,6 +20,7 @@ pub mod znx_base;
|
||||
|
||||
pub use encoding::*;
|
||||
pub use mat_znx_dft::*;
|
||||
pub use mat_znx_dft_ops::*;
|
||||
pub use module::*;
|
||||
pub use sampling::*;
|
||||
pub use scalar_znx::*;
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
use crate::ffi::vec_znx_big::vec_znx_big_t;
|
||||
use crate::ffi::vec_znx_dft::vec_znx_dft_t;
|
||||
use crate::ffi::vmp::{self, vmp_pmat_t};
|
||||
use crate::znx_base::{GetZnxBase, ZnxAlloc, ZnxBase, ZnxInfos, ZnxLayout, ZnxSliceSize};
|
||||
use crate::{Backend, FFT64, Module, VecZnx, VecZnxBig, VecZnxDft, alloc_aligned, assert_alignement};
|
||||
use crate::{Backend, FFT64, Module, alloc_aligned};
|
||||
use std::marker::PhantomData;
|
||||
|
||||
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
|
||||
@@ -49,7 +46,7 @@ impl<B: Backend> ZnxAlloc<B> for MatZnxDft<B> {
|
||||
}
|
||||
|
||||
fn bytes_of(module: &Module<B>, rows: usize, cols: usize, size: usize) -> usize {
|
||||
unsafe { vmp::bytes_of_vmp_pmat(module.ptr, rows as u64, size as u64) as usize * cols }
|
||||
unsafe { crate::ffi::vmp::bytes_of_vmp_pmat(module.ptr, rows as u64, size as u64) as usize * cols }
|
||||
}
|
||||
}
|
||||
|
||||
@@ -88,522 +85,3 @@ impl MatZnxDft<FFT64> {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This trait implements methods for vector matrix product,
|
||||
/// that is, multiplying a [VecZnx] with a [MatZnxDft].
|
||||
pub trait MatZnxDftOps<B: Backend> {
|
||||
fn bytes_of_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> usize;
|
||||
|
||||
/// Allocates a new [MatZnxDft] with the given number of rows and columns.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `rows`: number of rows (number of [VecZnxDft]).
|
||||
/// * `size`: number of size (number of size of each [VecZnxDft]).
|
||||
fn new_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> MatZnxDft<B>;
|
||||
|
||||
/// Returns the number of bytes needed as scratch space for [MatZnxDftOps::vmp_prepare_contiguous].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `rows`: number of rows of the [MatZnxDft] used in [MatZnxDftOps::vmp_prepare_contiguous].
|
||||
/// * `size`: number of size of the [MatZnxDft] used in [MatZnxDftOps::vmp_prepare_contiguous].
|
||||
fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize, size: usize) -> usize;
|
||||
|
||||
/// Prepares a [MatZnxDft] from a contiguous array of [i64].
|
||||
/// The helper struct [Matrix3D] can be used to contruct and populate
|
||||
/// the appropriate contiguous array.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `a`: the contiguous array of [i64] of the 3D matrix to encode on the [MatZnxDft].
|
||||
/// * `buf`: scratch space, the size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_contiguous(&self, b: &mut MatZnxDft<B>, a: &[i64], buf: &mut [u8]);
|
||||
|
||||
/// Prepares the ith-row of [MatZnxDft] from a [VecZnx].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `a`: the vector of [VecZnx] to encode on the [MatZnxDft].
|
||||
/// * `row_i`: the index of the row to prepare.
|
||||
/// * `buf`: scratch space, the size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
///
|
||||
/// The size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_row(&self, b: &mut MatZnxDft<B>, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]);
|
||||
|
||||
/// Extracts the ith-row of [MatZnxDft] into a [VecZnxBig].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the [VecZnxBig] to on which to extract the row of the [MatZnxDft].
|
||||
/// * `a`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `row_i`: the index of the row to extract.
|
||||
fn vmp_extract_row(&self, b: &mut VecZnxBig<B>, a: &MatZnxDft<B>, row_i: usize);
|
||||
|
||||
/// Prepares the ith-row of [MatZnxDft] from a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `a`: the [VecZnxDft] to encode on the [MatZnxDft].
|
||||
/// * `row_i`: the index of the row to prepare.
|
||||
///
|
||||
/// The size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_row_dft(&self, b: &mut MatZnxDft<B>, a: &VecZnxDft<B>, row_i: usize);
|
||||
|
||||
/// Extracts the ith-row of [MatZnxDft] into a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the [VecZnxDft] to on which to extract the row of the [MatZnxDft].
|
||||
/// * `a`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `row_i`: the index of the row to extract.
|
||||
fn vmp_extract_row_dft(&self, b: &mut VecZnxDft<B>, row_i: usize, a: &MatZnxDft<B>);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [MatZnxDftOps::vmp_apply_dft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c_size`: number of size of the output [VecZnxDft].
|
||||
/// * `a_size`: number of size of the input [VecZnx].
|
||||
/// * `rows`: number of rows of the input [MatZnxDft].
|
||||
/// * `size`: number of size of the input [MatZnxDft].
|
||||
fn vmp_apply_dft_tmp_bytes(&self, c_size: usize, a_size: usize, b_rows: usize, b_size: usize) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnx] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_tmp_bytes].
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft<B>, a: &VecZnx, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft] and adds on the receiver.
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnx] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_add(&self, c: &mut VecZnxDft<B>, a: &VecZnx, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [MatZnxDftOps::vmp_apply_dft_to_dft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c_size`: number of size of the output [VecZnxDft].
|
||||
/// * `a_size`: number of size of the input [VecZnxDft].
|
||||
/// * `rows`: number of rows of the input [MatZnxDft].
|
||||
/// * `size`: number of size of the input [MatZnxDft].
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(&self, c_size: usize, a_size: usize, rows: usize, size: usize) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft].
|
||||
/// The size of `buf` is given by [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft<B>, a: &VecZnxDft<B>, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft] and adds on top of the receiver instead of overwritting it.
|
||||
/// The size of `buf` is given by [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft_add(&self, c: &mut VecZnxDft<B>, a: &VecZnxDft<B>, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft] in place.
|
||||
/// The size of `buf` is given by [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the input and output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft<B>, a: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
}
|
||||
|
||||
impl MatZnxDftOps<FFT64> for Module<FFT64> {
|
||||
fn new_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> MatZnxDft<FFT64> {
|
||||
MatZnxDft::<FFT64>::new(self, rows, cols, size)
|
||||
}
|
||||
|
||||
fn bytes_of_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> usize {
|
||||
unsafe { vmp::bytes_of_vmp_pmat(self.ptr, rows as u64, (size * cols) as u64) as usize }
|
||||
}
|
||||
|
||||
fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize, size: usize) -> usize {
|
||||
unsafe { vmp::vmp_prepare_tmp_bytes(self.ptr, rows as u64, (size * cols) as u64) as usize }
|
||||
}
|
||||
|
||||
fn vmp_prepare_contiguous(&self, b: &mut MatZnxDft<FFT64>, a: &[i64], tmp_bytes: &mut [u8]) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.len(), b.n() * b.poly_count());
|
||||
assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols(), b.size()));
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_contiguous(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp_pmat_t,
|
||||
a.as_ptr(),
|
||||
b.rows() as u64,
|
||||
(b.size() * b.cols()) as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_prepare_row(&self, b: &mut MatZnxDft<FFT64>, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.len(), b.size() * self.n() * b.cols());
|
||||
assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols(), b.size()));
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_row(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp_pmat_t,
|
||||
a.as_ptr(),
|
||||
row_i as u64,
|
||||
b.rows() as u64,
|
||||
(b.size() * b.cols()) as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_extract_row(&self, b: &mut VecZnxBig<FFT64>, a: &MatZnxDft<FFT64>, row_i: usize) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.size(), b.size());
|
||||
assert_eq!(a.cols(), b.cols());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_extract_row(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vec_znx_big_t,
|
||||
a.as_ptr() as *const vmp_pmat_t,
|
||||
row_i as u64,
|
||||
a.rows() as u64,
|
||||
(a.size() * a.cols()) as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_prepare_row_dft(&self, b: &mut MatZnxDft<FFT64>, a: &VecZnxDft<FFT64>, row_i: usize) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.size(), b.size());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_row_dft(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp_pmat_t,
|
||||
a.as_ptr() as *const vec_znx_dft_t,
|
||||
row_i as u64,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_extract_row_dft(&self, b: &mut VecZnxDft<FFT64>, row_i: usize, a: &MatZnxDft<FFT64>) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.size(), b.size());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_extract_row_dft(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
a.as_ptr() as *const vmp_pmat_t,
|
||||
row_i as u64,
|
||||
a.rows() as u64,
|
||||
a.size() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_tmp_bytes(&self, res_size: usize, a_size: usize, b_rows: usize, b_size: usize) -> usize {
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_tmp_bytes(
|
||||
self.ptr,
|
||||
res_size as u64,
|
||||
a_size as u64,
|
||||
b_rows as u64,
|
||||
b_size as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnx, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr(),
|
||||
a.size() as u64,
|
||||
(a.n() * a.cols()) as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_add(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnx, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_add(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr(),
|
||||
a.size() as u64,
|
||||
(a.n() * a.size()) as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(&self, res_size: usize, a_size: usize, gct_rows: usize, gct_size: usize) -> usize {
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft_tmp_bytes(
|
||||
self.ptr,
|
||||
res_size as u64,
|
||||
a_size as u64,
|
||||
gct_rows as u64,
|
||||
gct_size as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnxDft<FFT64>, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr() as *const vec_znx_dft_t,
|
||||
a.size() as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_add(
|
||||
&self,
|
||||
c: &mut VecZnxDft<FFT64>,
|
||||
a: &VecZnxDft<FFT64>,
|
||||
b: &MatZnxDft<FFT64>,
|
||||
tmp_bytes: &mut [u8],
|
||||
) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft_add(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr() as *const vec_znx_dft_t,
|
||||
a.size() as u64,
|
||||
b.as_ptr() as *const vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft<FFT64>, a: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(b.size(), b.size(), a.rows(), a.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
b.size() as u64,
|
||||
b.as_ptr() as *mut vec_znx_dft_t,
|
||||
b.size() as u64,
|
||||
a.as_ptr() as *const vmp_pmat_t,
|
||||
a.rows() as u64,
|
||||
a.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{
|
||||
FFT64, MatZnxDft, MatZnxDftOps, Module, Sampling, VecZnx, VecZnxBig, VecZnxBigOps, VecZnxDft, VecZnxDftOps, VecZnxOps,
|
||||
alloc_aligned, znx_base::ZnxLayout,
|
||||
};
|
||||
use sampling::source::Source;
|
||||
|
||||
#[test]
|
||||
fn vmp_prepare_row_dft() {
|
||||
let module: Module<FFT64> = Module::<FFT64>::new(32);
|
||||
let vpmat_rows: usize = 4;
|
||||
let vpmat_size: usize = 5;
|
||||
let log_base2k: usize = 8;
|
||||
let mut a: VecZnx = module.new_vec_znx(1, vpmat_size);
|
||||
let mut a_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, vpmat_size);
|
||||
let mut a_big: VecZnxBig<FFT64> = module.new_vec_znx_big(1, vpmat_size);
|
||||
let mut b_big: VecZnxBig<FFT64> = module.new_vec_znx_big(1, vpmat_size);
|
||||
let mut b_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, vpmat_size);
|
||||
let mut vmpmat_0: MatZnxDft<FFT64> = module.new_mat_znx_dft(vpmat_rows, 1, vpmat_size);
|
||||
let mut vmpmat_1: MatZnxDft<FFT64> = module.new_mat_znx_dft(vpmat_rows, 1, vpmat_size);
|
||||
|
||||
let mut tmp_bytes: Vec<u8> = alloc_aligned(module.vmp_prepare_tmp_bytes(vpmat_rows, 1, vpmat_size));
|
||||
|
||||
for row_i in 0..vpmat_rows {
|
||||
let mut source: Source = Source::new([0u8; 32]);
|
||||
module.fill_uniform(log_base2k, &mut a, 0, vpmat_size, &mut source);
|
||||
module.vec_znx_dft(&mut a_dft, 0, &a, 0);
|
||||
module.vmp_prepare_row(&mut vmpmat_0, &a.raw(), row_i, &mut tmp_bytes);
|
||||
|
||||
// Checks that prepare(mat_znx_dft, a) = prepare_dft(mat_znx_dft, a_dft)
|
||||
module.vmp_prepare_row_dft(&mut vmpmat_1, &a_dft, row_i);
|
||||
assert_eq!(vmpmat_0.raw(), vmpmat_1.raw());
|
||||
|
||||
// Checks that a_dft = extract_dft(prepare(mat_znx_dft, a), b_dft)
|
||||
module.vmp_extract_row_dft(&mut b_dft, row_i, &vmpmat_0);
|
||||
assert_eq!(a_dft.raw(), b_dft.raw());
|
||||
|
||||
// Checks that a_big = extract(prepare_dft(mat_znx_dft, a_dft), b_big)
|
||||
module.vmp_extract_row(&mut b_big, &vmpmat_0, row_i);
|
||||
module.vec_znx_idft(&mut a_big, 0, &a_dft, 0, &mut tmp_bytes);
|
||||
assert_eq!(a_big.raw(), b_big.raw());
|
||||
}
|
||||
|
||||
module.free();
|
||||
}
|
||||
}
|
||||
|
||||
536
base2k/src/mat_znx_dft_ops.rs
Normal file
536
base2k/src/mat_znx_dft_ops.rs
Normal file
@@ -0,0 +1,536 @@
|
||||
use crate::ffi::vec_znx_big::vec_znx_big_t;
|
||||
use crate::ffi::vec_znx_dft::vec_znx_dft_t;
|
||||
use crate::ffi::vmp;
|
||||
use crate::znx_base::{ZnxInfos, ZnxLayout};
|
||||
use crate::{Backend, FFT64, MatZnxDft, Module, VecZnx, VecZnxBig, VecZnxDft, ZnxAlloc, assert_alignement};
|
||||
|
||||
/// This trait implements methods for vector matrix product,
|
||||
/// that is, multiplying a [VecZnx] with a [MatZnxDft].
|
||||
pub trait MatZnxDftOps<B: Backend> {
|
||||
/// Allocates a new [MatZnxDft] with the given number of rows and columns.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `rows`: number of rows (number of [VecZnxDft]).
|
||||
/// * `size`: number of size (number of size of each [VecZnxDft]).
|
||||
fn new_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> MatZnxDft<B>;
|
||||
|
||||
fn bytes_of_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> usize;
|
||||
|
||||
fn new_mat_znx_dft_from_bytes(&self, rows: usize, cols: usize, size: usize, bytes: Vec<u8>) -> MatZnxDft<FFT64>;
|
||||
|
||||
fn new_mat_znx_dft_from_bytes_borrow(&self, rows: usize, cols: usize, size: usize, bytes: &mut [u8]) -> MatZnxDft<FFT64>;
|
||||
|
||||
/// Returns the number of bytes needed as scratch space for [MatZnxDftOps::vmp_prepare_contiguous].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `rows`: number of rows of the [MatZnxDft] used in [MatZnxDftOps::vmp_prepare_contiguous].
|
||||
/// * `size`: number of size of the [MatZnxDft] used in [MatZnxDftOps::vmp_prepare_contiguous].
|
||||
fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize, size: usize) -> usize;
|
||||
|
||||
/// Prepares a [MatZnxDft] from a contiguous array of [i64].
|
||||
/// The helper struct [Matrix3D] can be used to contruct and populate
|
||||
/// the appropriate contiguous array.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `a`: the contiguous array of [i64] of the 3D matrix to encode on the [MatZnxDft].
|
||||
/// * `buf`: scratch space, the size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_contiguous(&self, b: &mut MatZnxDft<B>, a: &[i64], buf: &mut [u8]);
|
||||
|
||||
/// Prepares the ith-row of [MatZnxDft] from a [VecZnx].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `a`: the vector of [VecZnx] to encode on the [MatZnxDft].
|
||||
/// * `row_i`: the index of the row to prepare.
|
||||
/// * `buf`: scratch space, the size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
///
|
||||
/// The size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_row(&self, b: &mut MatZnxDft<B>, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]);
|
||||
|
||||
/// Extracts the ith-row of [MatZnxDft] into a [VecZnxBig].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the [VecZnxBig] to on which to extract the row of the [MatZnxDft].
|
||||
/// * `a`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `row_i`: the index of the row to extract.
|
||||
fn vmp_extract_row(&self, b: &mut VecZnxBig<B>, a: &MatZnxDft<B>, row_i: usize);
|
||||
|
||||
/// Prepares the ith-row of [MatZnxDft] from a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `a`: the [VecZnxDft] to encode on the [MatZnxDft].
|
||||
/// * `row_i`: the index of the row to prepare.
|
||||
///
|
||||
/// The size of buf can be obtained with [MatZnxDftOps::vmp_prepare_tmp_bytes].
|
||||
fn vmp_prepare_row_dft(&self, b: &mut MatZnxDft<B>, a: &VecZnxDft<B>, row_i: usize);
|
||||
|
||||
/// Extracts the ith-row of [MatZnxDft] into a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the [VecZnxDft] to on which to extract the row of the [MatZnxDft].
|
||||
/// * `a`: [MatZnxDft] on which the values are encoded.
|
||||
/// * `row_i`: the index of the row to extract.
|
||||
fn vmp_extract_row_dft(&self, b: &mut VecZnxDft<B>, row_i: usize, a: &MatZnxDft<B>);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [MatZnxDftOps::vmp_apply_dft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c_size`: number of size of the output [VecZnxDft].
|
||||
/// * `a_size`: number of size of the input [VecZnx].
|
||||
/// * `rows`: number of rows of the input [MatZnxDft].
|
||||
/// * `size`: number of size of the input [MatZnxDft].
|
||||
fn vmp_apply_dft_tmp_bytes(&self, c_size: usize, a_size: usize, b_rows: usize, b_size: usize) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnx] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_tmp_bytes].
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft<B>, a: &VecZnx, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft] and adds on the receiver.
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnx] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_add(&self, c: &mut VecZnxDft<B>, a: &VecZnx, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Returns the size of the stratch space necessary for [MatZnxDftOps::vmp_apply_dft_to_dft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c_size`: number of size of the output [VecZnxDft].
|
||||
/// * `a_size`: number of size of the input [VecZnxDft].
|
||||
/// * `rows`: number of rows of the input [MatZnxDft].
|
||||
/// * `size`: number of size of the input [MatZnxDft].
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(&self, c_size: usize, a_size: usize, rows: usize, size: usize) -> usize;
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft].
|
||||
/// The size of `buf` is given by [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft<B>, a: &VecZnxDft<B>, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft] and adds on top of the receiver instead of overwritting it.
|
||||
/// The size of `buf` is given by [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `c`: the operand on which the output of the vector matrix product is added, as a [VecZnxDft].
|
||||
/// * `a`: the left operand [VecZnxDft] of the vector matrix product.
|
||||
/// * `b`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft_add(&self, c: &mut VecZnxDft<B>, a: &VecZnxDft<B>, b: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
|
||||
/// Applies the vector matrix product [VecZnxDft] x [MatZnxDft] in place.
|
||||
/// The size of `buf` is given by [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
///
|
||||
/// A vector matrix product is equivalent to a sum of [crate::SvpPPolOps::svp_apply_dft]
|
||||
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
|
||||
/// and each vector a [VecZnxDft] (row) of the [MatZnxDft].
|
||||
///
|
||||
/// As such, given an input [VecZnx] of `i` size and a [MatZnxDft] of `i` rows and
|
||||
/// `j` size, the output is a [VecZnx] of `j` size.
|
||||
///
|
||||
/// If there is a mismatch between the dimensions the largest valid ones are used.
|
||||
///
|
||||
/// ```text
|
||||
/// |a b c d| x |e f g| = (a * |e f g| + b * |h i j| + c * |k l m|) = |n o p|
|
||||
/// |h i j|
|
||||
/// |k l m|
|
||||
/// ```
|
||||
/// where each element is a [VecZnxDft].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `b`: the input and output of the vector matrix product, as a [VecZnxDft].
|
||||
/// * `a`: the right operand [MatZnxDft] of the vector matrix product.
|
||||
/// * `buf`: scratch space, the size can be obtained with [MatZnxDftOps::vmp_apply_dft_to_dft_tmp_bytes].
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft<B>, a: &MatZnxDft<B>, buf: &mut [u8]);
|
||||
}
|
||||
|
||||
impl MatZnxDftOps<FFT64> for Module<FFT64> {
|
||||
fn new_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> MatZnxDft<FFT64> {
|
||||
MatZnxDft::<FFT64>::new(self, rows, cols, size)
|
||||
}
|
||||
|
||||
fn bytes_of_mat_znx_dft(&self, rows: usize, cols: usize, size: usize) -> usize {
|
||||
MatZnxDft::<FFT64>::bytes_of(self, rows, cols, size)
|
||||
}
|
||||
|
||||
fn new_mat_znx_dft_from_bytes(&self, rows: usize, cols: usize, size: usize, bytes: Vec<u8>) -> MatZnxDft<FFT64> {
|
||||
MatZnxDft::<FFT64>::from_bytes(self, rows, cols, size, bytes)
|
||||
}
|
||||
|
||||
fn new_mat_znx_dft_from_bytes_borrow(&self, rows: usize, cols: usize, size: usize, bytes: &mut [u8]) -> MatZnxDft<FFT64> {
|
||||
MatZnxDft::<FFT64>::from_bytes_borrow(self, rows, cols, size, bytes)
|
||||
}
|
||||
|
||||
fn vmp_prepare_tmp_bytes(&self, rows: usize, cols: usize, size: usize) -> usize {
|
||||
unsafe { vmp::vmp_prepare_tmp_bytes(self.ptr, rows as u64, (size * cols) as u64) as usize }
|
||||
}
|
||||
|
||||
fn vmp_prepare_contiguous(&self, b: &mut MatZnxDft<FFT64>, a: &[i64], tmp_bytes: &mut [u8]) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.len(), b.n() * b.poly_count());
|
||||
assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols(), b.size()));
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_contiguous(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp::vmp_pmat_t,
|
||||
a.as_ptr(),
|
||||
b.rows() as u64,
|
||||
(b.size() * b.cols()) as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_prepare_row(&self, b: &mut MatZnxDft<FFT64>, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.len(), b.size() * self.n() * b.cols());
|
||||
assert!(tmp_bytes.len() >= self.vmp_prepare_tmp_bytes(b.rows(), b.cols(), b.size()));
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_row(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp::vmp_pmat_t,
|
||||
a.as_ptr(),
|
||||
row_i as u64,
|
||||
b.rows() as u64,
|
||||
(b.size() * b.cols()) as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_extract_row(&self, b: &mut VecZnxBig<FFT64>, a: &MatZnxDft<FFT64>, row_i: usize) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.size(), b.size());
|
||||
assert_eq!(a.cols(), b.cols());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_extract_row(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vec_znx_big_t,
|
||||
a.as_ptr() as *const vmp::vmp_pmat_t,
|
||||
row_i as u64,
|
||||
a.rows() as u64,
|
||||
(a.size() * a.cols()) as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_prepare_row_dft(&self, b: &mut MatZnxDft<FFT64>, a: &VecZnxDft<FFT64>, row_i: usize) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.size(), b.size());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_prepare_row_dft(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vmp::vmp_pmat_t,
|
||||
a.as_ptr() as *const vec_znx_dft_t,
|
||||
row_i as u64,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_extract_row_dft(&self, b: &mut VecZnxDft<FFT64>, row_i: usize, a: &MatZnxDft<FFT64>) {
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_eq!(a.n(), b.n());
|
||||
assert_eq!(a.size(), b.size());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_extract_row_dft(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
a.as_ptr() as *const vmp::vmp_pmat_t,
|
||||
row_i as u64,
|
||||
a.rows() as u64,
|
||||
a.size() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_tmp_bytes(&self, res_size: usize, a_size: usize, b_rows: usize, b_size: usize) -> usize {
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_tmp_bytes(
|
||||
self.ptr,
|
||||
res_size as u64,
|
||||
a_size as u64,
|
||||
b_rows as u64,
|
||||
b_size as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnx, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr(),
|
||||
a.size() as u64,
|
||||
(a.n() * a.cols()) as u64,
|
||||
b.as_ptr() as *const vmp::vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_add(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnx, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_add(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr(),
|
||||
a.size() as u64,
|
||||
(a.n() * a.size()) as u64,
|
||||
b.as_ptr() as *const vmp::vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_tmp_bytes(&self, res_size: usize, a_size: usize, gct_rows: usize, gct_size: usize) -> usize {
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft_tmp_bytes(
|
||||
self.ptr,
|
||||
res_size as u64,
|
||||
a_size as u64,
|
||||
gct_rows as u64,
|
||||
gct_size as u64,
|
||||
) as usize
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft(&self, c: &mut VecZnxDft<FFT64>, a: &VecZnxDft<FFT64>, b: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr() as *const vec_znx_dft_t,
|
||||
a.size() as u64,
|
||||
b.as_ptr() as *const vmp::vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_add(
|
||||
&self,
|
||||
c: &mut VecZnxDft<FFT64>,
|
||||
a: &VecZnxDft<FFT64>,
|
||||
b: &MatZnxDft<FFT64>,
|
||||
tmp_bytes: &mut [u8],
|
||||
) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(c.size(), a.size(), b.rows(), b.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft_add(
|
||||
self.ptr,
|
||||
c.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
c.size() as u64,
|
||||
a.as_ptr() as *const vec_znx_dft_t,
|
||||
a.size() as u64,
|
||||
b.as_ptr() as *const vmp::vmp_pmat_t,
|
||||
b.rows() as u64,
|
||||
b.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vmp_apply_dft_to_dft_inplace(&self, b: &mut VecZnxDft<FFT64>, a: &MatZnxDft<FFT64>, tmp_bytes: &mut [u8]) {
|
||||
debug_assert!(tmp_bytes.len() >= self.vmp_apply_dft_to_dft_tmp_bytes(b.size(), b.size(), a.rows(), a.size()));
|
||||
#[cfg(debug_assertions)]
|
||||
{
|
||||
assert_alignement(tmp_bytes.as_ptr());
|
||||
}
|
||||
unsafe {
|
||||
vmp::vmp_apply_dft_to_dft(
|
||||
self.ptr,
|
||||
b.as_mut_ptr() as *mut vec_znx_dft_t,
|
||||
b.size() as u64,
|
||||
b.as_ptr() as *mut vec_znx_dft_t,
|
||||
b.size() as u64,
|
||||
a.as_ptr() as *const vmp::vmp_pmat_t,
|
||||
a.rows() as u64,
|
||||
a.size() as u64,
|
||||
tmp_bytes.as_mut_ptr(),
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::{
|
||||
FFT64, MatZnxDft, MatZnxDftOps, Module, Sampling, VecZnx, VecZnxBig, VecZnxBigOps, VecZnxDft, VecZnxDftOps, VecZnxOps,
|
||||
alloc_aligned, znx_base::ZnxLayout,
|
||||
};
|
||||
use sampling::source::Source;
|
||||
|
||||
#[test]
|
||||
fn vmp_prepare_row_dft() {
|
||||
let module: Module<FFT64> = Module::<FFT64>::new(32);
|
||||
let vpmat_rows: usize = 4;
|
||||
let vpmat_size: usize = 5;
|
||||
let log_base2k: usize = 8;
|
||||
let mut a: VecZnx = module.new_vec_znx(1, vpmat_size);
|
||||
let mut a_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, vpmat_size);
|
||||
let mut a_big: VecZnxBig<FFT64> = module.new_vec_znx_big(1, vpmat_size);
|
||||
let mut b_big: VecZnxBig<FFT64> = module.new_vec_znx_big(1, vpmat_size);
|
||||
let mut b_dft: VecZnxDft<FFT64> = module.new_vec_znx_dft(1, vpmat_size);
|
||||
let mut vmpmat_0: MatZnxDft<FFT64> = module.new_mat_znx_dft(vpmat_rows, 1, vpmat_size);
|
||||
let mut vmpmat_1: MatZnxDft<FFT64> = module.new_mat_znx_dft(vpmat_rows, 1, vpmat_size);
|
||||
|
||||
let mut tmp_bytes: Vec<u8> = alloc_aligned(module.vmp_prepare_tmp_bytes(vpmat_rows, 1, vpmat_size));
|
||||
|
||||
for row_i in 0..vpmat_rows {
|
||||
let mut source: Source = Source::new([0u8; 32]);
|
||||
module.fill_uniform(log_base2k, &mut a, 0, vpmat_size, &mut source);
|
||||
module.vec_znx_dft(&mut a_dft, 0, &a, 0);
|
||||
module.vmp_prepare_row(&mut vmpmat_0, &a.raw(), row_i, &mut tmp_bytes);
|
||||
|
||||
// Checks that prepare(mat_znx_dft, a) = prepare_dft(mat_znx_dft, a_dft)
|
||||
module.vmp_prepare_row_dft(&mut vmpmat_1, &a_dft, row_i);
|
||||
assert_eq!(vmpmat_0.raw(), vmpmat_1.raw());
|
||||
|
||||
// Checks that a_dft = extract_dft(prepare(mat_znx_dft, a), b_dft)
|
||||
module.vmp_extract_row_dft(&mut b_dft, row_i, &vmpmat_0);
|
||||
assert_eq!(a_dft.raw(), b_dft.raw());
|
||||
|
||||
// Checks that a_big = extract(prepare_dft(mat_znx_dft, a_dft), b_big)
|
||||
module.vmp_extract_row(&mut b_big, &vmpmat_0, row_i);
|
||||
module.vec_znx_idft(&mut a_big, 0, &a_dft, 0, &mut tmp_bytes);
|
||||
assert_eq!(a_big.raw(), b_big.raw());
|
||||
}
|
||||
|
||||
module.free();
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user