refactoring for specific implementations

This commit is contained in:
Jean-Philippe Bossuat
2024-12-20 13:22:35 +01:00
parent a24ad55adc
commit 5dd371f6b0
23 changed files with 1671 additions and 527 deletions

View File

@@ -1,7 +1,6 @@
use crate::modulus::montgomery::{MontgomeryPrecomp, Montgomery};
use crate::dft::ntt::Table;
use primality_test::is_prime;
use prime_factorization::Factorization;
use crate::modulus::shoup::{ShoupPrecomp};
pub struct Prime<O> {
pub q: O, /// q_base^q_powers
@@ -9,222 +8,14 @@ pub struct Prime<O> {
pub q_power: O,
pub factors: Vec<O>, /// distinct factors of q-1
pub montgomery: MontgomeryPrecomp<O>,
pub shoup:ShoupPrecomp<O>,
pub phi: O,
}
pub struct NTTFriendlyPrimesGenerator<O>{
size: f64,
next_prime: O,
prev_prime: O,
check_next_prime: bool,
check_prev_prime: bool,
}
impl Prime<u64>{
/// Returns a new instance of Prime<u64>.
/// Panics if q_base is not a prime > 2 and
/// if q_base^q_power would overflow u64.
pub fn new(q_base: u64, q_power: u64) -> Self{
assert!(is_prime(q_base) && q_base > 2);
Self::new_unchecked(q_base, q_power)
}
/// Returns a new instance of Prime<u64>.
/// Does not check if q_base is a prime > 2.
/// Panics if q_base^q_power would overflow u64.
pub fn new_unchecked(q_base: u64, q_power: u64) -> Self {
let mut q = q_base;
for _i in 1..q_power{
q *= q_base
}
assert!(q.next_power_of_two().ilog2() <= 61);
let mut phi = q_base-1;
for _i in 1..q_power{
phi *= q_base
}
Self {
q:q,
q_base:q_base,
q_power:q_power,
factors: Vec::new(),
montgomery:MontgomeryPrecomp::new(q),
phi:phi,
}
}
pub fn q(&self) -> u64{
self.q
}
pub fn q_base(&self) -> u64{
self.q_base
}
pub fn q_power(&self) -> u64{
self.q_power
}
/// Returns x^exponen mod q.
#[inline(always)]
pub fn pow(&self, x: u64, exponent: u64) -> u64{
let mut y_mont: Montgomery<u64> = self.montgomery.one();
let mut x_mont: Montgomery<u64> = self.montgomery.prepare(x);
let mut i: u64 = exponent;
while i > 0{
if i & 1 == 1{
self.montgomery.mul_internal_assign(x_mont, &mut y_mont);
}
self.montgomery.mul_internal_assign(x_mont, &mut x_mont);
i >>= 1;
}
self.montgomery.unprepare(y_mont)
}
/// Returns x^-1 mod q.
/// User must ensure that x is not divisible by q_base.
#[inline(always)]
pub fn inv(&self, x: u64) -> u64{
self.pow(x, self.phi)
}
}
/// Returns x^exponent mod q.
/// This function internally instantiate a new MontgomeryPrecomp<u64>
/// To be used when called only a few times and if there
/// is no Prime instantiated with q.
pub fn Pow(x:u64, exponent:u64, q:u64) -> u64{
let montgomery: MontgomeryPrecomp<u64> = MontgomeryPrecomp::<u64>::new(q);
let mut y_mont: Montgomery<u64> = montgomery.one();
let mut x_mont: Montgomery<u64> = montgomery.prepare(x);
let mut i: u64 = exponent;
while i > 0{
if i & 1 == 1{
montgomery.mul_internal_assign(x_mont, &mut y_mont);
}
montgomery.mul_internal_assign(x_mont, &mut x_mont);
i >>= 1;
}
montgomery.unprepare(y_mont)
}
impl Prime<u64>{
/// Returns the smallest nth primitive root of q_base.
pub fn primitive_root(&mut self) -> u64{
self.check_factors();
let mut candidate: u64 = 1u64;
let mut not_found: bool = true;
while not_found{
candidate += 1;
for &factor in &self.factors{
if Pow(candidate, (self.q_base-1)/factor, self.q_base) == 1{
not_found = true;
break
}
not_found = false;
}
}
if not_found{
panic!("failed to find a primitive root for q_base={}", self.q_base)
}
candidate
}
/// Returns an nth primitive root of q = q_base^q_power in Montgomery.
pub fn primitive_nth_root(&mut self, nth_root:u64) -> u64{
assert!(self.q & (nth_root-1) == 1, "invalid prime: q = {} % nth_root = {} = {} != 1", self.q, nth_root, self.q & (nth_root-1));
let psi: u64 = self.primitive_root();
// nth primitive root mod q_base: psi_nth^(prime.q_base-1)/nth_root mod q_base
let psi_nth_q_base: u64 = Pow(psi, (self.q_base-1)/nth_root, self.q_base);
// lifts nth primitive root mod q_base to q = q_base^q_power
let psi_nth_q: u64 = self.hensel_lift(psi_nth_q_base, nth_root);
assert!(self.pow(psi_nth_q, nth_root) == 1, "invalid nth primitive root: psi^nth_root != 1 mod q");
assert!(self.pow(psi_nth_q, nth_root>>1) == self.q-1, "invalid nth primitive root: psi^(nth_root/2) != -1 mod q");
psi_nth_q
}
/// Checks if the field self.factor is populated.
/// If not, factorize q_base-1 and populates self.factor.
/// If yes, checks that it contains the unique factors of q_base-1.
pub fn check_factors(&mut self){
if self.factors.len() == 0{
let factors = Factorization::run(self.q_base-1).prime_factor_repr();
let mut distincts_factors: Vec<u64> = Vec::with_capacity(factors.len());
for factor in factors.iter(){
distincts_factors.push(factor.0)
}
self.factors = distincts_factors
}else{
let mut q_base: u64 = self.q_base;
for &factor in &self.factors{
if !is_prime(factor){
panic!("invalid factor list: factor {} is not prime", factor)
}
while q_base%factor != 0{
q_base /= factor
}
}
if q_base != 1{
panic!("invalid factor list: does not fully divide q_base: q_base % (all factors) = {}", q_base)
}
}
}
/// Returns (psi + a * q_base)^{nth_root} = 1 mod q = q_base^q_power given psi^{nth_root} = 1 mod q_base.
/// Panics if psi^{nth_root} != 1 mod q_base.
fn hensel_lift(&self, psi: u64, nth_root: u64) -> u64{
assert!(Pow(psi, nth_root, self.q_base)==1, "invalid argument psi: psi^nth_root = {} != 1", Pow(psi, nth_root, self.q_base));
let mut psi_mont: Montgomery<u64> = self.montgomery.prepare(psi);
let nth_root_mont: Montgomery<u64> = self.montgomery.prepare(nth_root);
for _i in 1..self.q_power{
let psi_pow: Montgomery<u64> = self.montgomery.pow(psi_mont, nth_root-1);
let num: Montgomery<u64> = Montgomery(self.montgomery.one().value() + self.q - self.montgomery.mul_internal(psi_pow, psi_mont).value());
let mut den: Montgomery<u64> = self.montgomery.mul_internal(nth_root_mont, psi_pow);
den = self.montgomery.pow(den, self.phi-1);
psi_mont = self.montgomery.add_internal(psi_mont, self.montgomery.mul_internal(num, den));
}
self.montgomery.unprepare(psi_mont)
}
pub size: f64,
pub next_prime: O,
pub prev_prime: O,
pub check_next_prime: bool,
pub check_prev_prime: bool,
}