Merge branch 'dev_blind_rotate' into jay/fhe-vm-fixes

This commit is contained in:
Janmajaya Mall
2025-07-09 16:54:00 +05:30
32 changed files with 1380 additions and 1072 deletions

View File

@@ -38,7 +38,7 @@ fn bench_keyswitch_glwe_fft64(c: &mut Criterion) {
let mut ct_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_rlwe_out, rank_out);
let mut scratch = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank_out)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank_in, rank_out)
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_in.k())
| GLWECiphertext::keyswitch_scratch_space(
&module,
@@ -63,7 +63,7 @@ fn bench_keyswitch_glwe_fft64(c: &mut Criterion) {
let mut sk_out: GLWESecret<Vec<u8>> = GLWESecret::alloc(&module, rank_out);
sk_out.fill_ternary_prob(0.5, &mut source_xs);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
-1,
&sk_in,
@@ -139,7 +139,7 @@ fn bench_keyswitch_glwe_inplace_fft64(c: &mut Criterion) {
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut scratch = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank, rank)
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::keyswitch_inplace_scratch_space(&module, basek, ct.k(), ksk.k(), digits, rank),
);
@@ -156,7 +156,7 @@ fn bench_keyswitch_glwe_inplace_fft64(c: &mut Criterion) {
sk_out.fill_ternary_prob(0.5, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,

View File

@@ -1,342 +0,0 @@
use std::time::Instant;
use backend::{
MatZnxDftOps, MatZnxDftScratch, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDft, ScalarZnxDftAlloc, ScalarZnxDftOps, Scratch, VecZnxBigAlloc, VecZnxBigOps, VecZnxBigScratch, VecZnxDftOps, VecZnxOps, ZnxInfos, ZnxView, ZnxViewMut, ZnxZero, FFT64
};
use itertools::izip;
use crate::{
FourierGLWECiphertext, FourierGLWESecret, GLWECiphertext, GLWECiphertextToMut, GLWEPlaintext, Infos, LWECiphertext,
ScratchCore,
blind_rotation::{key::BlindRotationKeyCGGI, lut::LookUpTable},
lwe::ciphertext::LWECiphertextToRef,
};
pub fn cggi_blind_rotate_scratch_space(
module: &Module<FFT64>,
extension_factor: usize,
basek: usize,
k_lut: usize,
k_brk: usize,
rows: usize,
rank: usize,
) -> usize {
let lut_size: usize = k_lut.div_ceil(basek);
let brk_size: usize = k_brk.div_ceil(basek);
let acc_dft: usize = FourierGLWECiphertext::bytes_of(module, basek, k_brk, rank) * extension_factor;
let acc_big: usize = module.bytes_of_vec_znx_big(rank + 1, brk_size);
let acc_dft_add: usize = FourierGLWECiphertext::bytes_of(module, basek, k_brk, rank) * extension_factor;
let vmp_res: usize = FourierGLWECiphertext::bytes_of(module, basek, k_brk, rank) * extension_factor;
let xai_plus_y: usize = module.bytes_of_scalar_znx(1);
let xai_plus_y_dft: usize = module.bytes_of_scalar_znx_dft(1);
let vmp: usize = module.vmp_apply_tmp_bytes(lut_size, lut_size, rows, 2, 2, brk_size); // GGSW product: (1 x 2) x (2 x 2)
let acc: usize;
if extension_factor > 1 {
acc = GLWECiphertext::bytes_of(module, basek, k_lut, rank) * extension_factor;
} else {
acc = 0;
}
return acc + acc_big + acc_dft + acc_dft_add + vmp_res + xai_plus_y + xai_plus_y_dft + (vmp | module.vec_znx_big_normalize_tmp_bytes());
}
pub fn cggi_blind_rotate<DataRes, DataIn>(
module: &Module<FFT64>,
res: &mut GLWECiphertext<DataRes>,
lwe: &LWECiphertext<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyCGGI<FFT64>,
scratch: &mut Scratch,
) where
DataRes: AsRef<[u8]> + AsMut<[u8]>,
DataIn: AsRef<[u8]>,
{
if lut.extension_factor() > 1 {
cggi_blind_rotate_block_binary_extended(module, res, lwe, lut, brk, scratch);
} else if brk.block_size() > 1 {
cggi_blind_rotate_block_binary(module, res, lwe, lut, brk, scratch);
} else {
todo!("implement this case")
}
}
pub(crate) fn cggi_blind_rotate_block_binary_extended<DataRes, DataIn>(
module: &Module<FFT64>,
res: &mut GLWECiphertext<DataRes>,
lwe: &LWECiphertext<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyCGGI<FFT64>,
scratch: &mut Scratch,
) where
DataRes: AsRef<[u8]> + AsMut<[u8]>,
DataIn: AsRef<[u8]>,
{
let extension_factor: usize = lut.extension_factor();
let basek: usize = res.basek();
let (mut acc, scratch1) = scratch.tmp_vec_glwe_ct(extension_factor, module, basek, res.k(), res.rank());
let (mut acc_dft, scratch2) = scratch1.tmp_vec_fourier_glwe_ct(extension_factor, module, basek, brk.k(), res.rank());
let (mut vmp_res, scratch3) = scratch2.tmp_vec_fourier_glwe_ct(extension_factor, module, basek, brk.k(), res.rank());
let (mut acc_add_dft, scratch4) = scratch3.tmp_vec_fourier_glwe_ct(extension_factor, module, basek, brk.k(), res.rank());
(0..extension_factor).for_each(|i| {
acc[i].data.zero();
});
let (mut xai_plus_y, scratch5) = scratch4.tmp_scalar_znx(module, 1);
let (mut xai_plus_y_dft, scratch6) = scratch5.tmp_scalar_znx_dft(module, 1);
let (mut acc_add_big, scratch7) = scratch6.tmp_vec_znx_big(module, 1, brk.size());
let mut lwe_2n: Vec<i64> = vec![0i64; lwe.n() + 1]; // TODO: from scratch space
let lwe_ref: LWECiphertext<&[u8]> = lwe.to_ref();
let two_n_ext: usize = 2 * lut.domain_size();
let cols: usize = res.rank() + 1;
negate_and_mod_switch_2n(two_n_ext, &mut lwe_2n, &lwe_ref);
let a: &[i64] = &lwe_2n[1..];
let b_pos: usize = ((lwe_2n[0] + two_n_ext as i64) % two_n_ext as i64) as usize;
let b_hi: usize = b_pos / extension_factor;
let b_lo: usize = b_pos % extension_factor;
for (i, j) in (0..b_lo).zip(extension_factor - b_lo..extension_factor) {
module.vec_znx_rotate(b_hi as i64 + 1, &mut acc[i].data, 0, &lut.data[j], 0);
}
for (i, j) in (b_lo..extension_factor).zip(0..extension_factor - b_lo) {
module.vec_znx_rotate(b_hi as i64, &mut acc[i].data, 0, &lut.data[j], 0);
}
let block_size: usize = brk.block_size();
izip!(
a.chunks_exact(block_size),
brk.data.chunks_exact(block_size)
)
.enumerate()
.for_each(|(i, (ai, ski))| {
(0..extension_factor).for_each(|i| {
(0..cols).for_each(|j| {
module.vec_znx_dft(1, 0, &mut acc_dft[i].data, j, &acc[i].data, j);
});
acc_add_dft[i].data.zero();
});
// TODO: first & last iterations can be optimized
izip!(ai.iter(), ski.iter()).for_each(|(aii, skii)| {
let ai_pos: usize = ((aii + two_n_ext as i64) % two_n_ext as i64) as usize;
let ai_hi: usize = ai_pos / extension_factor;
let ai_lo: usize = ai_pos % extension_factor;
// vmp_res = DFT(acc) * BRK[i]
(0..extension_factor).for_each(|i| {
module.vmp_apply(&mut vmp_res[i].data, &acc_dft[i].data, &skii.data, scratch7);
});
// Trivial case: no rotation between polynomials, we can directly multiply with (X^{-ai} - 1)
if ai_lo == 0 {
// DFT X^{-ai}
set_xai_plus_y(
module,
ai_hi as i64,
-1,
&mut xai_plus_y_dft,
&mut xai_plus_y,
);
// Sets acc_add_dft[i] = (acc[i] * sk) * (X^{-ai} - 1)
(0..extension_factor).for_each(|j| {
(0..cols).for_each(|i| {
module.svp_apply_inplace(&mut vmp_res[j].data, i, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[j].data, i, &vmp_res[j].data, i);
});
});
// Non trivial case: rotation between polynomials
// In this case we can't directly multiply with (X^{-ai} - 1) because of the
// ring homomorphism R^{N} -> prod R^{N/extension_factor}, so we split the
// computation in two steps: acc_add_dft = (acc * sk) * (-1) + (acc * sk) * X^{-ai}
} else {
// Sets acc_add_dft[i] = acc[i] * sk
(0..extension_factor).for_each(|i| {
(0..cols).for_each(|k| {
module.vec_znx_dft_sub_ab_inplace(&mut acc_add_dft[i].data, k, &vmp_res[i].data, k);
})
});
// DFT X^{-ai+1}
set_xai_plus_y(
module,
ai_hi as i64 + 1,
0,
&mut xai_plus_y_dft,
&mut xai_plus_y,
);
// Sets acc_add_dft[0..ai_lo] += (acc[extension_factor - ai_lo..extension_factor] * sk) * X^{-ai+1}
for (i, j) in (0..ai_lo).zip(extension_factor - ai_lo..extension_factor) {
module.vec_znx_rotate(b_hi as i64 + 1, &mut acc[i].data, 0, &lut.data[j], 0);
(0..cols).for_each(|k| {
module.svp_apply_inplace(&mut vmp_res[j].data, k, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[i].data, k, &vmp_res[j].data, k);
});
}
// DFT X^{-ai}
set_xai_plus_y(
module,
ai_hi as i64,
0,
&mut xai_plus_y_dft,
&mut xai_plus_y,
);
// Sets acc_add_dft[ai_lo..extension_factor] += (acc[0..extension_factor - ai_lo] * sk) * X^{-ai}
for (i, j) in (ai_lo..extension_factor).zip(0..extension_factor - ai_lo) {
module.vec_znx_rotate(b_hi as i64, &mut acc[i].data, 0, &lut.data[j], 0);
(0..cols).for_each(|k| {
module.svp_apply_inplace(&mut vmp_res[j].data, k, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[i].data, k, &vmp_res[j].data, k);
});
}
}
});
(0..extension_factor).for_each(|j| {
(0..cols).for_each(|i| {
module.vec_znx_dft_add_inplace(&mut acc_dft[j].data, i, &acc_add_dft[j].data, i);
module.vec_znx_idft(&mut acc_add_big, 0, &acc_dft[j].data, i, scratch7);
module.vec_znx_big_normalize(basek, &mut acc[j].data, i, &acc_add_big, 0, scratch7);
});
});
});
(0..cols).for_each(|i| {
module.vec_znx_copy(&mut res.data, i, &acc[0].data, i);
});
}
fn set_xai_plus_y(
module: &Module<FFT64>,
k: i64,
y: i64,
res: &mut ScalarZnxDft<&mut [u8], FFT64>,
buf: &mut ScalarZnx<&mut [u8]>,
) {
buf.zero();
buf.at_mut(0, 0)[0] = 1;
module.vec_znx_rotate_inplace(k, buf, 0);
buf.at_mut(0, 0)[0] += y;
module.svp_prepare(res, 0, buf, 0);
}
pub(crate) fn cggi_blind_rotate_block_binary<DataRes, DataIn>(
module: &Module<FFT64>,
res: &mut GLWECiphertext<DataRes>,
lwe: &LWECiphertext<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyCGGI<FFT64>,
scratch: &mut Scratch,
) where
DataRes: AsRef<[u8]> + AsMut<[u8]>,
DataIn: AsRef<[u8]>,
{
let basek: usize = res.basek();
let mut lwe_2n: Vec<i64> = vec![0i64; lwe.n() + 1]; // TODO: from scratch space
let mut out_mut: GLWECiphertext<&mut [u8]> = res.to_mut();
let lwe_ref: LWECiphertext<&[u8]> = lwe.to_ref();
let cols: usize = out_mut.rank() + 1;
negate_and_mod_switch_2n(2 * lut.domain_size(), &mut lwe_2n, &lwe_ref);
let a: &[i64] = &lwe_2n[1..];
let b: i64 = lwe_2n[0];
out_mut.data.zero();
// Initialize out to X^{b} * LUT(X)
module.vec_znx_rotate(-b, &mut out_mut.data, 0, &lut.data[0], 0);
let block_size: usize = brk.block_size();
// ACC + [sum DFT(X^ai -1) * (DFT(ACC) x BRKi)]
let (mut acc_dft, scratch1) = scratch.tmp_fourier_glwe_ct(module, brk.basek(), out_mut.k(), out_mut.rank());
let (mut acc_add_dft, scratch2) = scratch1.tmp_fourier_glwe_ct(module, brk.basek(), out_mut.k(), out_mut.rank());
let (mut vmp_res, scratch3) = scratch2.tmp_fourier_glwe_ct(module, basek, out_mut.k(), out_mut.rank());
let (mut xai_plus_y, scratch4) = scratch3.tmp_scalar_znx(module, 1);
let (mut xai_plus_y_dft, scratch5) = scratch4.tmp_scalar_znx_dft(module, 1);
let start: Instant = Instant::now();
izip!(
a.chunks_exact(block_size),
brk.data.chunks_exact(block_size)
)
.for_each(|(ai, ski)| {
out_mut.dft(module, &mut acc_dft);
acc_add_dft.data.zero();
izip!(ai.iter(), ski.iter()).for_each(|(aii, skii)| {
// vmp_res = DFT(acc) * BRK[i]
module.vmp_apply(&mut vmp_res.data, &acc_dft.data, &skii.data, scratch5);
// DFT(X^ai -1)
set_xai_plus_y(module, *aii, -1, &mut xai_plus_y_dft, &mut xai_plus_y);
// DFT(X^ai -1) * (DFT(acc) * BRK[i])
(0..cols).for_each(|i| {
module.svp_apply_inplace(&mut vmp_res.data, i, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft.data, i, &vmp_res.data, i);
});
});
(0..cols).for_each(|i| {
module.vec_znx_dft_add_inplace(&mut acc_dft.data, i, &acc_add_dft.data, i);
});
acc_dft.idft(module, &mut out_mut, scratch5);
});
let duration: std::time::Duration = start.elapsed();
}
pub(crate) fn negate_and_mod_switch_2n(n: usize, res: &mut [i64], lwe: &LWECiphertext<&[u8]>) {
let basek: usize = lwe.basek();
let log2n: usize = usize::BITS as usize - (n - 1).leading_zeros() as usize + 1;
res.copy_from_slice(&lwe.data.at(0, 0));
res.iter_mut().for_each(|x| *x = -*x);
if basek > log2n {
let diff: usize = basek - log2n;
res.iter_mut().for_each(|x| {
*x = div_signed_by_pow2(x, diff);
})
} else {
let rem: usize = basek - (log2n % basek);
let size: usize = log2n.div_ceil(basek);
(1..size).for_each(|i| {
if i == size - 1 && rem != basek {
let k_rem: usize = basek - rem;
izip!(lwe.data.at(0, i).iter(), res.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(lwe.data.at(0, i).iter(), res.iter_mut()).for_each(|(x, y)| {
*y = (*y << basek) + x;
});
}
})
}
}
#[inline(always)]
fn div_signed_by_pow2(x: &i64, k: usize) -> i64 {
let bias: i64 = (1 << k) - 1;
(x + ((x >> 63) & bias)) >> k
}

View File

@@ -0,0 +1,463 @@
use backend::{
FFT64, MatZnxDftOps, MatZnxDftScratch, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDft, ScalarZnxDftAlloc, ScalarZnxDftOps,
Scratch, VecZnxAlloc, VecZnxBigAlloc, VecZnxBigOps, VecZnxBigScratch, VecZnxDftAlloc, VecZnxDftOps, VecZnxOps, ZnxView,
ZnxViewMut, ZnxZero,
};
use itertools::izip;
use crate::{
GLWECiphertext, GLWECiphertextToMut, GLWEOps, Infos, LWECiphertext, ScratchCore,
blind_rotation::{key::BlindRotationKeyCGGI, lut::LookUpTable},
dist::Distribution,
lwe::ciphertext::LWECiphertextToRef,
};
pub fn cggi_blind_rotate_scratch_space(
module: &Module<FFT64>,
block_size: usize,
extension_factor: usize,
basek: usize,
k_res: usize,
k_brk: usize,
rows: usize,
rank: usize,
) -> usize {
let brk_size: usize = k_brk.div_ceil(basek);
if block_size > 1 {
let cols: usize = rank + 1;
let acc_dft: usize = module.bytes_of_vec_znx_dft(cols, rows) * extension_factor;
let acc_big: usize = module.bytes_of_vec_znx_big(1, brk_size);
let vmp_res: usize = module.bytes_of_vec_znx_dft(cols, brk_size) * extension_factor;
let acc_dft_add: usize = vmp_res;
let xai_plus_y: usize = module.bytes_of_scalar_znx(1);
let xai_plus_y_dft: usize = module.bytes_of_scalar_znx_dft(1);
let vmp: usize = module.vmp_apply_tmp_bytes(brk_size, rows, rows, 2, 2, brk_size); // GGSW product: (1 x 2) x (2 x 2)
let acc: usize;
if extension_factor > 1 {
acc = module.bytes_of_vec_znx(cols, k_res.div_ceil(basek)) * extension_factor;
} else {
acc = 0;
}
return acc
+ acc_dft
+ acc_dft_add
+ vmp_res
+ xai_plus_y
+ xai_plus_y_dft
+ (vmp | (acc_big + (module.vec_znx_big_normalize_tmp_bytes() | module.vec_znx_idft_tmp_bytes())));
} else {
2 * GLWECiphertext::bytes_of(module, basek, k_res, rank)
+ GLWECiphertext::external_product_scratch_space(module, basek, k_res, k_res, k_brk, 1, rank)
}
}
pub fn cggi_blind_rotate<DataRes, DataIn>(
module: &Module<FFT64>,
res: &mut GLWECiphertext<DataRes>,
lwe: &LWECiphertext<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyCGGI<FFT64>,
scratch: &mut Scratch,
) where
DataRes: AsRef<[u8]> + AsMut<[u8]>,
DataIn: AsRef<[u8]>,
{
match brk.dist {
Distribution::BinaryBlock(_) | Distribution::BinaryFixed(_) | Distribution::BinaryProb(_) | Distribution::ZERO => {
if lut.extension_factor() > 1 {
cggi_blind_rotate_block_binary_extended(module, res, lwe, lut, brk, scratch);
} else if brk.block_size() > 1 {
cggi_blind_rotate_block_binary(module, res, lwe, lut, brk, scratch);
} else {
cggi_blind_rotate_binary_standard(module, res, lwe, lut, brk, scratch);
}
}
// TODO: ternary distribution ?
_ => panic!(
"invalid BlindRotationKeyCGGI distribution: must be BinaryBlock, BinaryFixed or BinaryProb (or ZERO for debugging)"
),
}
}
pub(crate) fn cggi_blind_rotate_block_binary_extended<DataRes, DataIn>(
module: &Module<FFT64>,
res: &mut GLWECiphertext<DataRes>,
lwe: &LWECiphertext<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyCGGI<FFT64>,
scratch: &mut Scratch,
) where
DataRes: AsRef<[u8]> + AsMut<[u8]>,
DataIn: AsRef<[u8]>,
{
let extension_factor: usize = lut.extension_factor();
let basek: usize = res.basek();
let rows: usize = brk.rows();
let cols: usize = res.rank() + 1;
let (mut acc, scratch1) = scratch.tmp_slice_vec_znx(extension_factor, module, cols, res.size());
let (mut acc_dft, scratch2) = scratch1.tmp_slice_vec_znx_dft(extension_factor, module, cols, rows);
let (mut vmp_res, scratch3) = scratch2.tmp_slice_vec_znx_dft(extension_factor, module, cols, brk.size());
let (mut acc_add_dft, scratch4) = scratch3.tmp_slice_vec_znx_dft(extension_factor, module, cols, brk.size());
let (mut xai_plus_y, scratch5) = scratch4.tmp_scalar_znx(module, 1);
let (mut xai_plus_y_dft, scratch6) = scratch5.tmp_scalar_znx_dft(module, 1);
(0..extension_factor).for_each(|i| {
acc[i].zero();
});
let mut lwe_2n: Vec<i64> = vec![0i64; lwe.n() + 1]; // TODO: from scratch space
let lwe_ref: LWECiphertext<&[u8]> = lwe.to_ref();
let two_n_ext: usize = 2 * lut.domain_size();
negate_and_mod_switch_2n(two_n_ext, &mut lwe_2n, &lwe_ref);
let a: &[i64] = &lwe_2n[1..];
let b_pos: usize = ((lwe_2n[0] + two_n_ext as i64) % two_n_ext as i64) as usize;
let b_hi: usize = b_pos / extension_factor;
let b_lo: usize = b_pos % extension_factor;
for (i, j) in (0..b_lo).zip(extension_factor - b_lo..extension_factor) {
module.vec_znx_rotate(b_hi as i64 + 1, &mut acc[i], 0, &lut.data[j], 0);
}
for (i, j) in (b_lo..extension_factor).zip(0..extension_factor - b_lo) {
module.vec_znx_rotate(b_hi as i64, &mut acc[i], 0, &lut.data[j], 0);
}
let block_size: usize = brk.block_size();
izip!(
a.chunks_exact(block_size),
brk.data.chunks_exact(block_size)
)
.for_each(|(ai, ski)| {
(0..extension_factor).for_each(|i| {
(0..cols).for_each(|j| {
module.vec_znx_dft(1, 0, &mut acc_dft[i], j, &acc[i], j);
});
acc_add_dft[i].zero();
});
// TODO: first & last iterations can be optimized
izip!(ai.iter(), ski.iter()).for_each(|(aii, skii)| {
let ai_pos: usize = ((aii + two_n_ext as i64) % two_n_ext as i64) as usize;
let ai_hi: usize = ai_pos / extension_factor;
let ai_lo: usize = ai_pos % extension_factor;
// vmp_res = DFT(acc) * BRK[i]
(0..extension_factor).for_each(|i| {
module.vmp_apply(&mut vmp_res[i], &acc_dft[i], &skii.data, scratch6);
});
// Trivial case: no rotation between polynomials, we can directly multiply with (X^{-ai} - 1)
if ai_lo == 0 {
// DFT X^{-ai}
set_xai_plus_y(module, ai_hi, -1, &mut xai_plus_y_dft, &mut xai_plus_y);
// Sets acc_add_dft[i] = (acc[i] * sk) * (X^{-ai} - 1)
(0..extension_factor).for_each(|j| {
(0..cols).for_each(|i| {
module.svp_apply_inplace(&mut vmp_res[j], i, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[j], i, &vmp_res[j], i);
});
});
// Non trivial case: rotation between polynomials
// In this case we can't directly multiply with (X^{-ai} - 1) because of the
// ring homomorphism R^{N} -> prod R^{N/extension_factor}, so we split the
// computation in two steps: acc_add_dft = (acc * sk) * (-1) + (acc * sk) * X^{-ai}
} else {
// Sets acc_add_dft[i] = acc[i] * sk
(0..extension_factor).for_each(|i| {
(0..cols).for_each(|k| {
module.vec_znx_dft_sub_ab_inplace(&mut acc_add_dft[i], k, &vmp_res[i], k);
})
});
// DFT X^{-ai}
set_xai_plus_y(module, ai_hi + 1, 0, &mut xai_plus_y_dft, &mut xai_plus_y);
// Sets acc_add_dft[0..ai_lo] += (acc[extension_factor - ai_lo..extension_factor] * sk) * X^{-ai+1}
for (i, j) in (0..ai_lo).zip(extension_factor - ai_lo..extension_factor) {
(0..cols).for_each(|k| {
module.svp_apply_inplace(&mut vmp_res[j], k, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[i], k, &vmp_res[j], k);
});
}
// DFT X^{-ai}
set_xai_plus_y(module, ai_hi, 0, &mut xai_plus_y_dft, &mut xai_plus_y);
// Sets acc_add_dft[ai_lo..extension_factor] += (acc[0..extension_factor - ai_lo] * sk) * X^{-ai}
for (i, j) in (ai_lo..extension_factor).zip(0..extension_factor - ai_lo) {
(0..cols).for_each(|k| {
module.svp_apply_inplace(&mut vmp_res[j], k, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft[i], k, &vmp_res[j], k);
});
}
}
});
{
let (mut acc_add_big, scratch7) = scratch6.tmp_vec_znx_big(module, 1, brk.size());
(0..extension_factor).for_each(|j| {
(0..cols).for_each(|i| {
module.vec_znx_idft(&mut acc_add_big, 0, &acc_add_dft[j], i, scratch7);
module.vec_znx_big_add_small_inplace(&mut acc_add_big, 0, &acc[j], i);
module.vec_znx_big_normalize(basek, &mut acc[j], i, &acc_add_big, 0, scratch7);
});
});
}
});
(0..cols).for_each(|i| {
module.vec_znx_copy(&mut res.data, i, &acc[0], i);
});
}
fn set_xai_plus_y(
module: &Module<FFT64>,
ai: usize,
y: i64,
res: &mut ScalarZnxDft<&mut [u8], FFT64>,
buf: &mut ScalarZnx<&mut [u8]>,
) {
let n: usize = module.n();
{
let raw: &mut [i64] = buf.at_mut(0, 0);
if ai < n {
raw[ai] = 1;
} else {
raw[(ai - n) & (n - 1)] = -1;
}
raw[0] += y;
}
module.svp_prepare(res, 0, buf, 0);
{
let raw: &mut [i64] = buf.at_mut(0, 0);
if ai < n {
raw[ai] = 0;
} else {
raw[(ai - n) & (n - 1)] = 0;
}
raw[0] = 0;
}
}
pub(crate) fn cggi_blind_rotate_block_binary<DataRes, DataIn>(
module: &Module<FFT64>,
res: &mut GLWECiphertext<DataRes>,
lwe: &LWECiphertext<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyCGGI<FFT64>,
scratch: &mut Scratch,
) where
DataRes: AsRef<[u8]> + AsMut<[u8]>,
DataIn: AsRef<[u8]>,
{
let mut lwe_2n: Vec<i64> = vec![0i64; lwe.n() + 1]; // TODO: from scratch space
let mut out_mut: GLWECiphertext<&mut [u8]> = res.to_mut();
let lwe_ref: LWECiphertext<&[u8]> = lwe.to_ref();
let two_n: usize = module.n() << 1;
let basek: usize = brk.basek();
let rows = brk.rows();
let cols: usize = out_mut.rank() + 1;
negate_and_mod_switch_2n(2 * lut.domain_size(), &mut lwe_2n, &lwe_ref);
let a: &[i64] = &lwe_2n[1..];
let b: i64 = lwe_2n[0];
out_mut.data.zero();
// Initialize out to X^{b} * LUT(X)
module.vec_znx_rotate(b, &mut out_mut.data, 0, &lut.data[0], 0);
let block_size: usize = brk.block_size();
// ACC + [sum DFT(X^ai -1) * (DFT(ACC) x BRKi)]
let (mut acc_dft, scratch1) = scratch.tmp_vec_znx_dft(module, cols, rows);
let (mut vmp_res, scratch2) = scratch1.tmp_vec_znx_dft(module, cols, brk.size());
let (mut acc_add_dft, scratch3) = scratch2.tmp_vec_znx_dft(module, cols, brk.size());
let (mut xai_plus_y, scratch4) = scratch3.tmp_scalar_znx(module, 1);
let (mut xai_plus_y_dft, scratch5) = scratch4.tmp_scalar_znx_dft(module, 1);
izip!(
a.chunks_exact(block_size),
brk.data.chunks_exact(block_size)
)
.for_each(|(ai, ski)| {
(0..cols).for_each(|j| {
module.vec_znx_dft(1, 0, &mut acc_dft, j, &out_mut.data, j);
});
acc_add_dft.zero();
izip!(ai.iter(), ski.iter()).for_each(|(aii, skii)| {
let ai_pos: usize = ((aii + two_n as i64) % two_n as i64) as usize;
// vmp_res = DFT(acc) * BRK[i]
module.vmp_apply(&mut vmp_res, &acc_dft, &skii.data, scratch5);
// DFT(X^ai -1)
set_xai_plus_y(module, ai_pos, -1, &mut xai_plus_y_dft, &mut xai_plus_y);
// DFT(X^ai -1) * (DFT(acc) * BRK[i])
(0..cols).for_each(|i| {
module.svp_apply_inplace(&mut vmp_res, i, &xai_plus_y_dft, 0);
module.vec_znx_dft_add_inplace(&mut acc_add_dft, i, &vmp_res, i);
});
});
(0..cols).for_each(|i| {
module.vec_znx_dft_add_inplace(&mut acc_dft, i, &acc_add_dft, i);
});
{
let (mut acc_add_big, scratch6) = scratch5.tmp_vec_znx_big(module, 1, brk.size());
(0..cols).for_each(|i| {
module.vec_znx_idft(&mut acc_add_big, 0, &acc_add_dft, i, scratch6);
module.vec_znx_big_add_small_inplace(&mut acc_add_big, 0, &out_mut.data, i);
module.vec_znx_big_normalize(basek, &mut out_mut.data, i, &acc_add_big, 0, scratch6);
});
}
});
}
pub(crate) fn cggi_blind_rotate_binary_standard<DataRes, DataIn>(
module: &Module<FFT64>,
res: &mut GLWECiphertext<DataRes>,
lwe: &LWECiphertext<DataIn>,
lut: &LookUpTable,
brk: &BlindRotationKeyCGGI<FFT64>,
scratch: &mut Scratch,
) where
DataRes: AsRef<[u8]> + AsMut<[u8]>,
DataIn: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert_eq!(
res.n(),
module.n(),
"res.n(): {} != brk.n(): {}",
res.n(),
module.n()
);
assert_eq!(
lut.domain_size(),
module.n(),
"lut.n(): {} != brk.n(): {}",
lut.domain_size(),
module.n()
);
assert_eq!(
brk.n(),
module.n(),
"brk.n(): {} != brk.n(): {}",
brk.n(),
module.n()
);
assert_eq!(
res.rank(),
brk.rank(),
"res.rank(): {} != brk.rank(): {}",
res.rank(),
brk.rank()
);
assert_eq!(
lwe.n(),
brk.data.len(),
"lwe.n(): {} != brk.data.len(): {}",
lwe.n(),
brk.data.len()
);
}
let mut lwe_2n: Vec<i64> = vec![0i64; lwe.n() + 1]; // TODO: from scratch space
let mut out_mut: GLWECiphertext<&mut [u8]> = res.to_mut();
let lwe_ref: LWECiphertext<&[u8]> = lwe.to_ref();
let basek: usize = brk.basek();
negate_and_mod_switch_2n(2 * lut.domain_size(), &mut lwe_2n, &lwe_ref);
let a: &[i64] = &lwe_2n[1..];
let b: i64 = lwe_2n[0];
out_mut.data.zero();
// Initialize out to X^{b} * LUT(X)
module.vec_znx_rotate(b, &mut out_mut.data, 0, &lut.data[0], 0);
// ACC + [sum DFT(X^ai -1) * (DFT(ACC) x BRKi)]
let (mut acc_tmp, scratch1) = scratch.tmp_glwe_ct(module, basek, out_mut.k(), out_mut.rank());
let (mut acc_tmp_rot, scratch2) = scratch1.tmp_glwe_ct(module, basek, out_mut.k(), out_mut.rank());
// TODO: see if faster by skipping normalization in external product and keeping acc in big coeffs
// TODO: first iteration can be optimized to be a gglwe product
izip!(a.iter(), brk.data.iter()).for_each(|(ai, ski)| {
// acc_tmp = sk[i] * acc
acc_tmp.external_product(module, &out_mut, ski, scratch2);
// acc_tmp = (sk[i] * acc) * X^{ai}
acc_tmp_rot.rotate(module, *ai, &acc_tmp);
// acc = acc + (sk[i] * acc) * X^{ai}
out_mut.add_inplace(module, &acc_tmp_rot);
// acc = acc + (sk[i] * acc) * X^{ai} - (sk[i] * acc) = acc + (sk[i] * acc) * (X^{ai} - 1)
out_mut.sub_inplace_ab(module, &acc_tmp);
});
// We can normalize only at the end because we add normalized values in [-2^{basek-1}, 2^{basek-1}]
// on top of each others, thus ~ 2^{63-basek} additions are supported before overflow.
out_mut.normalize_inplace(module, scratch2);
}
pub(crate) fn negate_and_mod_switch_2n(n: usize, res: &mut [i64], lwe: &LWECiphertext<&[u8]>) {
let basek: usize = lwe.basek();
let log2n: usize = usize::BITS as usize - (n - 1).leading_zeros() as usize + 1;
res.copy_from_slice(&lwe.data.at(0, 0));
res.iter_mut().for_each(|x| *x = -*x);
if basek > log2n {
let diff: usize = basek - log2n;
res.iter_mut().for_each(|x| {
*x = div_round_by_pow2(x, diff);
})
} else {
let rem: usize = basek - (log2n % basek);
let size: usize = log2n.div_ceil(basek);
(1..size).for_each(|i| {
if i == size - 1 && rem != basek {
let k_rem: usize = basek - rem;
izip!(lwe.data.at(0, i).iter(), res.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
});
} else {
izip!(lwe.data.at(0, i).iter(), res.iter_mut()).for_each(|(x, y)| {
*y = (*y << basek) + x;
});
}
})
}
}
#[inline(always)]
fn div_round_by_pow2(x: &i64, k: usize) -> i64 {
(x + (1 << (k - 1))) >> k
}

View File

@@ -74,6 +74,11 @@ impl BlindRotationKeyCGGI<FFT64> {
}
}
#[allow(dead_code)]
pub(crate) fn n(&self) -> usize {
self.data[0].n()
}
#[allow(dead_code)]
pub(crate) fn rows(&self) -> usize {
self.data[0].rows()

View File

@@ -1,4 +1,4 @@
use backend::{FFT64, Module, ScalarZnx, VecZnx, VecZnxAlloc, VecZnxOps, ZnxInfos, ZnxView, ZnxViewMut, alloc_aligned};
use backend::{FFT64, Module, VecZnx, VecZnxAlloc, VecZnxOps, ZnxInfos, ZnxViewMut, alloc_aligned};
pub struct LookUpTable {
pub(crate) data: Vec<VecZnx<Vec<u8>>>,
@@ -8,6 +8,14 @@ pub struct LookUpTable {
impl LookUpTable {
pub fn alloc(module: &Module<FFT64>, basek: usize, k: usize, extension_factor: usize) -> Self {
#[cfg(debug_assertions)]
{
assert!(
extension_factor & (extension_factor - 1) == 0,
"extension_factor must be a power of two but is: {}",
extension_factor
);
}
let size: usize = k.div_ceil(basek);
let mut data: Vec<VecZnx<Vec<u8>>> = Vec::with_capacity(extension_factor);
(0..extension_factor).for_each(|_| {
@@ -24,17 +32,24 @@ impl LookUpTable {
self.data.len() * self.data[0].n()
}
pub fn set(&mut self, module: &Module<FFT64>, f: fn(i64) -> i64, message_modulus: usize) {
pub fn set(&mut self, module: &Module<FFT64>, f: &Vec<i64>, k: usize) {
assert!(f.len() <= module.n());
let basek: usize = self.basek;
// Get the number minimum limb to store the message modulus
let limbs: usize = message_modulus.div_ceil(1 << basek);
let limbs: usize = k.div_ceil(1 << basek);
#[cfg(debug_assertions)]
{
assert!(limbs <= self.data[0].size());
}
// Scaling factor
let scale: i64 = (1 << (basek * limbs - 1)).div_round(message_modulus) as i64;
let scale: i64 = 1 << (k % basek) as i64;
// Updates function
let f_scaled = |x: i64| (f(x) % message_modulus as i64) * scale;
// #elements in lookup table
let f_len: usize = f.len();
// If LUT size > module.n()
let domain_size: usize = self.domain_size();
@@ -43,29 +58,17 @@ impl LookUpTable {
// Equivalent to AUTO([f(0), -f(n-1), -f(n-2), ..., -f(1)], -1)
let mut lut_full: VecZnx<Vec<u8>> = VecZnx::new::<i64>(domain_size, 1, size);
{
let lut_at: &mut [i64] = lut_full.at_mut(0, limbs - 1);
let start: usize = 0;
let end: usize = (domain_size).div_round(message_modulus);
let lut_at: &mut [i64] = lut_full.at_mut(0, limbs - 1);
let y: i64 = f_scaled(0);
(start..end).for_each(|i| {
lut_at[i] = y;
});
(1..message_modulus).for_each(|x| {
let start: usize = (x * domain_size).div_round(message_modulus);
let end: usize = ((x + 1) * domain_size).div_round(message_modulus);
let y: i64 = f_scaled(x as i64);
(start..end).for_each(|i| {
lut_at[i] = y;
})
});
}
f.iter().enumerate().for_each(|(i, fi)| {
let start: usize = (i * domain_size).div_round(f_len);
let end: usize = ((i + 1) * domain_size).div_round(f_len);
lut_at[start..end].fill(fi * scale);
});
// Rotates half the step to the left
let half_step: usize = domain_size.div_round(message_modulus << 1);
let half_step: usize = domain_size.div_round(f_len << 1);
lut_full.rotate(-(half_step as i64));
@@ -84,30 +87,6 @@ impl LookUpTable {
}
}
pub fn set_raw<D>(&mut self, module: &Module<FFT64>, lut: &ScalarZnx<D>)
where
D: AsRef<[u8]>,
{
let domain_size: usize = self.domain_size();
let size: usize = self.k.div_ceil(self.basek);
let mut lut_full: VecZnx<Vec<u8>> = VecZnx::new::<i64>(domain_size, 1, size);
lut_full.at_mut(0, 0).copy_from_slice(lut.raw());
if self.extension_factor() > 1 {
(0..self.extension_factor()).for_each(|i| {
module.switch_degree(&mut self.data[i], 0, &lut_full, 0);
if i < self.extension_factor() {
lut_full.rotate(-1);
}
});
} else {
module.vec_znx_copy(&mut self.data[0], 0, &lut_full, 0);
}
}
#[allow(dead_code)]
pub(crate) fn rotate(&mut self, k: i64) {
let extension_factor: usize = self.extension_factor();

View File

@@ -1,7 +1,10 @@
// pub mod cggi;
pub mod ccgi;
pub mod cggi;
pub mod key;
pub mod lut;
pub use cggi::{cggi_blind_rotate, cggi_blind_rotate_scratch_space};
pub use key::BlindRotationKeyCGGI;
pub use lut::LookUpTable;
#[cfg(test)]
pub mod test_fft64;

View File

@@ -1,12 +1,10 @@
use std::time::Instant;
use backend::{Encoding, FFT64, Module, ScalarZnx, ScratchOwned, Stats, VecZnxOps, ZnxView, ZnxViewMut};
use backend::{Encoding, FFT64, Module, ScratchOwned, ZnxView};
use sampling::source::Source;
use crate::{
FourierGLWESecret, GLWECiphertext, GLWEPlaintext, GLWESecret, Infos, LWECiphertext, LWESecret,
blind_rotation::{
ccgi::{cggi_blind_rotate, cggi_blind_rotate_scratch_space, negate_and_mod_switch_2n},
cggi::{cggi_blind_rotate, cggi_blind_rotate_scratch_space, negate_and_mod_switch_2n},
key::BlindRotationKeyCGGI,
lut::LookUpTable,
},
@@ -14,22 +12,32 @@ use crate::{
};
#[test]
fn blind_rotation() {
let module: Module<FFT64> = Module::<FFT64>::new(2048);
let basek: usize = 18;
fn standard() {
blind_rotatio_test(224, 1, 1);
}
let n_lwe: usize = 1071;
#[test]
fn block_binary() {
blind_rotatio_test(224, 7, 1);
}
#[test]
fn block_binary_extended() {
blind_rotatio_test(224, 7, 2);
}
fn blind_rotatio_test(n_lwe: usize, block_size: usize, extension_factor: usize) {
let module: Module<FFT64> = Module::<FFT64>::new(512);
let basek: usize = 19;
let k_lwe: usize = 24;
let k_brk: usize = 3 * basek;
let rows_brk: usize = 2;
let k_lut: usize = 2 * basek;
let rows_brk: usize = 2; // Ensures first limb is noise-free.
let k_lut: usize = 1 * basek;
let k_res: usize = 2 * basek;
let rank: usize = 1;
let block_size: usize = 7;
let extension_factor: usize = 2;
let message_modulus: usize = 1 << 6;
let message_modulus: usize = 1 << 4;
let mut source_xs: Source = Source::new([1u8; 32]);
let mut source_xe: Source = Source::new([1u8; 32]);
@@ -42,24 +50,21 @@ fn blind_rotation() {
let mut sk_lwe: LWESecret<Vec<u8>> = LWESecret::alloc(n_lwe);
sk_lwe.fill_binary_block(block_size, &mut source_xs);
sk_lwe.data.raw_mut()[0] = 0;
let mut scratch: ScratchOwned = ScratchOwned::new(BlindRotationKeyCGGI::generate_from_sk_scratch_space(
&module, basek, k_brk, rank,
));
println!("sk_lwe: {:?}", sk_lwe.data.raw());
let mut scratch_br: ScratchOwned = ScratchOwned::new(cggi_blind_rotate_scratch_space(
&module,
block_size,
extension_factor,
basek,
k_res,
k_brk,
rows_brk,
rank,
));
let mut scratch: ScratchOwned = ScratchOwned::new(
BlindRotationKeyCGGI::generate_from_sk_scratch_space(&module, basek, k_brk, rank)
| cggi_blind_rotate_scratch_space(
&module,
extension_factor,
basek,
k_lut,
k_brk,
rows_brk,
rank,
),
);
let start: Instant = Instant::now();
let mut brk: BlindRotationKeyCGGI<FFT64> = BlindRotationKeyCGGI::allocate(&module, n_lwe, basek, k_brk, rows_brk, rank);
brk.generate_from_sk(
@@ -72,44 +77,38 @@ fn blind_rotation() {
scratch.borrow(),
);
let duration: std::time::Duration = start.elapsed();
println!("brk-gen: {} ms", duration.as_millis());
let mut lwe: LWECiphertext<Vec<u8>> = LWECiphertext::alloc(n_lwe, basek, k_lwe);
let mut pt_lwe: LWEPlaintext<Vec<u8>> = LWEPlaintext::alloc(basek, k_lwe);
let x: i64 = 1;
let x: i64 = 2;
let bits: usize = 8;
pt_lwe.data.encode_coeff_i64(0, basek, bits, 0, x, bits);
println!("{}", pt_lwe.data);
// println!("{}", pt_lwe.data);
lwe.encrypt_sk(&pt_lwe, &sk_lwe, &mut source_xa, &mut source_xe, 3.2);
lwe.decrypt(&mut pt_lwe, &sk_lwe);
println!("{}", pt_lwe.data);
// println!("{}", pt_lwe.data);
fn lut_fn(x: i64) -> i64 {
2 * x + 1
}
let mut f: Vec<i64> = vec![0i64; message_modulus];
f.iter_mut()
.enumerate()
.for_each(|(i, x)| *x = 2 * (i as i64) + 1);
let mut lut: LookUpTable = LookUpTable::alloc(&module, basek, k_lut, extension_factor);
lut.set(&module, lut_fn, message_modulus);
lut.set(&module, &f, message_modulus);
let mut res: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_lut, rank);
let mut res: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_res, rank);
let start: Instant = Instant::now();
(0..1).for_each(|_| {
cggi_blind_rotate(&module, &mut res, &lwe, &lut, &brk, scratch.borrow());
});
cggi_blind_rotate(&module, &mut res, &lwe, &lut, &brk, scratch_br.borrow());
let duration: std::time::Duration = start.elapsed();
println!("blind-rotate: {} ms", duration.as_millis());
println!("out_mut.data: {}", res.data);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_lut);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_res);
res.decrypt(&module, &mut pt_have, &sk_glwe_dft, scratch.borrow());
@@ -127,20 +126,21 @@ fn blind_rotation() {
.sum::<i64>())
% (2 * lut.domain_size()) as i64;
println!("pt_want: {}", pt_want);
// println!("pt_want: {}", pt_want);
lut.rotate(pt_want);
lut.data.iter().for_each(|d| {
println!("{}", d);
});
// lut.data.iter().for_each(|d| {
// println!("{}", d);
// });
// First limb should be exactly equal (test are parameterized such that the noise does not reach
// the first limb)
// assert_eq!(pt_have.data.at_mut(0, 0), lut.data[0].at_mut(0, 0));
assert_eq!(pt_have.data.at(0, 0), lut.data[0].at(0, 0));
// Then checks the noise
module.vec_znx_sub_ab_inplace(&mut lut.data[0], 0, &pt_have.data, 0);
let noise: f64 = lut.data[0].std(0, basek);
println!("noise: {}", noise);
// module.vec_znx_sub_ab_inplace(&mut lut.data[0], 0, &pt_have.data, 0);
// let noise: f64 = lut.data[0].std(0, basek);
// println!("noise: {}", noise);
// assert!(noise < 1e-3);
}

View File

@@ -1,3 +1,5 @@
use std::vec;
use backend::{FFT64, Module, ZnxView};
use crate::blind_rotation::lut::{DivRound, LookUpTable};
@@ -10,14 +12,15 @@ fn standard() {
let message_modulus: usize = 16;
let extension_factor: usize = 1;
let scale: usize = (1 << (basek - 1)) / message_modulus;
let log_scale: usize = basek + 1;
fn lut_fn(x: i64) -> i64 {
x - 8
}
let mut f: Vec<i64> = vec![0i64; message_modulus];
f.iter_mut()
.enumerate()
.for_each(|(i, x)| *x = (i as i64) - 8);
let mut lut: LookUpTable = LookUpTable::alloc(&module, basek, k_lut, extension_factor);
lut.set(&module, lut_fn, message_modulus);
lut.set(&module, &f, log_scale);
let half_step: i64 = lut.domain_size().div_round(message_modulus << 1) as i64;
lut.rotate(half_step);
@@ -27,8 +30,8 @@ fn standard() {
(0..lut.domain_size()).step_by(step).for_each(|i| {
(0..step).for_each(|_| {
assert_eq!(
lut_fn((i / step) as i64) % message_modulus as i64,
lut.data[0].raw()[0] / scale as i64
f[i / step] % message_modulus as i64,
lut.data[0].raw()[0] / (1 << (log_scale % basek)) as i64
);
lut.rotate(-1);
});
@@ -43,14 +46,15 @@ fn extended() {
let message_modulus: usize = 16;
let extension_factor: usize = 4;
let scale: usize = (1 << (basek - 1)) / message_modulus;
let log_scale: usize = basek + 1;
fn lut_fn(x: i64) -> i64 {
x - 8
}
let mut f: Vec<i64> = vec![0i64; message_modulus];
f.iter_mut()
.enumerate()
.for_each(|(i, x)| *x = (i as i64) - 8);
let mut lut: LookUpTable = LookUpTable::alloc(&module, basek, k_lut, extension_factor);
lut.set(&module, lut_fn, message_modulus);
lut.set(&module, &f, log_scale);
let half_step: i64 = lut.domain_size().div_round(message_modulus << 1) as i64;
lut.rotate(half_step);
@@ -60,8 +64,8 @@ fn extended() {
(0..lut.domain_size()).step_by(step).for_each(|i| {
(0..step).for_each(|_| {
assert_eq!(
lut_fn((i / step) as i64) % message_modulus as i64,
lut.data[0].raw()[0] / scale as i64
f[i / step] % message_modulus as i64,
lut.data[0].raw()[0] / (1 << (log_scale % basek)) as i64
);
lut.rotate(-1);
});

View File

@@ -76,7 +76,7 @@ fn test_apply(
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_out)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_in, rank_out)
| GLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, k_in)
| FourierGLWECiphertext::keyswitch_scratch_space(
@@ -99,7 +99,7 @@ fn test_apply(
sk_out.fill_ternary_prob(0.5, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,
@@ -170,7 +170,7 @@ fn test_apply_inplace(log_n: usize, basek: usize, k_ct: usize, k_ksk: usize, dig
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank, rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_glwe.k())
| FourierGLWECiphertext::keyswitch_inplace_scratch_space(&module, basek, ct_rlwe_dft.k(), ksk.k(), digits, rank),
@@ -184,7 +184,7 @@ fn test_apply_inplace(log_n: usize, basek: usize, k_ct: usize, k_ksk: usize, dig
sk_out.fill_ternary_prob(0.5, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,

View File

@@ -66,7 +66,7 @@ impl<C: AsRef<[u8]>> GetRow<FFT64> for GLWEAutomorphismKey<C, FFT64> {
col_j: usize,
res: &mut FourierGLWECiphertext<R, FFT64>,
) {
module.mat_znx_dft_get_row(&mut res.data, &self.key.0.data, row_i, col_j);
module.mat_znx_dft_get_row(&mut res.data, &self.key.key.data, row_i, col_j);
}
}
@@ -78,6 +78,6 @@ impl<C: AsMut<[u8]> + AsRef<[u8]>> SetRow<FFT64> for GLWEAutomorphismKey<C, FFT6
col_j: usize,
a: &FourierGLWECiphertext<R, FFT64>,
) {
module.mat_znx_dft_set_row(&mut self.key.0.data, row_i, col_j, &a.data);
module.mat_znx_dft_set_row(&mut self.key.key.data, row_i, col_j, &a.data);
}
}

View File

@@ -1,5 +1,6 @@
use backend::{
FFT64, Module, ScalarZnx, ScalarZnxDftOps, ScalarZnxOps, Scratch, VecZnxAlloc, VecZnxDftAlloc, VecZnxOps, ZnxInfos, ZnxZero,
FFT64, Module, ScalarZnx, ScalarZnxAlloc, ScalarZnxDftOps, ScalarZnxOps, Scratch, VecZnxAlloc, VecZnxDftAlloc, VecZnxOps,
ZnxInfos, ZnxView, ZnxViewMut, ZnxZero,
};
use sampling::source::Source;
@@ -9,7 +10,7 @@ use crate::{
};
impl GGLWECiphertext<Vec<u8>, FFT64> {
pub fn generate_from_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
let size = k.div_ceil(basek);
GLWECiphertext::encrypt_sk_scratch_space(module, basek, k)
+ module.bytes_of_vec_znx(rank + 1, size)
@@ -17,7 +18,7 @@ impl GGLWECiphertext<Vec<u8>, FFT64> {
+ module.bytes_of_vec_znx_dft(rank + 1, size)
}
pub fn generate_from_pk_scratch_space(_module: &Module<FFT64>, _basek: usize, _k: usize, _rank: usize) -> usize {
pub fn encrypt_pk_scratch_space(_module: &Module<FFT64>, _basek: usize, _k: usize, _rank: usize) -> usize {
unimplemented!()
}
}
@@ -35,20 +36,30 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GGLWECiphertext<DataSelf, FFT64> {
) {
#[cfg(debug_assertions)]
{
assert_eq!(self.rank_in(), pt.cols());
assert_eq!(self.rank_out(), sk.rank());
assert_eq!(
self.rank_in(),
pt.cols(),
"self.rank_in(): {} != pt.cols(): {}",
self.rank_in(),
pt.cols()
);
assert_eq!(
self.rank_out(),
sk.rank(),
"self.rank_out(): {} != sk.rank(): {}",
self.rank_out(),
sk.rank()
);
assert_eq!(self.n(), module.n());
assert_eq!(sk.n(), module.n());
assert_eq!(pt.n(), module.n());
assert!(
scratch.available()
>= GGLWECiphertext::generate_from_sk_scratch_space(module, self.basek(), self.k(), self.rank()),
"scratch.available: {} < GGLWECiphertext::generate_from_sk_scratch_space(module, self.rank()={}, \
self.size()={}): {}",
scratch.available() >= GGLWECiphertext::encrypt_sk_scratch_space(module, self.basek(), self.k(), self.rank()),
"scratch.available: {} < GGLWECiphertext::encrypt_sk_scratch_space(module, self.rank()={}, self.size()={}): {}",
scratch.available(),
self.rank(),
self.size(),
GGLWECiphertext::generate_from_sk_scratch_space(module, self.basek(), self.k(), self.rank())
GGLWECiphertext::encrypt_sk_scratch_space(module, self.basek(), self.k(), self.rank())
);
assert!(
self.rows() * self.digits() * self.basek() <= self.k(),
@@ -110,17 +121,25 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GGLWECiphertext<DataSelf, FFT64> {
}
impl GLWESwitchingKey<Vec<u8>, FFT64> {
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
GGLWECiphertext::generate_from_sk_scratch_space(module, basek, k, rank)
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank_in: usize, rank_out: usize) -> usize {
GGLWECiphertext::encrypt_sk_scratch_space(module, basek, k, rank_out)
+ module.bytes_of_scalar_znx(rank_in)
+ FourierGLWESecret::bytes_of(module, rank_out)
}
pub fn encrypt_pk_scratch_space(module: &Module<FFT64>, _basek: usize, _k: usize, _rank: usize) -> usize {
GGLWECiphertext::generate_from_pk_scratch_space(module, _basek, _k, _rank)
pub fn encrypt_pk_scratch_space(
module: &Module<FFT64>,
_basek: usize,
_k: usize,
_rank_in: usize,
_rank_out: usize,
) -> usize {
GGLWECiphertext::encrypt_pk_scratch_space(module, _basek, _k, _rank_out)
}
}
impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWESwitchingKey<DataSelf, FFT64> {
pub fn generate_from_sk<DataSkIn: AsRef<[u8]>, DataSkOut: AsRef<[u8]>>(
pub fn encrypt_sk<DataSkIn: AsRef<[u8]>, DataSkOut: AsRef<[u8]>>(
&mut self,
module: &Module<FFT64>,
sk_in: &GLWESecret<DataSkIn>,
@@ -130,30 +149,62 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWESwitchingKey<DataSelf, FFT64> {
sigma: f64,
scratch: &mut Scratch,
) {
self.0.encrypt_sk(
#[cfg(debug_assertions)]
{
assert!(sk_in.n() <= module.n());
assert!(sk_out.n() <= module.n());
}
let (mut sk_in_tmp, scratch1) = scratch.tmp_scalar_znx(module, sk_in.rank());
sk_in_tmp.zero();
(0..sk_in.rank()).for_each(|i| {
sk_in_tmp
.at_mut(i, 0)
.iter_mut()
.step_by(module.n() / sk_in.n())
.zip(sk_in.data.at(i, 0).iter())
.for_each(|(x, y)| *x = *y);
});
let (mut sk_out_tmp, scratch2) = scratch1.tmp_fourier_glwe_secret(module, sk_out.rank());
(0..sk_out.rank()).for_each(|i| {
sk_out_tmp
.data
.at_mut(i, 0)
.chunks_exact_mut(module.n() / sk_out.n())
.zip(sk_out.data.at(i, 0).iter())
.for_each(|(a_chunk, &b_elem)| {
a_chunk.fill(b_elem);
});
});
self.key.encrypt_sk(
module,
&sk_in.data,
sk_out,
&sk_in_tmp,
&sk_out_tmp,
source_xa,
source_xe,
sigma,
scratch,
scratch2,
);
self.sk_in_n = sk_in.n();
self.sk_out_n = sk_out.n();
}
}
impl GLWEAutomorphismKey<Vec<u8>, FFT64> {
pub fn generate_from_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
GGLWECiphertext::generate_from_sk_scratch_space(module, basek, k, rank) + GLWESecret::bytes_of(module, rank)
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
GLWESwitchingKey::encrypt_sk_scratch_space(module, basek, k, rank, rank) + GLWESecret::bytes_of(module, rank)
}
pub fn generate_from_pk_scratch_space(module: &Module<FFT64>, _basek: usize, _k: usize, _rank: usize) -> usize {
GGLWECiphertext::generate_from_pk_scratch_space(module, _basek, _k, _rank)
pub fn encrypt_pk_scratch_space(module: &Module<FFT64>, _basek: usize, _k: usize, _rank: usize) -> usize {
GLWESwitchingKey::encrypt_pk_scratch_space(module, _basek, _k, _rank, _rank)
}
}
impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWEAutomorphismKey<DataSelf, FFT64> {
pub fn generate_from_sk<DataSk: AsRef<[u8]>>(
pub fn encrypt_sk<DataSk: AsRef<[u8]>>(
&mut self,
module: &Module<FFT64>,
p: i64,
@@ -170,21 +221,19 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWEAutomorphismKey<DataSelf, FFT64> {
assert_eq!(self.rank_out(), self.rank_in());
assert_eq!(sk.rank(), self.rank());
assert!(
scratch.available()
>= GLWEAutomorphismKey::generate_from_sk_scratch_space(module, self.basek(), self.k(), self.rank()),
"scratch.available(): {} < AutomorphismKey::generate_from_sk_scratch_space(module, self.rank()={}, \
self.size()={}): {}",
scratch.available() >= GLWEAutomorphismKey::encrypt_sk_scratch_space(module, self.basek(), self.k(), self.rank()),
"scratch.available(): {} < AutomorphismKey::encrypt_sk_scratch_space(module, self.rank()={}, self.size()={}): {}",
scratch.available(),
self.rank(),
self.size(),
GLWEAutomorphismKey::generate_from_sk_scratch_space(module, self.basek(), self.k(), self.rank())
GLWEAutomorphismKey::encrypt_sk_scratch_space(module, self.basek(), self.k(), self.rank())
)
}
let (mut sk_out_dft, scratch_1) = scratch.tmp_fourier_sk(module, sk.rank());
let (mut sk_out_dft, scratch_1) = scratch.tmp_fourier_glwe_secret(module, sk.rank());
{
let (mut sk_out, _) = scratch_1.tmp_sk(module, sk.rank());
let (mut sk_out, _) = scratch_1.tmp_glwe_secret(module, sk.rank());
(0..self.rank()).for_each(|i| {
module.scalar_znx_automorphism(
module.galois_element_inv(p),
@@ -197,7 +246,7 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWEAutomorphismKey<DataSelf, FFT64> {
sk_out_dft.set(module, &sk_out);
}
self.key.generate_from_sk(
self.key.encrypt_sk(
module,
&sk,
&sk_out_dft,
@@ -212,15 +261,15 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWEAutomorphismKey<DataSelf, FFT64> {
}
impl GLWETensorKey<Vec<u8>, FFT64> {
pub fn generate_from_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
GLWESecret::bytes_of(module, 1)
+ FourierGLWESecret::bytes_of(module, 1)
+ GLWESwitchingKey::encrypt_sk_scratch_space(module, basek, k, rank)
+ GLWESwitchingKey::encrypt_sk_scratch_space(module, basek, k, rank, rank)
}
}
impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWETensorKey<DataSelf, FFT64> {
pub fn generate_from_sk<DataSk: AsRef<[u8]>>(
pub fn encrypt_sk<DataSk: AsRef<[u8]>>(
&mut self,
module: &Module<FFT64>,
sk: &FourierGLWESecret<DataSk, FFT64>,
@@ -238,15 +287,15 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GLWETensorKey<DataSelf, FFT64> {
let rank: usize = self.rank();
let (mut sk_ij, scratch1) = scratch.tmp_sk(module, 1);
let (mut sk_ij_dft, scratch2) = scratch1.tmp_fourier_sk(module, 1);
let (mut sk_ij, scratch1) = scratch.tmp_glwe_secret(module, 1);
let (mut sk_ij_dft, scratch2) = scratch1.tmp_fourier_glwe_secret(module, 1);
(0..rank).for_each(|i| {
(i..rank).for_each(|j| {
module.svp_apply(&mut sk_ij_dft.data, 0, &sk.data, i, &sk.data, j);
module.scalar_znx_idft(&mut sk_ij.data, 0, &sk_ij_dft.data, 0, scratch2);
self.at_mut(i, j)
.generate_from_sk(module, &sk_ij, sk, source_xa, source_xe, sigma, scratch2);
.encrypt_sk(module, &sk_ij, sk, source_xa, source_xe, sigma, scratch2);
});
})
}

View File

@@ -2,7 +2,11 @@ use backend::{Backend, FFT64, MatZnxDft, MatZnxDftOps, Module};
use crate::{FourierGLWECiphertext, GGLWECiphertext, GetRow, Infos, SetRow};
pub struct GLWESwitchingKey<Data, B: Backend>(pub(crate) GGLWECiphertext<Data, B>);
pub struct GLWESwitchingKey<Data, B: Backend> {
pub(crate) key: GGLWECiphertext<Data, B>,
pub(crate) sk_in_n: usize, // Degree of sk_in
pub(crate) sk_out_n: usize, // Degree of sk_out
}
impl GLWESwitchingKey<Vec<u8>, FFT64> {
pub fn alloc(
@@ -14,9 +18,11 @@ impl GLWESwitchingKey<Vec<u8>, FFT64> {
rank_in: usize,
rank_out: usize,
) -> Self {
GLWESwitchingKey(GGLWECiphertext::alloc(
module, basek, k, rows, digits, rank_in, rank_out,
))
GLWESwitchingKey {
key: GGLWECiphertext::alloc(module, basek, k, rows, digits, rank_in, rank_out),
sk_in_n: 0,
sk_out_n: 0,
}
}
pub fn bytes_of(
@@ -36,33 +42,41 @@ impl<T, B: Backend> Infos for GLWESwitchingKey<T, B> {
type Inner = MatZnxDft<T, B>;
fn inner(&self) -> &Self::Inner {
self.0.inner()
self.key.inner()
}
fn basek(&self) -> usize {
self.0.basek()
self.key.basek()
}
fn k(&self) -> usize {
self.0.k()
self.key.k()
}
}
impl<T, B: Backend> GLWESwitchingKey<T, B> {
pub fn rank(&self) -> usize {
self.0.data.cols_out() - 1
self.key.data.cols_out() - 1
}
pub fn rank_in(&self) -> usize {
self.0.data.cols_in()
self.key.data.cols_in()
}
pub fn rank_out(&self) -> usize {
self.0.data.cols_out() - 1
self.key.data.cols_out() - 1
}
pub fn digits(&self) -> usize {
self.0.digits()
self.key.digits()
}
pub fn sk_degree_in(&self) -> usize {
self.sk_in_n
}
pub fn sk_degree_out(&self) -> usize {
self.sk_out_n
}
}
@@ -74,7 +88,7 @@ impl<C: AsRef<[u8]>> GetRow<FFT64> for GLWESwitchingKey<C, FFT64> {
col_j: usize,
res: &mut FourierGLWECiphertext<R, FFT64>,
) {
module.mat_znx_dft_get_row(&mut res.data, &self.0.data, row_i, col_j);
module.mat_znx_dft_get_row(&mut res.data, &self.key.data, row_i, col_j);
}
}
@@ -86,6 +100,6 @@ impl<C: AsMut<[u8]> + AsRef<[u8]>> SetRow<FFT64> for GLWESwitchingKey<C, FFT64>
col_j: usize,
a: &FourierGLWECiphertext<R, FFT64>,
) {
module.mat_znx_dft_set_row(&mut self.0.data, row_i, col_j, &a.data);
module.mat_znx_dft_set_row(&mut self.key.data, row_i, col_j, &a.data);
}
}

View File

@@ -70,7 +70,7 @@ fn test_automorphism(
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_apply, rank)
GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, k_apply, rank)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
| GLWEAutomorphismKey::automorphism_scratch_space(&module, basek, k_out, k_in, k_apply, digits, rank),
);
@@ -79,7 +79,7 @@ fn test_automorphism(
sk.fill_ternary_prob(0.5, &mut source_xs);
// gglwe_{s1}(s0) = s0 -> s1
auto_key_in.generate_from_sk(
auto_key_in.encrypt_sk(
&module,
p0,
&sk,
@@ -90,7 +90,7 @@ fn test_automorphism(
);
// gglwe_{s2}(s1) -> s1 -> s2
auto_key_apply.generate_from_sk(
auto_key_apply.encrypt_sk(
&module,
p1,
&sk,
@@ -185,7 +185,7 @@ fn test_automorphism_inplace(
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_apply, rank)
GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, k_apply, rank)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_in)
| GLWEAutomorphismKey::automorphism_inplace_scratch_space(&module, basek, k_in, k_apply, digits, rank),
);
@@ -194,7 +194,7 @@ fn test_automorphism_inplace(
sk.fill_ternary_prob(0.5, &mut source_xs);
// gglwe_{s1}(s0) = s0 -> s1
auto_key.generate_from_sk(
auto_key.encrypt_sk(
&module,
p0,
&sk,
@@ -205,7 +205,7 @@ fn test_automorphism_inplace(
);
// gglwe_{s2}(s1) -> s1 -> s2
auto_key_apply.generate_from_sk(
auto_key_apply.encrypt_sk(
&module,
p1,
&sk,

View File

@@ -144,7 +144,7 @@ fn test_encrypt_sk(log_n: usize, basek: usize, k_ksk: usize, digits: usize, rank
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_out)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_in, rank_out)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_ksk),
);
@@ -155,7 +155,7 @@ fn test_encrypt_sk(log_n: usize, basek: usize, k_ksk: usize, digits: usize, rank
sk_out.fill_ternary_prob(0.5, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,
@@ -234,8 +234,13 @@ fn test_key_switch(
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_in_s0s1 | rank_out_s0s1)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
GLWESwitchingKey::encrypt_sk_scratch_space(
&module,
basek,
k_ksk,
rank_in_s0s1,
rank_in_s0s1 | rank_out_s0s1,
) | FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
| GLWESwitchingKey::keyswitch_scratch_space(
&module,
basek,
@@ -260,7 +265,7 @@ fn test_key_switch(
let sk2_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk2);
// gglwe_{s1}(s0) = s0 -> s1
ct_gglwe_s0s1.generate_from_sk(
ct_gglwe_s0s1.encrypt_sk(
&module,
&sk0,
&sk1_dft,
@@ -271,7 +276,7 @@ fn test_key_switch(
);
// gglwe_{s2}(s1) -> s1 -> s2
ct_gglwe_s1s2.generate_from_sk(
ct_gglwe_s1s2.encrypt_sk(
&module,
&sk1,
&sk2_dft,
@@ -348,7 +353,7 @@ fn test_key_switch_inplace(
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_out)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_in, rank_out)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_ksk)
| GLWESwitchingKey::keyswitch_inplace_scratch_space(&module, basek, k_ct, k_ksk, digits, rank_out),
);
@@ -365,7 +370,7 @@ fn test_key_switch_inplace(
let sk2_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk2);
// gglwe_{s1}(s0) = s0 -> s1
ct_gglwe_s0s1.generate_from_sk(
ct_gglwe_s0s1.encrypt_sk(
&module,
&sk0,
&sk1_dft,
@@ -376,7 +381,7 @@ fn test_key_switch_inplace(
);
// gglwe_{s2}(s1) -> s1 -> s2
ct_gglwe_s1s2.generate_from_sk(
ct_gglwe_s1s2.encrypt_sk(
&module,
&sk1,
&sk2_dft,
@@ -459,7 +464,7 @@ fn test_external_product(
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_in, rank_out)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_in, rank_in, rank_out)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
| GLWESwitchingKey::external_product_scratch_space(&module, basek, k_out, k_in, k_ggsw, digits, rank_out)
| GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, k_ggsw, rank_out),
@@ -477,7 +482,7 @@ fn test_external_product(
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
// gglwe_{s1}(s0) = s0 -> s1
ct_gglwe_in.generate_from_sk(
ct_gglwe_in.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,
@@ -580,7 +585,7 @@ fn test_external_product_inplace(
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ct, rank_out)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ct, rank_in, rank_out)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_ct)
| GLWESwitchingKey::external_product_inplace_scratch_space(&module, basek, k_ct, k_ggsw, digits, rank_out)
| GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, k_ggsw, rank_out),
@@ -598,7 +603,7 @@ fn test_external_product_inplace(
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
// gglwe_{s1}(s0) = s0 -> s1
ct_gglwe.generate_from_sk(
ct_gglwe.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,

View File

@@ -23,7 +23,7 @@ fn test_encrypt_sk(log_n: usize, basek: usize, k: usize, sigma: f64, rank: usize
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(GLWETensorKey::generate_from_sk_scratch_space(
let mut scratch: ScratchOwned = ScratchOwned::new(GLWETensorKey::encrypt_sk_scratch_space(
&module,
basek,
tensor_key.k(),
@@ -34,7 +34,7 @@ fn test_encrypt_sk(log_n: usize, basek: usize, k: usize, sigma: f64, rank: usize
sk.fill_ternary_prob(0.5, &mut source_xs);
let sk_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk);
tensor_key.generate_from_sk(
tensor_key.encrypt_sk(
&module,
&sk_dft,
&mut source_xa,

View File

@@ -363,7 +363,7 @@ impl<DataSelf: AsMut<[u8]> + AsRef<[u8]>> GGSWCiphertext<DataSelf, FFT64> {
// =
// (-(x0s0 + x1s1 + x2s2) + s0(a0s0 + a1s1 + a2s2), x0, x1, x2)
(1..cols).for_each(|col_i| {
let pmat: &MatZnxDft<DataTsk, FFT64> = &tsk.at(col_i - 1, col_j - 1).0.data; // Selects Enc(s[i]s[j])
let pmat: &MatZnxDft<DataTsk, FFT64> = &tsk.at(col_i - 1, col_j - 1).key.data; // Selects Enc(s[i]s[j])
// Extracts a[i] and multipies with Enc(s[i]s[j])
(0..digits).for_each(|di| {

View File

@@ -223,8 +223,8 @@ fn test_keyswitch(
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, k_in, rank)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
| GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWETensorKey::generate_from_sk_scratch_space(&module, basek, k_tsk, rank)
| GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank, rank)
| GLWETensorKey::encrypt_sk_scratch_space(&module, basek, k_tsk, rank)
| GGSWCiphertext::keyswitch_scratch_space(
&module, basek, k_out, k_in, k_ksk, digits, k_tsk, digits, rank,
),
@@ -240,7 +240,7 @@ fn test_keyswitch(
sk_out.fill_ternary_prob(var_xs, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,
@@ -249,7 +249,7 @@ fn test_keyswitch(
sigma,
scratch.borrow(),
);
tsk.generate_from_sk(
tsk.encrypt_sk(
&module,
&sk_out_dft,
&mut source_xa,
@@ -352,8 +352,8 @@ fn test_keyswitch_inplace(
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, k_ct, rank)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_ct)
| GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWETensorKey::generate_from_sk_scratch_space(&module, basek, k_tsk, rank)
| GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank, rank)
| GLWETensorKey::encrypt_sk_scratch_space(&module, basek, k_tsk, rank)
| GGSWCiphertext::keyswitch_inplace_scratch_space(&module, basek, k_ct, k_ksk, digits, k_tsk, digits, rank),
);
@@ -367,7 +367,7 @@ fn test_keyswitch_inplace(
sk_out.fill_ternary_prob(var_xs, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,
@@ -376,7 +376,7 @@ fn test_keyswitch_inplace(
sigma,
scratch.borrow(),
);
tsk.generate_from_sk(
tsk.encrypt_sk(
&module,
&sk_out_dft,
&mut source_xa,
@@ -489,8 +489,8 @@ fn test_automorphism(
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, k_in, rank)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
| GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWETensorKey::generate_from_sk_scratch_space(&module, basek, k_tsk, rank)
| GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWETensorKey::encrypt_sk_scratch_space(&module, basek, k_tsk, rank)
| GGSWCiphertext::automorphism_scratch_space(
&module, basek, k_out, k_in, k_ksk, digits, k_tsk, digits, rank,
),
@@ -502,7 +502,7 @@ fn test_automorphism(
sk.fill_ternary_prob(var_xs, &mut source_xs);
let sk_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk);
auto_key.generate_from_sk(
auto_key.encrypt_sk(
&module,
p,
&sk,
@@ -511,7 +511,7 @@ fn test_automorphism(
sigma,
scratch.borrow(),
);
tensor_key.generate_from_sk(
tensor_key.encrypt_sk(
&module,
&sk_dft,
&mut source_xa,
@@ -615,8 +615,8 @@ fn test_automorphism_inplace(
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, k_ct, rank)
| FourierGLWECiphertext::decrypt_scratch_space(&module, basek, k_ct)
| GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWETensorKey::generate_from_sk_scratch_space(&module, basek, k_tsk, rank)
| GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWETensorKey::encrypt_sk_scratch_space(&module, basek, k_tsk, rank)
| GGSWCiphertext::automorphism_inplace_scratch_space(&module, basek, k_ct, k_ksk, digits, k_tsk, digits, rank),
);
@@ -626,7 +626,7 @@ fn test_automorphism_inplace(
sk.fill_ternary_prob(var_xs, &mut source_xs);
let sk_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk);
auto_key.generate_from_sk(
auto_key.encrypt_sk(
&module,
p,
&sk,
@@ -635,7 +635,7 @@ fn test_automorphism_inplace(
sigma,
scratch.borrow(),
);
tensor_key.generate_from_sk(
tensor_key.encrypt_sk(
&module,
&sk_dft,
&mut source_xa,

View File

@@ -14,7 +14,7 @@ impl GLWECiphertext<Vec<u8>> {
digits: usize,
rank: usize,
) -> usize {
let res_dft: usize = FourierGLWECiphertext::bytes_of(module, basek, k_out, rank);
let res_dft: usize = FourierGLWECiphertext::bytes_of(module, basek, k_ggsw, rank);
let in_size: usize = k_in.div_ceil(basek).div_ceil(digits);
let out_size: usize = k_out.div_ceil(basek);
let ggsw_size: usize = k_ggsw.div_ceil(basek);

View File

@@ -87,8 +87,20 @@ impl<DataSelf: AsRef<[u8]> + AsMut<[u8]>> GLWECiphertext<DataSelf> {
#[cfg(debug_assertions)]
{
assert_eq!(lhs.rank(), rhs.rank_in());
assert_eq!(self.rank(), rhs.rank_out());
assert_eq!(
lhs.rank(),
rhs.rank_in(),
"lhs.rank(): {} != rhs.rank_in(): {}",
lhs.rank(),
rhs.rank_in()
);
assert_eq!(
self.rank(),
rhs.rank_out(),
"self.rank(): {} != rhs.rank_out(): {}",
self.rank(),
rhs.rank_out()
);
assert_eq!(self.basek(), basek);
assert_eq!(lhs.basek(), basek);
assert_eq!(rhs.n(), module.n());
@@ -141,9 +153,9 @@ impl<DataSelf: AsRef<[u8]> + AsMut<[u8]>> GLWECiphertext<DataSelf> {
});
if di == 0 {
module.vmp_apply(&mut res_dft, &ai_dft, &rhs.0.data, scratch2);
module.vmp_apply(&mut res_dft, &ai_dft, &rhs.key.data, scratch2);
} else {
module.vmp_apply_add(&mut res_dft, &ai_dft, &rhs.0.data, di, scratch2);
module.vmp_apply_add(&mut res_dft, &ai_dft, &rhs.key.data, di, scratch2);
}
});
}
@@ -225,9 +237,9 @@ impl<DataSelf: AsRef<[u8]> + AsMut<[u8]>> GLWECiphertext<DataSelf> {
});
if di == 0 {
module.vmp_apply(&mut res_dft, &ai_dft, &rhs.0.data, scratch2);
module.vmp_apply(&mut res_dft, &ai_dft, &rhs.key.data, scratch2);
} else {
module.vmp_apply_add(&mut res_dft, &ai_dft, &rhs.0.data, di, scratch2);
module.vmp_apply_add(&mut res_dft, &ai_dft, &rhs.key.data, di, scratch2);
}
});
}

View File

@@ -67,7 +67,7 @@ fn test_automorphism(
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, autokey.k(), rank)
GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, autokey.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_out.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_in.k())
| GLWECiphertext::automorphism_scratch_space(
@@ -85,7 +85,7 @@ fn test_automorphism(
sk.fill_ternary_prob(0.5, &mut source_xs);
let sk_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk);
autokey.generate_from_sk(
autokey.encrypt_sk(
&module,
p,
&sk,
@@ -164,7 +164,7 @@ fn test_automorphism_inplace(
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, autokey.k(), rank)
GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, autokey.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::automorphism_inplace_scratch_space(&module, basek, ct.k(), autokey.k(), digits, rank),
@@ -174,7 +174,7 @@ fn test_automorphism_inplace(
sk.fill_ternary_prob(0.5, &mut source_xs);
let sk_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk);
autokey.generate_from_sk(
autokey.encrypt_sk(
&module,
p,
&sk,

View File

@@ -72,7 +72,7 @@ fn test_keyswitch(
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank_out)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank_in, rank_out)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_out.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_in.k())
| GLWECiphertext::keyswitch_scratch_space(
@@ -95,7 +95,7 @@ fn test_keyswitch(
sk_out.fill_ternary_prob(0.5, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ksk.generate_from_sk(
ksk.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,
@@ -163,7 +163,7 @@ fn test_keyswitch_inplace(log_n: usize, basek: usize, k_ct: usize, k_ksk: usize,
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ct_grlwe.k(), rank)
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ct_grlwe.k(), rank, rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::keyswitch_inplace_scratch_space(&module, basek, ct_glwe.k(), ct_grlwe.k(), digits, rank),
@@ -177,7 +177,7 @@ fn test_keyswitch_inplace(log_n: usize, basek: usize, k_ct: usize, k_ksk: usize,
sk_out.fill_ternary_prob(0.5, &mut source_xs);
let sk_out_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::from(&module, &sk_out);
ct_grlwe.generate_from_sk(
ct_grlwe.encrypt_sk(
&module,
&sk_in,
&sk_out_dft,

View File

@@ -26,7 +26,7 @@ fn apply() {
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, k_ct)
| GLWECiphertext::decrypt_scratch_space(&module, basek, k_ct)
| GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWEPacker::scratch_space(&module, basek, k_ct, k_ksk, digits, rank),
);
@@ -46,7 +46,7 @@ fn apply() {
let mut auto_keys: HashMap<i64, GLWEAutomorphismKey<Vec<u8>, FFT64>> = HashMap::new();
gal_els.iter().for_each(|gal_el| {
let mut key: GLWEAutomorphismKey<Vec<u8>, FFT64> = GLWEAutomorphismKey::alloc(&module, basek, k_ksk, rows, digits, rank);
key.generate_from_sk(
key.encrypt_sk(
&module,
*gal_el,
&sk,

View File

@@ -35,7 +35,7 @@ fn test_trace_inplace(log_n: usize, basek: usize, k: usize, sigma: f64, rank: us
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| GLWEAutomorphismKey::generate_from_sk_scratch_space(&module, basek, k_autokey, rank)
| GLWEAutomorphismKey::encrypt_sk_scratch_space(&module, basek, k_autokey, rank)
| GLWECiphertext::trace_inplace_scratch_space(&module, basek, ct.k(), k_autokey, digits, rank),
);
@@ -68,7 +68,7 @@ fn test_trace_inplace(log_n: usize, basek: usize, k: usize, sigma: f64, rank: us
gal_els.iter().for_each(|gal_el| {
let mut key: GLWEAutomorphismKey<Vec<u8>, FFT64> =
GLWEAutomorphismKey::alloc(&module, basek, k_autokey, rows, digits, rank);
key.generate_from_sk(
key.encrypt_sk(
&module,
*gal_el,
&sk,

View File

@@ -11,17 +11,18 @@ pub mod noise;
use backend::Backend;
use backend::FFT64;
use backend::Module;
pub use blind_rotation::{BlindRotationKeyCGGI, LookUpTable, cggi_blind_rotate, cggi_blind_rotate_scratch_space};
pub use elem::{GetRow, Infos, SetMetaData, SetRow};
pub use fourier_glwe::{FourierGLWECiphertext, FourierGLWESecret};
pub use gglwe::{GGLWECiphertext, GLWEAutomorphismKey, GLWESwitchingKey, GLWETensorKey};
pub use ggsw::GGSWCiphertext;
pub use glwe::{GLWECiphertext, GLWEOps, GLWEPacker, GLWEPlaintext, GLWEPublicKey, GLWESecret};
pub(crate) use glwe::{GLWECiphertextToMut, GLWECiphertextToRef};
pub use lwe::{LWECiphertext, LWESecret};
pub use backend;
pub use backend::Scratch;
pub use backend::ScratchOwned;
pub(crate) use glwe::{GLWECiphertextToMut, GLWECiphertextToRef};
use crate::dist::Distribution;
@@ -64,7 +65,7 @@ pub trait ScratchCore<B: Backend> {
k: usize,
rank: usize,
) -> (FourierGLWECiphertext<&mut [u8], B>, &mut Self);
fn tmp_vec_fourier_glwe_ct(
fn tmp_slice_fourier_glwe_ct(
&mut self,
size: usize,
module: &Module<B>,
@@ -72,8 +73,8 @@ pub trait ScratchCore<B: Backend> {
k: usize,
rank: usize,
) -> (Vec<FourierGLWECiphertext<&mut [u8], B>>, &mut Self);
fn tmp_sk(&mut self, module: &Module<B>, rank: usize) -> (GLWESecret<&mut [u8]>, &mut Self);
fn tmp_fourier_sk(&mut self, module: &Module<B>, rank: usize) -> (FourierGLWESecret<&mut [u8], B>, &mut Self);
fn tmp_glwe_secret(&mut self, module: &Module<B>, rank: usize) -> (GLWESecret<&mut [u8]>, &mut Self);
fn tmp_fourier_glwe_secret(&mut self, module: &Module<B>, rank: usize) -> (FourierGLWESecret<&mut [u8], B>, &mut Self);
fn tmp_glwe_pk(
&mut self,
module: &Module<B>,
@@ -212,7 +213,7 @@ impl ScratchCore<FFT64> for Scratch {
(FourierGLWECiphertext { data, basek, k }, scratch)
}
fn tmp_vec_fourier_glwe_ct(
fn tmp_slice_fourier_glwe_ct(
&mut self,
size: usize,
module: &Module<FFT64>,
@@ -247,7 +248,7 @@ impl ScratchCore<FFT64> for Scratch {
)
}
fn tmp_sk(&mut self, module: &Module<FFT64>, rank: usize) -> (GLWESecret<&mut [u8]>, &mut Self) {
fn tmp_glwe_secret(&mut self, module: &Module<FFT64>, rank: usize) -> (GLWESecret<&mut [u8]>, &mut Self) {
let (data, scratch) = self.tmp_scalar_znx(module, rank);
(
GLWESecret {
@@ -258,7 +259,11 @@ impl ScratchCore<FFT64> for Scratch {
)
}
fn tmp_fourier_sk(&mut self, module: &Module<FFT64>, rank: usize) -> (FourierGLWESecret<&mut [u8], FFT64>, &mut Self) {
fn tmp_fourier_glwe_secret(
&mut self,
module: &Module<FFT64>,
rank: usize,
) -> (FourierGLWESecret<&mut [u8], FFT64>, &mut Self) {
let (data, scratch) = self.tmp_scalar_znx_dft(module, rank);
(
FourierGLWESecret {
@@ -280,7 +285,14 @@ impl ScratchCore<FFT64> for Scratch {
rank_out: usize,
) -> (GLWESwitchingKey<&mut [u8], FFT64>, &mut Self) {
let (data, scratch) = self.tmp_gglwe(module, basek, k, rows, digits, rank_in, rank_out);
(GLWESwitchingKey(data), scratch)
(
GLWESwitchingKey {
key: data,
sk_in_n: 0,
sk_out_n: 0,
},
scratch,
)
}
fn tmp_autokey(

View File

@@ -28,7 +28,9 @@ where
self.data.fill_uniform(basek, 0, self.size(), source_xa);
let mut tmp_znx: VecZnx<Vec<u8>> = VecZnx::<Vec<u8>>::new::<i64>(1, 1, self.size());
(0..self.size()).for_each(|i| {
let min_size = self.size().min(pt.size());
(0..min_size).for_each(|i| {
tmp_znx.at_mut(0, i)[0] = pt.data.at(0, i)[0]
- self.data.at(0, i)[1..]
.iter()
@@ -37,6 +39,14 @@ where
.sum::<i64>();
});
(min_size..self.size()).for_each(|i| {
tmp_znx.at_mut(0, i)[0] -= self.data.at(0, i)[1..]
.iter()
.zip(sk.data.at(0, 0))
.map(|(x, y)| x * y)
.sum::<i64>();
});
tmp_znx.add_normal(basek, 0, self.k(), source_xe, sigma, sigma * SIX_SIGMA);
let mut tmp_bytes: Vec<u8> = alloc_aligned(size_of::<i64>());

313
core/src/lwe/keyswtich.rs Normal file
View File

@@ -0,0 +1,313 @@
use backend::{Backend, FFT64, Module, Scratch, VecZnxOps, ZnxView, ZnxViewMut, ZnxZero};
use sampling::source::Source;
use crate::{FourierGLWESecret, GLWECiphertext, GLWESecret, GLWESwitchingKey, Infos, LWECiphertext, LWESecret, ScratchCore};
/// A special [GLWESwitchingKey] required to for the conversion from [GLWECiphertext] to [LWECiphertext].
pub struct GLWEToLWESwitchingKey<D, B: Backend>(GLWESwitchingKey<D, B>);
impl GLWEToLWESwitchingKey<Vec<u8>, FFT64> {
pub fn alloc(module: &Module<FFT64>, basek: usize, k: usize, rows: usize, rank: usize) -> Self {
Self(GLWESwitchingKey::alloc(module, basek, k, rows, 1, rank, 1))
}
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
FourierGLWESecret::bytes_of(module, rank)
+ (GLWESwitchingKey::encrypt_sk_scratch_space(module, basek, k, rank, rank) | GLWESecret::bytes_of(module, rank))
}
}
impl<D: AsMut<[u8]> + AsRef<[u8]>> GLWEToLWESwitchingKey<D, FFT64> {
pub fn encrypt_sk<DLwe, DGlwe>(
&mut self,
module: &Module<FFT64>,
sk_lwe: &LWESecret<DLwe>,
sk_glwe: &GLWESecret<DGlwe>,
source_xa: &mut Source,
source_xe: &mut Source,
sigma: f64,
scratch: &mut Scratch,
) where
DLwe: AsRef<[u8]>,
DGlwe: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert!(sk_lwe.n() <= module.n());
}
let (mut sk_lwe_as_glwe_dft, scratch1) = scratch.tmp_fourier_glwe_secret(module, 1);
{
let (mut sk_lwe_as_glwe, _) = scratch1.tmp_glwe_secret(module, 1);
sk_lwe_as_glwe.data.zero();
sk_lwe_as_glwe.data.at_mut(0, 0)[..sk_lwe.n()].copy_from_slice(sk_lwe.data.at(0, 0));
module.vec_znx_automorphism_inplace(-1, &mut sk_lwe_as_glwe.data, 0);
sk_lwe_as_glwe_dft.set(module, &sk_lwe_as_glwe);
}
self.0.encrypt_sk(
module,
sk_glwe,
&sk_lwe_as_glwe_dft,
source_xa,
source_xe,
sigma,
scratch1,
);
}
}
/// A special [GLWESwitchingKey] required to for the conversion from [LWECiphertext] to [GLWECiphertext].
pub struct LWEToGLWESwitchingKey<D, B: Backend>(GLWESwitchingKey<D, B>);
impl LWEToGLWESwitchingKey<Vec<u8>, FFT64> {
pub fn alloc(module: &Module<FFT64>, basek: usize, k: usize, rows: usize, rank: usize) -> Self {
Self(GLWESwitchingKey::alloc(module, basek, k, rows, 1, 1, rank))
}
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize, rank: usize) -> usize {
GLWESwitchingKey::encrypt_sk_scratch_space(module, basek, k, 1, rank) + GLWESecret::bytes_of(module, 1)
}
}
impl<D: AsMut<[u8]> + AsRef<[u8]>> LWEToGLWESwitchingKey<D, FFT64> {
pub fn encrypt_sk<DLwe, DGlwe>(
&mut self,
module: &Module<FFT64>,
sk_lwe: &LWESecret<DLwe>,
sk_glwe: &FourierGLWESecret<DGlwe, FFT64>,
source_xa: &mut Source,
source_xe: &mut Source,
sigma: f64,
scratch: &mut Scratch,
) where
DLwe: AsRef<[u8]>,
DGlwe: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert!(sk_lwe.n() <= module.n());
}
let (mut sk_lwe_as_glwe, scratch1) = scratch.tmp_glwe_secret(module, 1);
sk_lwe_as_glwe.data.at_mut(0, 0)[..sk_lwe.n()].copy_from_slice(sk_lwe.data.at(0, 0));
sk_lwe_as_glwe.data.at_mut(0, 0)[sk_lwe.n()..].fill(0);
module.vec_znx_automorphism_inplace(-1, &mut sk_lwe_as_glwe.data, 0);
self.0.encrypt_sk(
module,
&sk_lwe_as_glwe,
&sk_glwe,
source_xa,
source_xe,
sigma,
scratch1,
);
}
}
pub struct LWESwitchingKey<D, B: Backend>(GLWESwitchingKey<D, B>);
impl LWESwitchingKey<Vec<u8>, FFT64> {
pub fn alloc(module: &Module<FFT64>, basek: usize, k: usize, rows: usize) -> Self {
Self(GLWESwitchingKey::alloc(module, basek, k, rows, 1, 1, 1))
}
pub fn encrypt_sk_scratch_space(module: &Module<FFT64>, basek: usize, k: usize) -> usize {
GLWESecret::bytes_of(module, 1)
+ FourierGLWESecret::bytes_of(module, 1)
+ GLWESwitchingKey::encrypt_sk_scratch_space(module, basek, k, 1, 1)
}
}
impl<D: AsMut<[u8]> + AsRef<[u8]>> LWESwitchingKey<D, FFT64> {
pub fn encrypt_sk<DIn, DOut>(
&mut self,
module: &Module<FFT64>,
sk_lwe_in: &LWESecret<DIn>,
sk_lwe_out: &LWESecret<DOut>,
source_xa: &mut Source,
source_xe: &mut Source,
sigma: f64,
scratch: &mut Scratch,
) where
DIn: AsRef<[u8]>,
DOut: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert!(sk_lwe_in.n() <= module.n());
assert!(sk_lwe_out.n() <= module.n());
}
let (mut sk_in_glwe, scratch1) = scratch.tmp_glwe_secret(module, 1);
let (mut sk_out_glwe, scratch2) = scratch1.tmp_fourier_glwe_secret(module, 1);
sk_in_glwe.data.at_mut(0, 0)[..sk_lwe_out.n()].copy_from_slice(sk_lwe_out.data.at(0, 0));
sk_in_glwe.data.at_mut(0, 0)[sk_lwe_out.n()..].fill(0);
module.vec_znx_automorphism_inplace(-1, &mut sk_in_glwe.data, 0);
sk_out_glwe.set(module, &sk_in_glwe);
sk_in_glwe.data.at_mut(0, 0)[..sk_lwe_in.n()].copy_from_slice(sk_lwe_in.data.at(0, 0));
sk_in_glwe.data.at_mut(0, 0)[sk_lwe_in.n()..].fill(0);
module.vec_znx_automorphism_inplace(-1, &mut sk_in_glwe.data, 0);
self.0.encrypt_sk(
module,
&sk_in_glwe,
&sk_out_glwe,
source_xa,
source_xe,
sigma,
scratch2,
);
}
}
impl LWECiphertext<Vec<u8>> {
pub fn from_glwe_scratch_space(
module: &Module<FFT64>,
basek: usize,
k_lwe: usize,
k_glwe: usize,
k_ksk: usize,
rank: usize,
) -> usize {
GLWECiphertext::bytes_of(module, basek, k_lwe, 1)
+ GLWECiphertext::keyswitch_scratch_space(module, basek, k_lwe, k_glwe, k_ksk, 1, rank, 1)
}
pub fn keyswitch_scratch_space(
module: &Module<FFT64>,
basek: usize,
k_lwe_out: usize,
k_lwe_in: usize,
k_ksk: usize,
) -> usize {
GLWECiphertext::bytes_of(module, basek, k_lwe_out.max(k_lwe_in), 1)
+ GLWECiphertext::keyswitch_inplace_scratch_space(module, basek, k_lwe_out, k_ksk, 1, 1)
}
}
impl<DLwe: AsRef<[u8]> + AsMut<[u8]>> LWECiphertext<DLwe> {
pub fn sample_extract<DGlwe>(&mut self, a: &GLWECiphertext<DGlwe>)
where
DGlwe: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert!(self.n() <= a.n());
}
let min_size: usize = self.size().min(a.size());
let n: usize = self.n();
self.data.zero();
(0..min_size).for_each(|i| {
let data_lwe: &mut [i64] = self.data.at_mut(0, i);
data_lwe[0] = a.data.at(0, i)[0];
data_lwe[1..].copy_from_slice(&a.data.at(1, i)[..n]);
});
}
pub fn from_glwe<DGlwe, DKs>(
&mut self,
module: &Module<FFT64>,
a: &GLWECiphertext<DGlwe>,
ks: &GLWEToLWESwitchingKey<DKs, FFT64>,
scratch: &mut Scratch,
) where
DGlwe: AsRef<[u8]>,
DKs: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert_eq!(self.basek(), a.basek());
}
let (mut tmp_glwe, scratch1) = scratch.tmp_glwe_ct(module, a.basek(), self.k(), 1);
tmp_glwe.keyswitch(module, a, &ks.0, scratch1);
self.sample_extract(&tmp_glwe);
}
pub fn keyswitch<A, DKs>(
&mut self,
module: &Module<FFT64>,
a: &LWECiphertext<A>,
ksk: &LWESwitchingKey<DKs, FFT64>,
scratch: &mut Scratch,
) where
A: AsRef<[u8]>,
DKs: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert!(self.n() <= module.n());
assert!(a.n() <= module.n());
assert_eq!(self.basek(), a.basek());
}
let max_k: usize = self.k().max(a.k());
let basek: usize = self.basek();
let (mut glwe, scratch1) = scratch.tmp_glwe_ct(&module, basek, max_k, 1);
glwe.data.zero();
let n_lwe: usize = a.n();
(0..a.size()).for_each(|i| {
let data_lwe: &[i64] = a.data.at(0, i);
glwe.data.at_mut(0, i)[0] = data_lwe[0];
glwe.data.at_mut(1, i)[..n_lwe].copy_from_slice(&data_lwe[1..]);
});
glwe.keyswitch_inplace(module, &ksk.0, scratch1);
self.sample_extract(&glwe);
}
}
impl GLWECiphertext<Vec<u8>> {
pub fn from_lwe_scratch_space(
module: &Module<FFT64>,
basek: usize,
k_lwe: usize,
k_glwe: usize,
k_ksk: usize,
rank: usize,
) -> usize {
GLWECiphertext::keyswitch_scratch_space(module, basek, k_glwe, k_lwe, k_ksk, 1, 1, rank)
+ GLWECiphertext::bytes_of(module, basek, k_lwe, 1)
}
}
impl<D: AsRef<[u8]> + AsMut<[u8]>> GLWECiphertext<D> {
pub fn from_lwe<DLwe, DKsk>(
&mut self,
module: &Module<FFT64>,
lwe: &LWECiphertext<DLwe>,
ksk: &LWEToGLWESwitchingKey<DKsk, FFT64>,
scratch: &mut Scratch,
) where
DLwe: AsRef<[u8]>,
DKsk: AsRef<[u8]>,
{
#[cfg(debug_assertions)]
{
assert!(lwe.n() <= self.n());
assert_eq!(self.basek(), self.basek());
}
let (mut glwe, scratch1) = scratch.tmp_glwe_ct(module, lwe.basek(), lwe.k(), 1);
glwe.data.zero();
let n_lwe: usize = lwe.n();
(0..lwe.size()).for_each(|i| {
let data_lwe: &[i64] = lwe.data.at(0, i);
glwe.data.at_mut(0, i)[0] = data_lwe[0];
glwe.data.at_mut(1, i)[..n_lwe].copy_from_slice(&data_lwe[1..]);
});
self.keyswitch(module, &glwe, &ksk.0, scratch1);
}
}

View File

@@ -1,9 +1,13 @@
pub mod ciphertext;
pub mod decryption;
pub mod encryption;
pub mod keyswtich;
pub mod plaintext;
pub mod secret;
pub use ciphertext::LWECiphertext;
pub use plaintext::LWEPlaintext;
pub use secret::LWESecret;
#[cfg(test)]
pub mod test_fft64;

View File

@@ -0,0 +1,220 @@
use backend::{Encoding, FFT64, Module, ScratchOwned, ZnxView};
use sampling::source::Source;
use crate::{
FourierGLWESecret, GLWECiphertext, GLWEPlaintext, GLWESecret, Infos, LWECiphertext, LWESecret,
lwe::{
LWEPlaintext,
keyswtich::{GLWEToLWESwitchingKey, LWESwitchingKey, LWEToGLWESwitchingKey},
},
};
#[test]
fn lwe_to_glwe() {
let n: usize = 1 << 5;
let module: Module<FFT64> = Module::<FFT64>::new(n);
let basek: usize = 17;
let sigma: f64 = 3.2;
let rank: usize = 2;
let n_lwe: usize = 22;
let k_lwe_ct: usize = 2 * basek;
let k_lwe_pt: usize = 8;
let k_glwe_ct: usize = 3 * basek;
let k_ksk: usize = k_lwe_ct + basek;
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
LWEToGLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWECiphertext::from_lwe_scratch_space(&module, basek, k_lwe_ct, k_glwe_ct, k_ksk, rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, k_glwe_ct),
);
let mut sk_glwe: GLWESecret<Vec<u8>> = GLWESecret::alloc(&module, rank);
sk_glwe.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_glwe_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::alloc(&module, rank);
sk_glwe_dft.set(&module, &sk_glwe);
let mut sk_lwe = LWESecret::alloc(n_lwe);
sk_lwe.fill_ternary_prob(0.5, &mut source_xs);
let data: i64 = 17;
let mut lwe_pt: LWEPlaintext<Vec<u8>> = LWEPlaintext::alloc(basek, k_lwe_pt);
lwe_pt
.data
.encode_coeff_i64(0, basek, k_lwe_pt, 0, data, k_lwe_pt);
let mut lwe_ct: LWECiphertext<Vec<u8>> = LWECiphertext::alloc(n_lwe, basek, k_lwe_ct);
lwe_ct.encrypt_sk(&lwe_pt, &sk_lwe, &mut source_xa, &mut source_xe, sigma);
let mut ksk: LWEToGLWESwitchingKey<Vec<u8>, FFT64> = LWEToGLWESwitchingKey::alloc(&module, basek, k_ksk, lwe_ct.size(), rank);
ksk.encrypt_sk(
&module,
&sk_lwe,
&sk_glwe_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut glwe_ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_glwe_ct, rank);
glwe_ct.from_lwe(&module, &lwe_ct, &ksk, scratch.borrow());
let mut glwe_pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_glwe_ct);
glwe_ct.decrypt(&module, &mut glwe_pt, &sk_glwe_dft, scratch.borrow());
assert_eq!(glwe_pt.data.at(0, 0)[0], lwe_pt.data.at(0, 0)[0]);
}
#[test]
fn glwe_to_lwe() {
let n: usize = 1 << 5;
let module: Module<FFT64> = Module::<FFT64>::new(n);
let basek: usize = 17;
let sigma: f64 = 3.2;
let rank: usize = 2;
let n_lwe: usize = 22;
let k_lwe_ct: usize = 2 * basek;
let k_lwe_pt: usize = 8;
let k_glwe_ct: usize = 3 * basek;
let k_ksk: usize = k_lwe_ct + basek;
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
LWEToGLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank)
| GLWECiphertext::from_lwe_scratch_space(&module, basek, k_lwe_ct, k_glwe_ct, k_ksk, rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, k_glwe_ct),
);
let mut sk_glwe: GLWESecret<Vec<u8>> = GLWESecret::alloc(&module, rank);
sk_glwe.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_glwe_dft: FourierGLWESecret<Vec<u8>, FFT64> = FourierGLWESecret::alloc(&module, rank);
sk_glwe_dft.set(&module, &sk_glwe);
let mut sk_lwe = LWESecret::alloc(n_lwe);
sk_lwe.fill_ternary_prob(0.5, &mut source_xs);
let data: i64 = 17;
let mut glwe_pt: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_glwe_ct);
glwe_pt
.data
.encode_coeff_i64(0, basek, k_lwe_pt, 0, data, k_lwe_pt);
let mut glwe_ct = GLWECiphertext::alloc(&module, basek, k_glwe_ct, rank);
glwe_ct.encrypt_sk(
&module,
&glwe_pt,
&sk_glwe_dft,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut ksk: GLWEToLWESwitchingKey<Vec<u8>, FFT64> =
GLWEToLWESwitchingKey::alloc(&module, basek, k_ksk, glwe_ct.size(), rank);
ksk.encrypt_sk(
&module,
&sk_lwe,
&sk_glwe,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut lwe_ct: LWECiphertext<Vec<u8>> = LWECiphertext::alloc(n_lwe, basek, k_lwe_ct);
lwe_ct.from_glwe(&module, &glwe_ct, &ksk, scratch.borrow());
let mut lwe_pt: LWEPlaintext<Vec<u8>> = LWEPlaintext::alloc(basek, k_lwe_ct);
lwe_ct.decrypt(&mut lwe_pt, &sk_lwe);
assert_eq!(glwe_pt.data.at(0, 0)[0], lwe_pt.data.at(0, 0)[0]);
}
#[test]
fn keyswitch() {
let n: usize = 1 << 5;
let module: Module<FFT64> = Module::<FFT64>::new(n);
let basek: usize = 17;
let sigma: f64 = 3.2;
let n_lwe_in: usize = 22;
let n_lwe_out: usize = 30;
let k_lwe_ct: usize = 2 * basek;
let k_lwe_pt: usize = 8;
let k_ksk: usize = k_lwe_ct + basek;
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut scratch: ScratchOwned = ScratchOwned::new(
LWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk)
| LWECiphertext::keyswitch_scratch_space(&module, basek, k_lwe_ct, k_lwe_ct, k_ksk),
);
let mut sk_lwe_in: LWESecret<Vec<u8>> = LWESecret::alloc(n_lwe_in);
sk_lwe_in.fill_ternary_prob(0.5, &mut source_xs);
let mut sk_lwe_out: LWESecret<Vec<u8>> = LWESecret::alloc(n_lwe_out);
sk_lwe_out.fill_ternary_prob(0.5, &mut source_xs);
let data: i64 = 17;
let mut lwe_pt_in: LWEPlaintext<Vec<u8>> = LWEPlaintext::alloc(basek, k_lwe_pt);
lwe_pt_in
.data
.encode_coeff_i64(0, basek, k_lwe_pt, 0, data, k_lwe_pt);
let mut lwe_ct_in: LWECiphertext<Vec<u8>> = LWECiphertext::alloc(n_lwe_in, basek, k_lwe_ct);
lwe_ct_in.encrypt_sk(
&lwe_pt_in,
&sk_lwe_in,
&mut source_xa,
&mut source_xe,
sigma,
);
let mut ksk: LWESwitchingKey<Vec<u8>, FFT64> = LWESwitchingKey::alloc(&module, basek, k_ksk, lwe_ct_in.size());
ksk.encrypt_sk(
&module,
&sk_lwe_in,
&sk_lwe_out,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
let mut lwe_ct_out: LWECiphertext<Vec<u8>> = LWECiphertext::alloc(n_lwe_out, basek, k_lwe_ct);
lwe_ct_out.keyswitch(&module, &lwe_ct_in, &ksk, scratch.borrow());
let mut lwe_pt_out: LWEPlaintext<Vec<u8>> = LWEPlaintext::alloc(basek, k_lwe_ct);
lwe_ct_out.decrypt(&mut lwe_pt_out, &sk_lwe_out);
assert_eq!(lwe_pt_in.data.at(0, 0)[0], lwe_pt_out.data.at(0, 0)[0]);
}

View File

@@ -0,0 +1 @@
pub mod conversion;

View File

@@ -1,478 +0,0 @@
use crate::{
FourierGLWECiphertext, GGSWCiphertext, GLWECiphertext, GLWEOps, GLWEPlaintext, GLWESecret, GLWESwitchingKey, Infos, div_ceil,
test_fft64::{log2_std_noise_gglwe_product, noise_ggsw_product},
};
use backend::{FFT64, FillUniform, Module, ScalarZnx, ScalarZnxAlloc, ScratchOwned, Stats, VecZnxOps, ZnxViewMut};
use sampling::source::Source;
#[test]
fn keyswitch() {
let log_n: usize = 8;
let basek: usize = 12;
let k_in: usize = 45;
let digits: usize = k_in.div_ceil(basek);
(1..4).for_each(|rank_in| {
(1..4).for_each(|rank_out| {
(1..digits + 1).for_each(|di| {
let k_ksk: usize = k_in + basek * di;
println!(
"test keyswitch digits: {} rank_in: {} rank_out: {}",
di, rank_in, rank_out
);
let k_out: usize = k_ksk; // Better capture noise.
test_keyswitch(log_n, basek, k_in, k_out, k_ksk, di, rank_in, rank_out, 3.2);
})
});
});
}
#[test]
fn keyswitch_inplace() {
let log_n: usize = 8;
let basek: usize = 12;
let k_ct: usize = 45;
let digits: usize = k_ct.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ksk: usize = k_ct + basek * di;
println!("test keyswitch_inplace digits: {} rank: {}", di, rank);
test_keyswitch_inplace(log_n, basek, k_ct, k_ksk, di, rank, 3.2);
});
});
}
#[test]
fn external_product() {
let log_n: usize = 8;
let basek: usize = 12;
let k_in: usize = 45;
let digits: usize = k_in.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ggsw: usize = k_in + basek * di;
println!("test external_product digits: {} rank: {}", di, rank);
let k_out: usize = k_ggsw; // Better capture noise.
test_external_product(log_n, basek, k_out, k_in, k_ggsw, di, rank, 3.2);
});
});
}
#[test]
fn external_product_inplace() {
let log_n: usize = 8;
let basek: usize = 12;
let k_ct: usize = 60;
let digits: usize = k_ct.div_ceil(basek);
(1..4).for_each(|rank| {
(1..digits + 1).for_each(|di| {
let k_ggsw: usize = k_ct + basek * di;
println!("test external_product digits: {} rank: {}", di, rank);
test_external_product_inplace(log_n, basek, k_ct, k_ggsw, di, rank, 3.2);
});
});
}
fn test_keyswitch(
log_n: usize,
basek: usize,
k_in: usize,
k_out: usize,
k_ksk: usize,
digits: usize,
rank_in: usize,
rank_out: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_in.div_ceil(basek * digits);
let mut ksk: GLWESwitchingKey<Vec<u8>, FFT64> =
GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, digits, rank_in, rank_out);
let mut ct_glwe_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_in, rank_in);
let mut ct_glwe_dft_in: FourierGLWECiphertext<Vec<u8>, FFT64> = FourierGLWECiphertext::alloc(&module, basek, k_in, rank_in);
let mut ct_glwe_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_out, rank_out);
let mut ct_glwe_dft_out: FourierGLWECiphertext<Vec<u8>, FFT64> =
FourierGLWECiphertext::alloc(&module, basek, k_out, rank_out);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, k_ksk, rank_out)
| GLWECiphertext::decrypt_scratch_space(&module, basek, k_out)
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, k_in)
| FourierGLWECiphertext::keyswitch_scratch_space(
&module,
basek,
ct_glwe_out.k(),
ksk.k(),
ct_glwe_in.k(),
digits,
rank_in,
rank_out,
),
);
let mut sk_in: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank_in);
sk_in.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut sk_out: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank_out);
sk_out.fill_ternary_prob(&module, 0.5, &mut source_xs);
ksk.generate_from_sk(
&module,
&sk_in,
&sk_out,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe_in.encrypt_sk(
&module,
&pt_want,
&sk_in,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe_in.dft(&module, &mut ct_glwe_dft_in);
ct_glwe_dft_out.keyswitch(&module, &ct_glwe_dft_in, &ksk, scratch.borrow());
ct_glwe_dft_out.idft(&module, &mut ct_glwe_out, scratch.borrow());
ct_glwe_out.decrypt(&module, &mut pt_have, &sk_out, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek * digits,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank_in as f64,
k_in,
k_ksk,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}
fn test_keyswitch_inplace(log_n: usize, basek: usize, k_ct: usize, k_ksk: usize, digits: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_ct.div_ceil(basek * digits);
let mut ksk: GLWESwitchingKey<Vec<u8>, FFT64> = GLWESwitchingKey::alloc(&module, basek, k_ksk, rows, digits, rank, rank);
let mut ct_glwe: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut ct_rlwe_dft: FourierGLWECiphertext<Vec<u8>, FFT64> = FourierGLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
let mut scratch: ScratchOwned = ScratchOwned::new(
GLWESwitchingKey::encrypt_sk_scratch_space(&module, basek, ksk.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_glwe.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_glwe.k())
| FourierGLWECiphertext::keyswitch_inplace_scratch_space(&module, basek, ct_rlwe_dft.k(), ksk.k(), digits, rank),
);
let mut sk_in: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk_in.fill_ternary_prob(&module, 0.5, &mut source_xs);
let mut sk_out: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk_out.fill_ternary_prob(&module, 0.5, &mut source_xs);
ksk.generate_from_sk(
&module,
&sk_in,
&sk_out,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.encrypt_sk(
&module,
&pt_want,
&sk_in,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_glwe.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.keyswitch_inplace(&module, &ksk, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct_glwe, scratch.borrow());
ct_glwe.decrypt(&module, &mut pt_have, &sk_out, scratch.borrow());
module.vec_znx_sub_ab_inplace(&mut pt_have.data, 0, &pt_want.data, 0);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let noise_want: f64 = log2_std_noise_gglwe_product(
module.n() as f64,
basek * digits,
0.5,
0.5,
0f64,
sigma * sigma,
0f64,
rank as f64,
k_ct,
k_ksk,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product(
log_n: usize,
basek: usize,
k_out: usize,
k_in: usize,
k_ggsw: usize,
digits: usize,
rank: usize,
sigma: f64,
) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_in.div_ceil(basek * digits);
let mut ct_ggsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, digits, rank);
let mut ct_in: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_in, rank);
let mut ct_out: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_out, rank);
let mut ct_in_dft: FourierGLWECiphertext<Vec<u8>, FFT64> = FourierGLWECiphertext::alloc(&module, basek, k_in, rank);
let mut ct_out_dft: FourierGLWECiphertext<Vec<u8>, FFT64> = FourierGLWECiphertext::alloc(&module, basek, k_out, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_in);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_out);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: i64 = 1;
pt_rgsw.raw_mut()[0] = 1; // X^{0}
module.vec_znx_rotate_inplace(k, &mut pt_rgsw, 0); // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, ct_ggsw.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct_out.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct_in.k())
| FourierGLWECiphertext::external_product_scratch_space(
&module,
basek,
ct_out.k(),
ct_in.k(),
ct_ggsw.k(),
digits,
rank,
),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
ct_ggsw.encrypt_sk(
&module,
&pt_rgsw,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct_in.dft(&module, &mut ct_in_dft);
ct_out_dft.external_product(&module, &ct_in_dft, &ct_ggsw, scratch.borrow());
ct_out_dft.idft(&module, &mut ct_out, scratch.borrow());
ct_out.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
pt_want.rotate_inplace(&module, k);
pt_have.sub_inplace_ab(&module, &pt_want);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek * digits,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_in,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
}
fn test_external_product_inplace(log_n: usize, basek: usize, k_ct: usize, k_ggsw: usize, digits: usize, rank: usize, sigma: f64) {
let module: Module<FFT64> = Module::<FFT64>::new(1 << log_n);
let rows: usize = k_ct.div_ceil(basek * digits);
let mut ct_ggsw: GGSWCiphertext<Vec<u8>, FFT64> = GGSWCiphertext::alloc(&module, basek, k_ggsw, rows, digits, rank);
let mut ct: GLWECiphertext<Vec<u8>> = GLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut ct_rlwe_dft: FourierGLWECiphertext<Vec<u8>, FFT64> = FourierGLWECiphertext::alloc(&module, basek, k_ct, rank);
let mut pt_rgsw: ScalarZnx<Vec<u8>> = module.new_scalar_znx(1);
let mut pt_want: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut pt_have: GLWEPlaintext<Vec<u8>> = GLWEPlaintext::alloc(&module, basek, k_ct);
let mut source_xs: Source = Source::new([0u8; 32]);
let mut source_xe: Source = Source::new([0u8; 32]);
let mut source_xa: Source = Source::new([0u8; 32]);
// Random input plaintext
pt_want
.data
.fill_uniform(basek, 0, pt_want.size(), &mut source_xa);
pt_want.data.at_mut(0, 0)[1] = 1;
let k: i64 = 1;
pt_rgsw.raw_mut()[0] = 1; // X^{0}
module.vec_znx_rotate_inplace(k, &mut pt_rgsw, 0); // X^{k}
let mut scratch: ScratchOwned = ScratchOwned::new(
GGSWCiphertext::encrypt_sk_scratch_space(&module, basek, ct_ggsw.k(), rank)
| GLWECiphertext::decrypt_scratch_space(&module, basek, ct.k())
| GLWECiphertext::encrypt_sk_scratch_space(&module, basek, ct.k())
| FourierGLWECiphertext::external_product_inplace_scratch_space(&module, basek, ct.k(), ct_ggsw.k(), digits, rank),
);
let mut sk: GLWESecret<Vec<u8>, FFT64> = GLWESecret::alloc(&module, rank);
sk.fill_ternary_prob(&module, 0.5, &mut source_xs);
ct_ggsw.encrypt_sk(
&module,
&pt_rgsw,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.encrypt_sk(
&module,
&pt_want,
&sk,
&mut source_xa,
&mut source_xe,
sigma,
scratch.borrow(),
);
ct.dft(&module, &mut ct_rlwe_dft);
ct_rlwe_dft.external_product_inplace(&module, &ct_ggsw, scratch.borrow());
ct_rlwe_dft.idft(&module, &mut ct, scratch.borrow());
ct.decrypt(&module, &mut pt_have, &sk, scratch.borrow());
pt_want.rotate_inplace(&module, k);
pt_have.sub_inplace_ab(&module, &pt_want);
let noise_have: f64 = pt_have.data.std(0, basek).log2();
let var_gct_err_lhs: f64 = sigma * sigma;
let var_gct_err_rhs: f64 = 0f64;
let var_msg: f64 = 1f64 / module.n() as f64; // X^{k}
let var_a0_err: f64 = sigma * sigma;
let var_a1_err: f64 = 1f64 / 12f64;
let noise_want: f64 = noise_ggsw_product(
module.n() as f64,
basek * digits,
0.5,
var_msg,
var_a0_err,
var_a1_err,
var_gct_err_lhs,
var_gct_err_rhs,
rank as f64,
k_ct,
k_ggsw,
);
assert!(
(noise_have - noise_want).abs() <= 0.5,
"{} {}",
noise_have,
noise_want
);
println!("{} {}", noise_have, noise_want);
}