mirror of
https://github.com/arnaucube/poulpy.git
synced 2026-02-10 13:16:44 +01:00
more doc
This commit is contained in:
@@ -1,26 +1,23 @@
|
||||
use crate::cast_mut_u8_to_mut_i64_slice;
|
||||
use crate::ffi::znx::{
|
||||
znx_automorphism_i64, znx_automorphism_inplace_i64, znx_normalize, znx_zero_i64_ref,
|
||||
};
|
||||
use crate::module::Module;
|
||||
use crate::ffi::vec_znx;
|
||||
use crate::ffi::znx;
|
||||
use crate::{Infos, Module};
|
||||
use itertools::izip;
|
||||
use rand_distr::{Distribution, Normal};
|
||||
use sampling::source::Source;
|
||||
use std::cmp::min;
|
||||
|
||||
impl Module {
|
||||
pub fn new_vec_znx(&self, limbs: usize) -> VecZnx {
|
||||
VecZnx::new(self.n(), limbs)
|
||||
}
|
||||
}
|
||||
|
||||
/// [VecZnx] represents a vector of small norm polynomials of Zn\[X\] with [i64] coefficients.
|
||||
/// A [VecZnx] is composed of multiple Zn\[X\] polynomials stored in a single contiguous array
|
||||
/// in the memory.
|
||||
#[derive(Clone)]
|
||||
pub struct VecZnx {
|
||||
/// Polynomial degree.
|
||||
pub n: usize,
|
||||
/// Polynomial coefficients, as a contiguous array. Each limb is equally spaced by n.
|
||||
pub data: Vec<i64>,
|
||||
}
|
||||
|
||||
impl VecZnx {
|
||||
/// Allocates a new [VecZnx] composed of #limbs polynomials of Z\[X\].
|
||||
pub fn new(n: usize, limbs: usize) -> Self {
|
||||
Self {
|
||||
n: n,
|
||||
@@ -28,11 +25,14 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns the minimum size of the [i64] array required to assign a
|
||||
/// new backend array to a [VecZnx] through [VecZnx::from_buffer].
|
||||
pub fn buffer_size(n: usize, limbs: usize) -> usize {
|
||||
n * limbs
|
||||
}
|
||||
|
||||
pub fn from_buffer(&mut self, n: usize, limbs: usize, buf: &[i64]) {
|
||||
/// Assigns a new backing array to a [VecZnx].
|
||||
pub fn from_buffer(&mut self, n: usize, limbs: usize, buf: &mut [i64]) {
|
||||
let size = Self::buffer_size(n, limbs);
|
||||
assert!(
|
||||
buf.len() >= size,
|
||||
@@ -46,142 +46,94 @@ impl VecZnx {
|
||||
self.data = Vec::from(&buf[..size])
|
||||
}
|
||||
|
||||
pub fn log_n(&self) -> u64 {
|
||||
(u64::BITS - (self.n - 1).leading_zeros()) as _
|
||||
}
|
||||
|
||||
pub fn n(&self) -> usize {
|
||||
self.n
|
||||
}
|
||||
|
||||
pub fn limbs(&self) -> usize {
|
||||
self.data.len() / self.n
|
||||
}
|
||||
|
||||
/// Copies the coefficients of `a` on the receiver.
|
||||
/// Copy is done with the minimum size matching both backing arrays.
|
||||
pub fn copy_from(&mut self, a: &VecZnx) {
|
||||
let size = min(self.data.len(), a.data.len());
|
||||
self.data[..size].copy_from_slice(&a.data[..size])
|
||||
}
|
||||
|
||||
/// Returns a non-mutable pointer to the backing array of the [VecZnx].
|
||||
pub fn as_ptr(&self) -> *const i64 {
|
||||
self.data.as_ptr()
|
||||
}
|
||||
|
||||
/// Returns a mutable pointer to the backing array of the [VecZnx].
|
||||
pub fn as_mut_ptr(&mut self) -> *mut i64 {
|
||||
self.data.as_mut_ptr()
|
||||
}
|
||||
|
||||
/// Returns a non-mutable reference to the i-th limb of the [VecZnx].
|
||||
pub fn at(&self, i: usize) -> &[i64] {
|
||||
&self.data[i * self.n..(i + 1) * self.n]
|
||||
}
|
||||
|
||||
pub fn at_ptr(&self, i: usize) -> *const i64 {
|
||||
&self.data[i * self.n] as *const i64
|
||||
}
|
||||
|
||||
pub fn at_mut_ptr(&mut self, i: usize) -> *mut i64 {
|
||||
&mut self.data[i * self.n] as *mut i64
|
||||
}
|
||||
|
||||
/// Returns a mutable reference to the i-th limb of the [VecZnx].
|
||||
pub fn at_mut(&mut self, i: usize) -> &mut [i64] {
|
||||
&mut self.data[i * self.n..(i + 1) * self.n]
|
||||
}
|
||||
|
||||
/// Returns a non-mutable pointer to the i-th limb of the [VecZnx].
|
||||
pub fn at_ptr(&self, i: usize) -> *const i64 {
|
||||
&self.data[i * self.n] as *const i64
|
||||
}
|
||||
|
||||
/// Returns a mutable pointer to the i-th limb of the [VecZnx].
|
||||
pub fn at_mut_ptr(&mut self, i: usize) -> *mut i64 {
|
||||
&mut self.data[i * self.n] as *mut i64
|
||||
}
|
||||
|
||||
/// Zeroes the backing array of the [VecZnx].
|
||||
pub fn zero(&mut self) {
|
||||
unsafe { znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
pub fn from_i64(&mut self, log_base2k: usize, data: &[i64], log_max: usize, log_k: usize) {
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
|
||||
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
|
||||
|
||||
let size: usize = min(data.len(), self.n());
|
||||
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
|
||||
|
||||
// If 2^{log_base2k} * 2^{k_rem} < 2^{63}-1, then we can simply copy
|
||||
// values on the last limb.
|
||||
// Else we decompose values base2k.
|
||||
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
|
||||
(0..limbs - 1).for_each(|i| unsafe {
|
||||
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
|
||||
});
|
||||
self.at_mut(self.limbs() - 1)[..size].copy_from_slice(&data[..size]);
|
||||
} else {
|
||||
let mask: i64 = (1 << log_base2k) - 1;
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
|
||||
(0..steps).for_each(|i| unsafe {
|
||||
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
|
||||
});
|
||||
|
||||
(limbs - steps..limbs)
|
||||
.rev()
|
||||
.enumerate()
|
||||
.for_each(|(i, i_rev)| {
|
||||
let shift: usize = i * log_base2k;
|
||||
izip!(self.at_mut(i_rev)[..size].iter_mut(), data[..size].iter())
|
||||
.for_each(|(y, x)| *y = (x >> shift) & mask);
|
||||
})
|
||||
}
|
||||
|
||||
// Case where self.prec % self.k != 0.
|
||||
if log_k_rem != log_base2k {
|
||||
let limbs = self.limbs();
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
(limbs - steps..limbs).rev().for_each(|i| {
|
||||
self.at_mut(i)[..size]
|
||||
.iter_mut()
|
||||
.for_each(|x| *x <<= log_k_rem);
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn from_i64_single(
|
||||
&mut self,
|
||||
log_base2k: usize,
|
||||
i: usize,
|
||||
value: i64,
|
||||
log_max: usize,
|
||||
log_k: usize,
|
||||
) {
|
||||
assert!(i < self.n());
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
|
||||
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
|
||||
let limbs = self.limbs();
|
||||
|
||||
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
|
||||
// values on the last limb.
|
||||
// Else we decompose values base2k.
|
||||
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
|
||||
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
|
||||
|
||||
self.at_mut(self.limbs() - 1)[i] = value;
|
||||
} else {
|
||||
let mask: i64 = (1 << log_base2k) - 1;
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
|
||||
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
|
||||
|
||||
(limbs - steps..limbs)
|
||||
.rev()
|
||||
.enumerate()
|
||||
.for_each(|(j, j_rev)| {
|
||||
self.at_mut(j_rev)[i] = (value >> (j * log_base2k)) & mask;
|
||||
})
|
||||
}
|
||||
|
||||
// Case where self.prec % self.k != 0.
|
||||
if log_k_rem != log_base2k {
|
||||
let limbs = self.limbs();
|
||||
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
|
||||
(limbs - steps..limbs).rev().for_each(|j| {
|
||||
self.at_mut(j)[i] <<= log_k_rem;
|
||||
})
|
||||
}
|
||||
unsafe { znx::znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
|
||||
}
|
||||
|
||||
/// Normalizes the [VecZnx], ensuring all coefficients are in the interval \[-2^log_base2k, 2^log_base2k].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `log_base2k`: the base two logarithm of the base to reduce to.
|
||||
/// * `carry`: scratch space of size at least self.n()<<3.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// The method will panic if carry.len() < self.data.len()*8.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{VecZnx, Encoding, Infos};
|
||||
/// use itertools::izip;
|
||||
/// use sampling::source::Source;
|
||||
///
|
||||
/// let n: usize = 8; // polynomial degree
|
||||
/// let log_base2k: usize = 17; // base two logarithm of the coefficients decomposition
|
||||
/// let limbs: usize = 5; // number of limbs (i.e. can store coeffs in the range +/- 2^{limbs * log_base2k - 1})
|
||||
/// let log_k: usize = limbs * log_base2k - 5;
|
||||
/// let mut a: VecZnx = VecZnx::new(n, limbs);
|
||||
/// let mut carry: Vec<u8> = vec![u8::default(); a.n()<<3];
|
||||
/// let mut have: Vec<i64> = vec![i64::default(); a.n()];
|
||||
/// let mut source = Source::new([1; 32]);
|
||||
///
|
||||
/// // Populates the first limb of the of polynomials with random i64 values.
|
||||
/// have.iter_mut().for_each(|x| {
|
||||
/// *x = source
|
||||
/// .next_u64n(u64::MAX, u64::MAX)
|
||||
/// .wrapping_sub(u64::MAX / 2 + 1) as i64;
|
||||
/// });
|
||||
/// a.encode_i64_vec(log_base2k, log_k, &have, 63);
|
||||
/// a.normalize(log_base2k, &mut carry);
|
||||
///
|
||||
/// // Ensures normalized values are in the range +/- 2^{log_base2k-1}
|
||||
/// let base_half = 1 << (log_base2k - 1);
|
||||
/// a.data
|
||||
/// .iter()
|
||||
/// .for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
|
||||
///
|
||||
/// // Ensures reconstructed normalized values are equal to non-normalized values.
|
||||
/// let mut want = vec![i64::default(); n];
|
||||
/// a.decode_i64_vec(log_base2k, log_k, &mut want);
|
||||
/// izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
|
||||
/// ```
|
||||
pub fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
|
||||
assert!(
|
||||
carry.len() >= self.n * 8,
|
||||
@@ -193,9 +145,9 @@ impl VecZnx {
|
||||
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
|
||||
|
||||
unsafe {
|
||||
znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
|
||||
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
|
||||
(0..self.limbs()).rev().for_each(|i| {
|
||||
znx_normalize(
|
||||
znx::znx_normalize(
|
||||
self.n as u64,
|
||||
log_base2k as u64,
|
||||
self.at_mut_ptr(i),
|
||||
@@ -207,120 +159,116 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_i64(&self, log_base2k: usize, data: &mut [i64], log_k: usize) {
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each limb.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `k`: the power to which to map each coefficients.
|
||||
/// * `limbs`: the number of limbs on which to apply the mapping.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// The method will panic if the argument `limbs` is greater than `self.limbs()`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{VecZnx, Encoding, Infos};
|
||||
/// use itertools::izip;
|
||||
///
|
||||
/// let n: usize = 8; // polynomial degree
|
||||
/// let mut a: VecZnx = VecZnx::new(n, 2);
|
||||
/// let mut b: VecZnx = VecZnx::new(n, 2);
|
||||
///
|
||||
/// (0..a.limbs()).for_each(|i|{
|
||||
/// a.at_mut(i).iter_mut().enumerate().for_each(|(i, x)|{
|
||||
/// *x = i as i64
|
||||
/// })
|
||||
/// });
|
||||
///
|
||||
/// b.copy_from(&a);
|
||||
///
|
||||
/// a.automorphism_inplace(-1, 1); // X^i -> X^(-i)
|
||||
/// let limb = b.at_mut(0);
|
||||
/// (1..limb.len()).for_each(|i|{
|
||||
/// limb[n-i] = -(i as i64)
|
||||
/// });
|
||||
/// izip!(a.data.iter(), b.data.iter()).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
|
||||
/// ```
|
||||
pub fn automorphism_inplace(&mut self, k: i64, limbs: usize) {
|
||||
assert!(
|
||||
data.len() >= self.n,
|
||||
"invalid data: data.len()={} < self.n()={}",
|
||||
data.len(),
|
||||
self.n
|
||||
limbs <= self.limbs(),
|
||||
"invalid limbs argument: limbs={} > self.limbs()={}",
|
||||
limbs,
|
||||
self.limbs()
|
||||
);
|
||||
data.copy_from_slice(self.at(0));
|
||||
let rem: usize = log_base2k - (log_k % log_base2k);
|
||||
(1..limbs).for_each(|i| {
|
||||
if i == limbs - 1 && rem != log_base2k {
|
||||
let k_rem: usize = log_base2k - rem;
|
||||
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
|
||||
*y = (*y << k_rem) + (x >> rem);
|
||||
});
|
||||
} else {
|
||||
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
|
||||
*y = (*y << log_base2k) + x;
|
||||
});
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
pub fn to_i64_single(&self, log_base2k: usize, i: usize, log_k: usize) -> i64 {
|
||||
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
|
||||
assert!(i < self.n());
|
||||
let mut res: i64 = self.data[i];
|
||||
let rem: usize = log_base2k - (log_k % log_base2k);
|
||||
(1..limbs).for_each(|i| {
|
||||
let x = self.data[i * self.n];
|
||||
if i == limbs - 1 && rem != log_base2k {
|
||||
let k_rem: usize = log_base2k - rem;
|
||||
res = (res << k_rem) + (x >> rem);
|
||||
} else {
|
||||
res = (res << log_base2k) + x;
|
||||
}
|
||||
});
|
||||
res
|
||||
}
|
||||
|
||||
pub fn automorphism_inplace(&mut self, gal_el: i64) {
|
||||
unsafe {
|
||||
(0..self.limbs()).for_each(|i| {
|
||||
znx_automorphism_inplace_i64(self.n as u64, gal_el, self.at_mut_ptr(i))
|
||||
})
|
||||
}
|
||||
}
|
||||
pub fn automorphism(&mut self, gal_el: i64, a: &mut VecZnx) {
|
||||
unsafe {
|
||||
(0..self.limbs()).for_each(|i| {
|
||||
znx_automorphism_i64(self.n as u64, gal_el, a.at_mut_ptr(i), self.at_ptr(i))
|
||||
(0..limbs).for_each(|i| {
|
||||
znx::znx_automorphism_inplace_i64(self.n as u64, k, self.at_mut_ptr(i))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn fill_uniform(&mut self, log_base2k: usize, source: &mut Source, limbs: usize) {
|
||||
let base2k: u64 = 1 << log_base2k;
|
||||
let mask: u64 = base2k - 1;
|
||||
let base2k_half: i64 = (base2k >> 1) as i64;
|
||||
|
||||
let size: usize = self.n() * (limbs - 1);
|
||||
|
||||
self.data[..size]
|
||||
.iter_mut()
|
||||
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
|
||||
}
|
||||
|
||||
pub fn add_dist_f64<T: Distribution<f64>>(
|
||||
&mut self,
|
||||
log_base2k: usize,
|
||||
source: &mut Source,
|
||||
dist: T,
|
||||
bound: f64,
|
||||
log_k: usize,
|
||||
) {
|
||||
let log_base2k_rem: usize = log_k % log_base2k;
|
||||
|
||||
if log_base2k_rem != 0 {
|
||||
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
|
||||
let mut dist_f64: f64 = dist.sample(source);
|
||||
while dist_f64.abs() > bound {
|
||||
dist_f64 = dist.sample(source)
|
||||
}
|
||||
*a += (dist_f64.round() as i64) << log_base2k_rem
|
||||
});
|
||||
} else {
|
||||
self.at_mut(self.limbs() - 1).iter_mut().for_each(|a| {
|
||||
let mut dist_f64: f64 = dist.sample(source);
|
||||
while dist_f64.abs() > bound {
|
||||
dist_f64 = dist.sample(source)
|
||||
}
|
||||
*a += dist_f64.round() as i64
|
||||
});
|
||||
/// Maps X^i to X^{ik} mod X^{n}+1. The mapping is applied independently on each limb.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `a`: the receiver.
|
||||
/// * `k`: the power to which to map each coefficients.
|
||||
/// * `limbs`: the number of limbs on which to apply the mapping.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// The method will panic if the argument `limbs` is greater than `self.limbs()` or `a.limbs()`.
|
||||
///
|
||||
/// # Example
|
||||
/// ```
|
||||
/// use base2k::{VecZnx, Encoding, Infos};
|
||||
/// use itertools::izip;
|
||||
///
|
||||
/// let n: usize = 8; // polynomial degree
|
||||
/// let mut a: VecZnx = VecZnx::new(n, 2);
|
||||
/// let mut b: VecZnx = VecZnx::new(n, 2);
|
||||
/// let mut c: VecZnx = VecZnx::new(n, 2);
|
||||
///
|
||||
/// (0..a.limbs()).for_each(|i|{
|
||||
/// a.at_mut(i).iter_mut().enumerate().for_each(|(i, x)|{
|
||||
/// *x = i as i64
|
||||
/// })
|
||||
/// });
|
||||
///
|
||||
/// a.automorphism(&mut b, -1, 1); // X^i -> X^(-i)
|
||||
/// let limb = c.at_mut(0);
|
||||
/// (1..limb.len()).for_each(|i|{
|
||||
/// limb[n-i] = -(i as i64)
|
||||
/// });
|
||||
/// izip!(b.data.iter(), c.data.iter()).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
|
||||
/// ```
|
||||
pub fn automorphism(&mut self, a: &mut VecZnx, k: i64, limbs: usize) {
|
||||
assert!(
|
||||
limbs <= self.limbs(),
|
||||
"invalid limbs argument: limbs={} > self.limbs()={}",
|
||||
limbs,
|
||||
self.limbs()
|
||||
);
|
||||
assert!(
|
||||
limbs <= a.limbs(),
|
||||
"invalid limbs argument: limbs={} > a.limbs()={}",
|
||||
limbs,
|
||||
a.limbs()
|
||||
);
|
||||
unsafe {
|
||||
(0..limbs).for_each(|i| {
|
||||
znx::znx_automorphism_i64(self.n as u64, k, a.at_mut_ptr(i), self.at_ptr(i))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
pub fn add_normal(
|
||||
&mut self,
|
||||
log_base2k: usize,
|
||||
source: &mut Source,
|
||||
sigma: f64,
|
||||
bound: f64,
|
||||
log_k: usize,
|
||||
) {
|
||||
self.add_dist_f64(
|
||||
log_base2k,
|
||||
source,
|
||||
Normal::new(0.0, sigma).unwrap(),
|
||||
bound,
|
||||
log_k,
|
||||
);
|
||||
}
|
||||
|
||||
/// Truncates the precision of the [VecZnx] by k bits.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
|
||||
/// * `k`: the number of bits of precision to drop.
|
||||
pub fn trunc_pow2(&mut self, log_base2k: usize, k: usize) {
|
||||
if k == 0 {
|
||||
return;
|
||||
@@ -339,6 +287,17 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
/// Right shifts the coefficients by k bits.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
|
||||
/// * `k`: the shift amount.
|
||||
/// * `carry`: scratch space of size at least equal to self.n() * self.limbs() << 3.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// The method will panic if carry.len() < self.n() * self.limbs() << 3.
|
||||
pub fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
|
||||
assert!(
|
||||
carry.len() >> 3 >= self.n(),
|
||||
@@ -352,7 +311,7 @@ impl VecZnx {
|
||||
|
||||
self.data.rotate_right(self.n * limbs_steps);
|
||||
unsafe {
|
||||
znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
|
||||
znx::znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
|
||||
}
|
||||
|
||||
let k_rem = k % log_base2k;
|
||||
@@ -361,7 +320,7 @@ impl VecZnx {
|
||||
let carry_i64: &mut [i64] = cast_mut_u8_to_mut_i64_slice(carry);
|
||||
|
||||
unsafe {
|
||||
znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
|
||||
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
|
||||
}
|
||||
|
||||
let mask: i64 = (1 << k_rem) - 1;
|
||||
@@ -377,6 +336,12 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
/// If self.n() > a.n(): Extracts X^{i*self.n()/a.n()} -> X^{i}.
|
||||
/// If self.n() < a.n(): Extracts X^{i} -> X^{i*a.n()/self.n()}.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `a`: the receiver polynomial in which the extracted coefficients are stored.
|
||||
pub fn switch_degree(&self, a: &mut VecZnx) {
|
||||
let (n_in, n_out) = (self.n(), a.n());
|
||||
let (gap_in, gap_out): (usize, usize);
|
||||
@@ -404,74 +369,207 @@ impl VecZnx {
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use crate::VecZnx;
|
||||
use itertools::izip;
|
||||
use sampling::source::Source;
|
||||
pub trait VecZnxOps {
|
||||
/// Allocates a new [VecZnx].
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `limbs`: the number of limbs.
|
||||
fn new_vec_znx(&self, limbs: usize) -> VecZnx;
|
||||
|
||||
#[test]
|
||||
fn test_set_get_i64_lo_norm() {
|
||||
let n: usize = 8;
|
||||
let log_base2k: usize = 17;
|
||||
let limbs: usize = 5;
|
||||
let log_k: usize = limbs * log_base2k - 5;
|
||||
let mut a: VecZnx = VecZnx::new(n, limbs);
|
||||
let mut have: Vec<i64> = vec![i64::default(); n];
|
||||
have.iter_mut()
|
||||
.enumerate()
|
||||
.for_each(|(i, x)| *x = (i as i64) - (n as i64) / 2);
|
||||
a.from_i64(log_base2k, &have, 10, log_k);
|
||||
let mut want = vec![i64::default(); n];
|
||||
a.to_i64(log_base2k, &mut want, log_k);
|
||||
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b));
|
||||
/// c <- a + b.
|
||||
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
|
||||
|
||||
/// b <- b + a.
|
||||
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx);
|
||||
|
||||
/// c <- a - b.
|
||||
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx);
|
||||
|
||||
/// b <- b - a.
|
||||
fn vec_znx_sub_inplace(&self, b: &mut VecZnx, a: &VecZnx);
|
||||
|
||||
/// b <- -a.
|
||||
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx);
|
||||
|
||||
/// b <- -b.
|
||||
fn vec_znx_negate_inplace(&self, a: &mut VecZnx);
|
||||
|
||||
/// b <- a * X^k (mod X^{n} + 1)
|
||||
fn vec_znx_rotate(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
|
||||
|
||||
/// a <- a * X^k (mod X^{n} + 1)
|
||||
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx);
|
||||
|
||||
/// b <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
|
||||
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx);
|
||||
|
||||
/// a <- phi_k(a) where phi_k: X^i -> X^{i*k} (mod (X^{n} + 1))
|
||||
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx);
|
||||
}
|
||||
|
||||
impl VecZnxOps for Module {
|
||||
fn new_vec_znx(&self, limbs: usize) -> VecZnx {
|
||||
VecZnx::new(self.n(), limbs)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_set_get_i64_hi_norm() {
|
||||
let n: usize = 8;
|
||||
let log_base2k: usize = 17;
|
||||
let limbs: usize = 5;
|
||||
let log_k: usize = limbs * log_base2k - 5;
|
||||
let mut a: VecZnx = VecZnx::new(n, limbs);
|
||||
let mut have: Vec<i64> = vec![i64::default(); n];
|
||||
let mut source = Source::new([1; 32]);
|
||||
have.iter_mut().for_each(|x| {
|
||||
*x = source
|
||||
.next_u64n(u64::MAX, u64::MAX)
|
||||
.wrapping_sub(u64::MAX / 2 + 1) as i64;
|
||||
});
|
||||
a.from_i64(log_base2k, &have, 63, log_k);
|
||||
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
|
||||
let mut want = vec![i64::default(); n];
|
||||
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
|
||||
a.to_i64(log_base2k, &mut want, log_k);
|
||||
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
|
||||
// c <- a + b
|
||||
fn vec_znx_add(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_add(
|
||||
self.0,
|
||||
c.as_mut_ptr(),
|
||||
c.limbs() as u64,
|
||||
c.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
b.as_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
#[test]
|
||||
fn test_normalize() {
|
||||
let n: usize = 8;
|
||||
let log_base2k: usize = 17;
|
||||
let limbs: usize = 5;
|
||||
let log_k: usize = limbs * log_base2k - 5;
|
||||
let mut a: VecZnx = VecZnx::new(n, limbs);
|
||||
let mut have: Vec<i64> = vec![i64::default(); n];
|
||||
let mut source = Source::new([1; 32]);
|
||||
have.iter_mut().for_each(|x| {
|
||||
*x = source
|
||||
.next_u64n(u64::MAX, u64::MAX)
|
||||
.wrapping_sub(u64::MAX / 2 + 1) as i64;
|
||||
});
|
||||
a.from_i64(log_base2k, &have, 63, log_k);
|
||||
let mut carry: Vec<u8> = vec![u8::default(); n * 8];
|
||||
a.normalize(log_base2k, &mut carry);
|
||||
|
||||
let base_half = 1 << (log_base2k - 1);
|
||||
a.data
|
||||
.iter()
|
||||
.for_each(|x| assert!(x.abs() <= base_half, "|x|={} > 2^(k-1)={}", x, base_half));
|
||||
let mut want = vec![i64::default(); n];
|
||||
a.to_i64(log_base2k, &mut want, log_k);
|
||||
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
|
||||
// b <- a + b
|
||||
fn vec_znx_add_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_add(
|
||||
self.0,
|
||||
b.as_mut_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
b.as_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// c <- a + b
|
||||
fn vec_znx_sub(&self, c: &mut VecZnx, a: &VecZnx, b: &VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_sub(
|
||||
self.0,
|
||||
c.as_mut_ptr(),
|
||||
c.limbs() as u64,
|
||||
c.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
b.as_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
// b <- a + b
|
||||
fn vec_znx_sub_inplace(&self, b: &mut VecZnx, a: &VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_sub(
|
||||
self.0,
|
||||
b.as_mut_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
b.as_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vec_znx_negate(&self, b: &mut VecZnx, a: &VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_negate(
|
||||
self.0,
|
||||
b.as_mut_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vec_znx_negate_inplace(&self, a: &mut VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_negate(
|
||||
self.0,
|
||||
a.as_mut_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vec_znx_rotate(&self, k: i64, a: &mut VecZnx, b: &VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_rotate(
|
||||
self.0,
|
||||
k,
|
||||
a.as_mut_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
b.as_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vec_znx_rotate_inplace(&self, k: i64, a: &mut VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_rotate(
|
||||
self.0,
|
||||
k,
|
||||
a.as_mut_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn vec_znx_automorphism(&self, k: i64, b: &mut VecZnx, a: &VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_automorphism(
|
||||
self.0,
|
||||
k,
|
||||
b.as_mut_ptr(),
|
||||
b.limbs() as u64,
|
||||
b.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn vec_znx_automorphism_inplace(&self, k: i64, a: &mut VecZnx) {
|
||||
unsafe {
|
||||
vec_znx::vec_znx_automorphism(
|
||||
self.0,
|
||||
k,
|
||||
a.as_mut_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
a.as_ptr(),
|
||||
a.limbs() as u64,
|
||||
a.n() as u64,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user