prototype trait for Elem<T> + new ciphertext for VmPPmat

This commit is contained in:
Jean-Philippe Bossuat
2025-02-18 11:04:13 +01:00
parent fdc2f3ac42
commit d486e89761
21 changed files with 767 additions and 811 deletions

View File

@@ -8,9 +8,9 @@ use sampling::source::Source;
fn main() {
let n: usize = 16;
let log_base2k: usize = 18;
let limbs: usize = 3;
let msg_limbs: usize = 2;
let log_scale: usize = msg_limbs * log_base2k - 5;
let cols: usize = 3;
let msg_cols: usize = 2;
let log_scale: usize = msg_cols * log_base2k - 5;
let module: Module = Module::new::<FFT64>(n);
let mut carry: Vec<u8> = vec![0; module.vec_znx_big_normalize_tmp_bytes()];
@@ -18,7 +18,7 @@ fn main() {
let seed: [u8; 32] = [0; 32];
let mut source: Source = Source::new(seed);
let mut res: VecZnx = module.new_vec_znx(limbs);
let mut res: VecZnx = module.new_vec_znx(cols);
// s <- Z_{-1, 0, 1}[X]/(X^{N}+1)
let mut s: Scalar = Scalar::new(n);
@@ -31,22 +31,22 @@ fn main() {
module.svp_prepare(&mut s_ppol, &s);
// a <- Z_{2^prec}[X]/(X^{N}+1)
let mut a: VecZnx = module.new_vec_znx(limbs);
module.fill_uniform(log_base2k, &mut a, limbs, &mut source);
let mut a: VecZnx = module.new_vec_znx(cols);
module.fill_uniform(log_base2k, &mut a, cols, &mut source);
// Scratch space for DFT values
let mut buf_dft: VecZnxDft = module.new_vec_znx_dft(a.limbs());
let mut buf_dft: VecZnxDft = module.new_vec_znx_dft(a.cols());
// Applies buf_dft <- s * a
module.svp_apply_dft(&mut buf_dft, &s_ppol, &a, a.limbs());
module.svp_apply_dft(&mut buf_dft, &s_ppol, &a, a.cols());
// Alias scratch space
let mut buf_big: VecZnxBig = buf_dft.as_vec_znx_big();
// buf_big <- IDFT(buf_dft) (not normalized)
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft, a.limbs());
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft, a.cols());
let mut m: VecZnx = module.new_vec_znx(msg_limbs);
let mut m: VecZnx = module.new_vec_znx(msg_cols);
let mut want: Vec<i64> = vec![0; n];
want.iter_mut()
@@ -60,12 +60,12 @@ fn main() {
module.vec_znx_big_sub_small_a_inplace(&mut buf_big, &m);
// b <- normalize(buf_big) + e
let mut b: VecZnx = module.new_vec_znx(limbs);
let mut b: VecZnx = module.new_vec_znx(cols);
module.vec_znx_big_normalize(log_base2k, &mut b, &buf_big, &mut carry);
module.add_normal(
log_base2k,
&mut b,
log_base2k * limbs,
log_base2k * cols,
&mut source,
3.2,
19.0,
@@ -74,8 +74,8 @@ fn main() {
//Decrypt
// buf_big <- a * s
module.svp_apply_dft(&mut buf_dft, &s_ppol, &a, a.limbs());
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft, b.limbs());
module.svp_apply_dft(&mut buf_dft, &s_ppol, &a, a.cols());
module.vec_znx_idft_tmp_a(&mut buf_big, &mut buf_dft, b.cols());
// buf_big <- a * s + b
module.vec_znx_big_add_small_inplace(&mut buf_big, &b);
@@ -85,9 +85,9 @@ fn main() {
// have = m * 2^{log_scale} + e
let mut have: Vec<i64> = vec![i64::default(); n];
res.decode_vec_i64(log_base2k, res.limbs() * log_base2k, &mut have);
res.decode_vec_i64(log_base2k, res.cols() * log_base2k, &mut have);
let scale: f64 = (1 << (res.limbs() * log_base2k - log_scale)) as f64;
let scale: f64 = (1 << (res.cols() * log_base2k - log_scale)) as f64;
izip!(want.iter(), have.iter())
.enumerate()
.for_each(|(i, (a, b))| {

View File

@@ -4,31 +4,31 @@ use base2k::{
};
fn main() {
let log_n = 5;
let n = 1 << log_n;
let log_n: i32 = 5;
let n: usize = 1 << log_n;
let module: Module = Module::new::<FFT64>(n);
let log_base2k: usize = 15;
let limbs: usize = 5;
let log_k: usize = log_base2k * limbs - 5;
let cols: usize = 5;
let log_k: usize = log_base2k * cols - 5;
let rows: usize = limbs;
let cols: usize = limbs + 1;
let rows: usize = cols;
let cols: usize = cols + 1;
// Maximum size of the byte scratch needed
let tmp_bytes: usize = module.vmp_prepare_tmp_bytes(rows, cols)
| module.vmp_apply_dft_tmp_bytes(limbs, limbs, rows, cols);
| module.vmp_apply_dft_tmp_bytes(cols, cols, rows, cols);
let mut buf: Vec<u8> = vec![0; tmp_bytes];
let mut a_values: Vec<i64> = vec![i64::default(); n];
a_values[1] = (1 << log_base2k) + 1;
let mut a: VecZnx = module.new_vec_znx(limbs);
let mut a: VecZnx = module.new_vec_znx(cols);
a.encode_vec_i64(log_base2k, log_k, &a_values, 32);
a.normalize(log_base2k, &mut buf);
a.print_limbs(a.limbs(), n);
a.print(a.cols(), n);
println!();
let mut vecznx: Vec<VecZnx> = Vec::new();
@@ -40,8 +40,10 @@ fn main() {
vecznx[i].data[i * n + 1] = 1 as i64;
});
let slices: Vec<&[i64]> = vecznx.iter().map(|v| v.data.as_slice()).collect();
let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
module.vmp_prepare_dblptr(&mut vmp_pmat, &vecznx, &mut buf);
module.vmp_prepare_dblptr(&mut vmp_pmat, &slices, &mut buf);
let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
module.vmp_apply_dft(&mut c_dft, &a, &vmp_pmat, &mut buf);
@@ -55,7 +57,7 @@ fn main() {
let mut values_res: Vec<i64> = vec![i64::default(); n];
res.decode_vec_i64(log_base2k, log_k, &mut values_res);
res.print_limbs(res.limbs(), n);
res.print(res.cols(), n);
module.free();
c_dft.free();

View File

@@ -54,11 +54,10 @@ pub trait Encoding {
impl Encoding for VecZnx {
fn encode_vec_i64(&mut self, log_base2k: usize, log_k: usize, data: &[i64], log_max: usize) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
println!("limbs: {}", limbs);
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
assert!(cols <= self.cols(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.cols()={}", cols, self.cols());
let size: usize = min(data.len(), self.n());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
@@ -67,19 +66,19 @@ impl Encoding for VecZnx {
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..self.limbs()).for_each(|i| unsafe {
(0..self.cols()).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
self.at_mut(limbs - 1)[..size].copy_from_slice(&data[..size]);
self.at_mut(cols - 1)[..size].copy_from_slice(&data[..size]);
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(0..steps).for_each(|i| unsafe {
znx_zero_i64_ref(size as u64, self.at_mut(i).as_mut_ptr());
});
(limbs - steps..limbs)
(cols - steps..cols)
.rev()
.enumerate()
.for_each(|(i, i_rev)| {
@@ -91,9 +90,9 @@ impl Encoding for VecZnx {
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|i| {
let cols = self.cols();
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(cols - steps..cols).rev().for_each(|i| {
self.at_mut(i)[..size]
.iter_mut()
.for_each(|x| *x <<= log_k_rem);
@@ -102,7 +101,7 @@ impl Encoding for VecZnx {
}
fn decode_vec_i64(&self, log_base2k: usize, log_k: usize, data: &mut [i64]) {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(
data.len() >= self.n,
"invalid data: data.len()={} < self.n()={}",
@@ -111,8 +110,8 @@ impl Encoding for VecZnx {
);
data.copy_from_slice(self.at(0));
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
if i == limbs - 1 && rem != log_base2k {
(1..cols).for_each(|i| {
if i == cols - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
izip!(self.at(i).iter(), data.iter_mut()).for_each(|(x, y)| {
*y = (*y << k_rem) + (x >> rem);
@@ -134,25 +133,25 @@ impl Encoding for VecZnx {
log_max: usize,
) {
assert!(i < self.n());
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(limbs <= self.limbs(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.limbs()={}", limbs, self.limbs());
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(cols <= self.cols(), "invalid argument log_k: (log_k + self.log_base2k - 1)/self.log_base2k={} > self.cols()={}", cols, self.cols());
let log_k_rem: usize = log_base2k - (log_k % log_base2k);
let limbs = self.limbs();
let cols = self.cols();
// If 2^{log_base2k} * 2^{log_k_rem} < 2^{63}-1, then we can simply copy
// values on the last limb.
// Else we decompose values base2k.
if log_max + log_k_rem < 63 || log_k_rem == log_base2k {
(0..limbs - 1).for_each(|j| self.at_mut(j)[i] = 0);
(0..cols - 1).for_each(|j| self.at_mut(j)[i] = 0);
self.at_mut(self.limbs() - 1)[i] = value;
self.at_mut(self.cols() - 1)[i] = value;
} else {
let mask: i64 = (1 << log_base2k) - 1;
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(0..limbs - steps).for_each(|j| self.at_mut(j)[i] = 0);
(0..cols - steps).for_each(|j| self.at_mut(j)[i] = 0);
(limbs - steps..limbs)
(cols - steps..cols)
.rev()
.enumerate()
.for_each(|(j, j_rev)| {
@@ -162,22 +161,22 @@ impl Encoding for VecZnx {
// Case where self.prec % self.k != 0.
if log_k_rem != log_base2k {
let limbs = self.limbs();
let steps: usize = min(limbs, (log_max + log_base2k - 1) / log_base2k);
(limbs - steps..limbs).rev().for_each(|j| {
let cols = self.cols();
let steps: usize = min(cols, (log_max + log_base2k - 1) / log_base2k);
(cols - steps..cols).rev().for_each(|j| {
self.at_mut(j)[i] <<= log_k_rem;
})
}
}
fn decode_coeff_i64(&self, log_base2k: usize, log_k: usize, i: usize) -> i64 {
let limbs: usize = (log_k + log_base2k - 1) / log_base2k;
let cols: usize = (log_k + log_base2k - 1) / log_base2k;
assert!(i < self.n());
let mut res: i64 = self.data[i];
let rem: usize = log_base2k - (log_k % log_base2k);
(1..limbs).for_each(|i| {
(1..cols).for_each(|i| {
let x = self.data[i * self.n];
if i == limbs - 1 && rem != log_base2k {
if i == cols - 1 && rem != log_base2k {
let k_rem: usize = log_base2k - rem;
res = (res << k_rem) + (x >> rem);
} else {
@@ -198,9 +197,9 @@ mod tests {
fn test_set_get_i64_lo_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let cols: usize = 5;
let log_k: usize = cols * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, cols);
let mut have: Vec<i64> = vec![i64::default(); n];
have.iter_mut()
.enumerate()
@@ -215,9 +214,9 @@ mod tests {
fn test_set_get_i64_hi_norm() {
let n: usize = 8;
let log_base2k: usize = 17;
let limbs: usize = 5;
let log_k: usize = limbs * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, limbs);
let cols: usize = 5;
let log_k: usize = cols * log_base2k - 5;
let mut a: VecZnx = VecZnx::new(n, cols);
let mut have: Vec<i64> = vec![i64::default(); n];
let mut source = Source::new([1; 32]);
have.iter_mut().for_each(|x| {
@@ -226,9 +225,9 @@ mod tests {
.wrapping_sub(u64::MAX / 2 + 1) as i64;
});
a.encode_vec_i64(log_base2k, log_k, &have, 63);
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
//(0..a.cols()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
let mut want = vec![i64::default(); n];
//(0..a.limbs()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
//(0..a.cols()).for_each(|i| println!("i:{} -> {:?}", i, a.at(i)));
a.decode_vec_i64(log_base2k, log_k, &mut want);
izip!(want, have).for_each(|(a, b)| assert_eq!(a, b, "{} != {}", a, b));
}

View File

@@ -7,10 +7,6 @@ pub trait Infos {
/// Returns the base two logarithm of the ring dimension of the receiver.
fn log_n(&self) -> usize;
/// Returns the number of limbs of the receiver.
/// This method is equivalent to [Infos::cols].
fn limbs(&self) -> usize;
/// Returns the number of columns of the receiver.
/// This method is equivalent to [Infos::limbs].
fn cols(&self) -> usize;
@@ -30,11 +26,6 @@ impl Infos for VecZnx {
self.n
}
/// Returns the number of limbs of the [VecZnx].
fn limbs(&self) -> usize {
self.data.len() / self.n
}
/// Returns the number of limbs of the [VecZnx].
fn cols(&self) -> usize {
self.data.len() / self.n
@@ -57,11 +48,6 @@ impl Infos for VecZnxBorrow {
self.n
}
/// Returns the number of limbs of the [VecZnx].
fn limbs(&self) -> usize {
self.limbs
}
/// Returns the number of limbs of the [VecZnx].
fn cols(&self) -> usize {
self.limbs
@@ -83,12 +69,6 @@ impl Infos for VmpPMat {
(usize::BITS - (self.n() - 1).leading_zeros()) as _
}
/// Returns the number of limbs of each [VecZnxDft].
/// This method is equivalent to [Self::cols].
fn limbs(&self) -> usize {
self.cols
}
/// Returns the number of rows (i.e. of [VecZnxDft]) of the [VmpPMat]
fn rows(&self) -> usize {
self.rows

View File

@@ -31,6 +31,7 @@ pub use vmp::*;
pub const GALOISGENERATOR: u64 = 5;
#[allow(dead_code)]
fn is_aligned<T>(ptr: *const T, align: usize) -> bool {
(ptr as usize) % align == 0
}

View File

@@ -3,8 +3,8 @@ use rand_distr::{Distribution, Normal};
use sampling::source::Source;
pub trait Sampling<T: VecZnxApi + Infos> {
/// Fills the first `limbs` limbs with uniform values in \[-2^{log_base2k-1}, 2^{log_base2k-1}\]
fn fill_uniform(&self, log_base2k: usize, a: &mut T, limbs: usize, source: &mut Source);
/// Fills the first `cols` cols with uniform values in \[-2^{log_base2k-1}, 2^{log_base2k-1}\]
fn fill_uniform(&self, log_base2k: usize, a: &mut T, cols: usize, source: &mut Source);
/// Adds vector sampled according to the provided distribution, scaled by 2^{-log_k} and bounded to \[-bound, bound\].
fn add_dist_f64<D: Distribution<f64>>(
@@ -30,11 +30,11 @@ pub trait Sampling<T: VecZnxApi + Infos> {
}
impl<T: VecZnxApi + Infos> Sampling<T> for Module {
fn fill_uniform(&self, log_base2k: usize, a: &mut T, limbs: usize, source: &mut Source) {
fn fill_uniform(&self, log_base2k: usize, a: &mut T, cols: usize, source: &mut Source) {
let base2k: u64 = 1 << log_base2k;
let mask: u64 = base2k - 1;
let base2k_half: i64 = (base2k >> 1) as i64;
let size: usize = a.n() * limbs;
let size: usize = a.n() * cols;
a.raw_mut()[..size]
.iter_mut()
.for_each(|x| *x = (source.next_u64n(base2k, mask) as i64) - base2k_half);
@@ -58,7 +58,7 @@ impl<T: VecZnxApi + Infos> Sampling<T> for Module {
let log_base2k_rem: usize = log_k % log_base2k;
if log_base2k_rem != 0 {
a.at_mut(a.limbs() - 1).iter_mut().for_each(|a| {
a.at_mut(a.cols() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)
@@ -66,7 +66,7 @@ impl<T: VecZnxApi + Infos> Sampling<T> for Module {
*a += (dist_f64.round() as i64) << log_base2k_rem
});
} else {
a.at_mut(a.limbs() - 1).iter_mut().for_each(|a| {
a.at_mut(a.cols() - 1).iter_mut().for_each(|a| {
let mut dist_f64: f64 = dist.sample(source);
while dist_f64.abs() > bound {
dist_f64 = dist.sample(source)

View File

@@ -77,8 +77,8 @@ impl SvpPPol {
SvpPPol(bytes.as_mut_ptr() as *mut svp::svp_ppol_t, size)
}
/// Returns the number of limbs of the [SvpPPol], which is always 1.
pub fn limbs(&self) -> usize {
/// Returns the number of cols of the [SvpPPol], which is always 1.
pub fn cols(&self) -> usize {
1
}
}
@@ -101,7 +101,7 @@ pub trait SvpPPolOps {
c: &mut VecZnxDft,
a: &SvpPPol,
b: &T,
b_limbs: usize,
b_cols: usize,
);
}
@@ -123,22 +123,22 @@ impl SvpPPolOps for Module {
c: &mut VecZnxDft,
a: &SvpPPol,
b: &T,
b_limbs: usize,
b_cols: usize,
) {
assert!(
c.limbs() >= b_limbs,
"invalid c_vector: c_vector.limbs()={} < b.limbs()={}",
c.limbs(),
b_limbs
c.cols() >= b_cols,
"invalid c_vector: c_vector.cols()={} < b.cols()={}",
c.cols(),
b_cols
);
unsafe {
svp::svp_apply_dft(
self.0,
c.0,
b_limbs as u64,
b_cols as u64,
a.0,
b.as_ptr(),
b_limbs as u64,
b_cols as u64,
b.n() as u64,
)
}

View File

@@ -8,19 +8,66 @@ use itertools::izip;
use std::cmp::min;
pub trait VecZnxApi {
type Owned: VecZnxApi + Infos;
fn from_bytes(n: usize, limbs: usize, bytes: &mut [u8]) -> Self::Owned;
/// Returns the minimum size of the [u8] array required to assign a
/// new backend array to a [VecZnx] through [VecZnx::from_bytes].
/// new backend array.
fn bytes_of(n: usize, limbs: usize) -> usize;
/// Returns the backing array.
fn raw(&self) -> &[i64];
/// Returns the mutable backing array.
fn raw_mut(&mut self) -> &mut [i64];
/// Returns a non-mutable pointer to the backing array.
fn as_ptr(&self) -> *const i64;
/// Returns a mutable pointer to the backing array.
fn as_mut_ptr(&mut self) -> *mut i64;
/// Returns a non-mutable reference to the i-th limb.
fn at(&self, i: usize) -> &[i64];
/// Returns a mutable reference to the i-th limb .
fn at_mut(&mut self, i: usize) -> &mut [i64];
/// Returns a non-mutable pointer to the i-th limb.
fn at_ptr(&self, i: usize) -> *const i64;
/// Returns a mutable pointer to the i-th limb.
fn at_mut_ptr(&mut self, i: usize) -> *mut i64;
/// Zeroes the backing array.
fn zero(&mut self);
fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]);
/// Right shifts the coefficients by k bits.
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
/// * `k`: the shift amount.
/// * `carry`: scratch space of size at least equal to self.n() * self.limbs() << 3.
///
/// # Panics
///
/// The method will panic if carry.len() < self.n() * self.limbs() << 3.
fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]);
/// If self.n() > a.n(): Extracts X^{i*self.n()/a.n()} -> X^{i}.
/// If self.n() < a.n(): Extracts X^{i} -> X^{i*a.n()/self.n()}.
///
/// # Arguments
///
/// * `a`: the receiver polynomial in which the extracted coefficients are stored.
fn switch_degree<T: VecZnxApi + Infos>(&self, a: &mut T)
where
Self: AsRef<T>;
fn print(&self, limbs: usize, n: usize);
}
pub fn bytes_of_vec_znx(n: usize, limbs: usize) -> usize {
@@ -33,14 +80,16 @@ pub struct VecZnxBorrow {
pub data: *mut i64,
}
impl VecZnxBorrow {
impl VecZnxApi for VecZnxBorrow {
type Owned = VecZnxBorrow;
/// Returns a new struct implementing [VecZnxBorrow] with the provided data as backing array.
///
/// The struct will *NOT* take ownership of buf[..[VecZnx::bytes_of]]
///
/// User must ensure that data is properly alligned and that
/// the size of data is at least equal to [VecZnx::bytes_of].
pub fn from_bytes(n: usize, limbs: usize, bytes: &mut [u8]) -> VecZnxBorrow {
fn from_bytes(n: usize, limbs: usize, bytes: &mut [u8]) -> Self::Owned {
let size = Self::bytes_of(n, limbs);
assert!(
bytes.len() >= size,
@@ -56,9 +105,7 @@ impl VecZnxBorrow {
data: cast_mut(&mut bytes[..size]).as_mut_ptr(),
}
}
}
impl VecZnxApi for VecZnxBorrow {
fn bytes_of(n: usize, limbs: usize) -> usize {
bytes_of_vec_znx(n, limbs)
}
@@ -104,39 +151,35 @@ impl VecZnxApi for VecZnxBorrow {
}
fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
assert!(
carry.len() >= self.n() * 8,
"invalid carry: carry.len()={} < self.n()={}",
carry.len(),
self.n()
);
normalize(log_base2k, self, carry)
}
let carry_i64: &mut [i64] = cast_mut(carry);
fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
rsh(log_base2k, self, k, carry)
}
unsafe {
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
(0..self.limbs()).rev().for_each(|i| {
znx::znx_normalize(
self.n as u64,
log_base2k as u64,
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
)
});
}
fn switch_degree<T: VecZnxApi + Infos>(&self, a: &mut T)
where
Self: AsRef<T>,
{
switch_degree(a, self.as_ref());
}
fn print(&self, limbs: usize, n: usize) {
(0..limbs).for_each(|i| println!("{}: {:?}", i, &self.at(i)[..n]))
}
}
impl VecZnx {
impl VecZnxApi for VecZnx {
type Owned = VecZnx;
/// Returns a new struct implementing [VecZnx] with the provided data as backing array.
///
/// The struct will take ownership of buf[..[VecZnx::bytes_of]]
///
/// User must ensure that data is properly alligned and that
/// the size of data is at least equal to [VecZnx::bytes_of].
pub fn from_bytes(n: usize, limbs: usize, buf: &mut [u8]) -> VecZnx {
fn from_bytes(n: usize, limbs: usize, buf: &mut [u8]) -> Self::Owned {
let size = Self::bytes_of(n, limbs);
assert!(
buf.len() >= size,
@@ -152,9 +195,7 @@ impl VecZnx {
data: alias_mut_slice_to_vec(cast_mut(&mut buf[..size])),
}
}
}
impl VecZnxApi for VecZnx {
fn bytes_of(n: usize, limbs: usize) -> usize {
bytes_of_vec_znx(n, limbs)
}
@@ -167,66 +208,53 @@ impl VecZnxApi for VecZnx {
&mut self.data
}
/// Returns a non-mutable pointer to the backing array of the [VecZnx].
fn as_ptr(&self) -> *const i64 {
self.data.as_ptr()
}
/// Returns a mutable pointer to the backing array of the [VecZnx].
fn as_mut_ptr(&mut self) -> *mut i64 {
self.data.as_mut_ptr()
}
/// Returns a non-mutable reference to the i-th limb of the [VecZnx].
fn at(&self, i: usize) -> &[i64] {
let n: usize = self.n();
&self.raw()[n * i..n * (i + 1)]
}
/// Returns a mutable reference to the i-th limb of the [VecZnx].
fn at_mut(&mut self, i: usize) -> &mut [i64] {
let n: usize = self.n();
&mut self.raw_mut()[n * i..n * (i + 1)]
}
/// Returns a non-mutable pointer to the i-th limb of the [VecZnx].
fn at_ptr(&self, i: usize) -> *const i64 {
&self.data[i * self.n] as *const i64
}
/// Returns a mutable pointer to the i-th limb of the [VecZnx].
fn at_mut_ptr(&mut self, i: usize) -> *mut i64 {
&mut self.data[i * self.n] as *mut i64
}
/// Zeroes the backing array of the [VecZnx].
fn zero(&mut self) {
unsafe { znx::znx_zero_i64_ref(self.data.len() as u64, self.data.as_mut_ptr()) }
}
fn normalize(&mut self, log_base2k: usize, carry: &mut [u8]) {
assert!(
carry.len() >= self.n() * 8,
"invalid carry: carry.len()={} < self.n()={}",
carry.len(),
self.n()
);
normalize(log_base2k, self, carry)
}
let carry_i64: &mut [i64] = cast_mut(carry);
fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
rsh(log_base2k, self, k, carry)
}
unsafe {
znx::znx_zero_i64_ref(self.n() as u64, carry_i64.as_mut_ptr());
(0..self.limbs()).rev().for_each(|i| {
znx::znx_normalize(
self.n as u64,
log_base2k as u64,
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
self.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
)
});
}
fn switch_degree<T: VecZnxApi + Infos>(&self, a: &mut T)
where
Self: AsRef<T>,
{
switch_degree(a, self.as_ref())
}
fn print(&self, limbs: usize, n: usize) {
(0..limbs).for_each(|i| println!("{}: {:?}", i, &self.at(i)[..n]))
}
}
@@ -269,99 +297,105 @@ impl VecZnx {
}
self.data
.truncate((self.limbs() - k / log_base2k) * self.n());
.truncate((self.cols() - k / log_base2k) * self.n());
let k_rem: usize = k % log_base2k;
if k_rem != 0 {
let mask: i64 = ((1 << (log_base2k - k_rem - 1)) - 1) << k_rem;
self.at_mut(self.limbs() - 1)
self.at_mut(self.cols() - 1)
.iter_mut()
.for_each(|x: &mut i64| *x &= mask)
}
}
}
/// Right shifts the coefficients by k bits.
///
/// # Arguments
///
/// * `log_base2k`: the base two logarithm of the coefficients decomposition.
/// * `k`: the shift amount.
/// * `carry`: scratch space of size at least equal to self.n() * self.limbs() << 3.
///
/// # Panics
///
/// The method will panic if carry.len() < self.n() * self.limbs() << 3.
pub fn rsh(&mut self, log_base2k: usize, k: usize, carry: &mut [u8]) {
let n: usize = self.n();
pub fn switch_degree<T: VecZnxApi + Infos>(b: &mut T, a: &T) {
let (n_in, n_out) = (a.n(), b.n());
let (gap_in, gap_out): (usize, usize);
assert!(
carry.len() >> 3 >= n,
"invalid carry: carry.len()/8={} < self.n()={}",
carry.len() >> 3,
n
);
let limbs: usize = self.limbs();
let limbs_steps: usize = k / log_base2k;
self.data.rotate_right(self.n * limbs_steps);
unsafe {
znx::znx_zero_i64_ref((self.n * limbs_steps) as u64, self.data.as_mut_ptr());
}
let k_rem = k % log_base2k;
if k_rem != 0 {
let carry_i64: &mut [i64] = cast_mut(carry);
unsafe {
znx::znx_zero_i64_ref(n as u64, carry_i64.as_mut_ptr());
}
let mask: i64 = (1 << k_rem) - 1;
let log_base2k: usize = log_base2k;
(limbs_steps..limbs).for_each(|i| {
izip!(carry_i64.iter_mut(), self.at_mut(i).iter_mut()).for_each(|(ci, xi)| {
*xi += *ci << log_base2k;
*ci = *xi & mask;
*xi /= 1 << k_rem;
});
})
}
if n_in > n_out {
(gap_in, gap_out) = (n_in / n_out, 1)
} else {
(gap_in, gap_out) = (1, n_out / n_in);
b.zero();
}
/// If self.n() > a.n(): Extracts X^{i*self.n()/a.n()} -> X^{i}.
/// If self.n() < a.n(): Extracts X^{i} -> X^{i*a.n()/self.n()}.
///
/// # Arguments
///
/// * `a`: the receiver polynomial in which the extracted coefficients are stored.
pub fn switch_degree(&self, a: &mut VecZnx) {
let (n_in, n_out) = (self.n(), a.n());
let (gap_in, gap_out): (usize, usize);
let limbs = min(a.cols(), b.cols());
if n_in > n_out {
(gap_in, gap_out) = (n_in / n_out, 1)
} else {
(gap_in, gap_out) = (1, n_out / n_in);
a.zero();
}
(0..limbs).for_each(|i| {
izip!(
a.at(i).iter().step_by(gap_in),
b.at_mut(i).iter_mut().step_by(gap_out)
)
.for_each(|(x_in, x_out)| *x_out = *x_in);
});
}
let limbs = min(self.limbs(), a.limbs());
fn normalize<T: VecZnxApi + Infos>(log_base2k: usize, a: &mut T, carry: &mut [u8]) {
let n: usize = a.n();
(0..limbs).for_each(|i| {
izip!(
self.at(i).iter().step_by(gap_in),
a.at_mut(i).iter_mut().step_by(gap_out)
assert!(
carry.len() >= n * 8,
"invalid carry: carry.len()={} < self.n()={}",
carry.len(),
n
);
let carry_i64: &mut [i64] = cast_mut(carry);
unsafe {
znx::znx_zero_i64_ref(n as u64, carry_i64.as_mut_ptr());
(0..a.cols()).rev().for_each(|i| {
znx::znx_normalize(
n as u64,
log_base2k as u64,
a.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
a.at_mut_ptr(i),
carry_i64.as_mut_ptr(),
)
.for_each(|(x_in, x_out)| *x_out = *x_in);
});
}
}
pub fn print_limbs(&self, limbs: usize, n: usize) {
(0..limbs).for_each(|i| println!("{}: {:?}", i, &self.at(i)[..n]))
pub fn rsh<T: VecZnxApi + Infos>(log_base2k: usize, a: &mut T, k: usize, carry: &mut [u8]) {
let n: usize = a.n();
assert!(
carry.len() >> 3 >= n,
"invalid carry: carry.len()/8={} < self.n()={}",
carry.len() >> 3,
n
);
let limbs: usize = a.cols();
let limbs_steps: usize = k / log_base2k;
a.raw_mut().rotate_right(n * limbs_steps);
unsafe {
znx::znx_zero_i64_ref((n * limbs_steps) as u64, a.as_mut_ptr());
}
let k_rem = k % log_base2k;
if k_rem != 0 {
let carry_i64: &mut [i64] = cast_mut(carry);
unsafe {
znx::znx_zero_i64_ref(n as u64, carry_i64.as_mut_ptr());
}
let mask: i64 = (1 << k_rem) - 1;
let log_base2k: usize = log_base2k;
(limbs_steps..limbs).for_each(|i| {
izip!(carry_i64.iter_mut(), a.at_mut(i).iter_mut()).for_each(|(ci, xi)| {
*xi += *ci << log_base2k;
*ci = *xi & mask;
*xi /= 1 << k_rem;
});
})
}
}
@@ -413,7 +447,7 @@ pub trait VecZnxOps {
///
/// This method requires that all [VecZnx] of b have the same ring degree
/// and that b.n() * b.len() <= a.n()
fn vec_znx_split(&self, b: &mut Vec<VecZnx>, a: &VecZnx, buf: &mut VecZnx);
fn vec_znx_split<T: VecZnxApi + Infos>(&self, b: &mut Vec<T>, a: &T, buf: &mut T);
/// Merges the subrings a into b.
///
@@ -421,7 +455,7 @@ pub trait VecZnxOps {
///
/// This method requires that all [VecZnx] of a have the same ring degree
/// and that a.n() * a.len() <= b.n()
fn vec_znx_merge(&self, b: &mut VecZnx, a: &Vec<VecZnx>);
fn vec_znx_merge<T: VecZnxApi + Infos>(&self, b: &mut T, a: &Vec<T>);
}
impl VecZnxOps for Module {
@@ -439,13 +473,13 @@ impl VecZnxOps for Module {
vec_znx::vec_znx_add(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.cols() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
)
}
@@ -457,13 +491,13 @@ impl VecZnxOps for Module {
vec_znx::vec_znx_add(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
)
}
@@ -475,13 +509,13 @@ impl VecZnxOps for Module {
vec_znx::vec_znx_sub(
self.0,
c.as_mut_ptr(),
c.limbs() as u64,
c.cols() as u64,
c.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
)
}
@@ -493,13 +527,13 @@ impl VecZnxOps for Module {
vec_znx::vec_znx_sub(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
)
}
@@ -510,10 +544,10 @@ impl VecZnxOps for Module {
vec_znx::vec_znx_negate(
self.0,
b.as_mut_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
)
}
@@ -524,10 +558,10 @@ impl VecZnxOps for Module {
vec_znx::vec_znx_negate(
self.0,
a.as_mut_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
)
}
@@ -539,10 +573,10 @@ impl VecZnxOps for Module {
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.as_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
)
}
@@ -554,10 +588,10 @@ impl VecZnxOps for Module {
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
)
}
@@ -603,13 +637,13 @@ impl VecZnxOps for Module {
fn vec_znx_automorphism<T: VecZnxApi + Infos>(&self, k: i64, b: &mut T, a: &T, limbs_a: usize) {
assert_eq!(a.n(), self.n());
assert_eq!(b.n(), self.n());
assert!(a.limbs() >= limbs_a);
assert!(a.cols() >= limbs_a);
unsafe {
vec_znx::vec_znx_automorphism(
self.0,
k,
b.as_mut_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
a.as_ptr(),
limbs_a as u64,
@@ -660,13 +694,13 @@ impl VecZnxOps for Module {
limbs_a: usize,
) {
assert_eq!(a.n(), self.n());
assert!(a.limbs() >= limbs_a);
assert!(a.cols() >= limbs_a);
unsafe {
vec_znx::vec_znx_automorphism(
self.0,
k,
a.as_mut_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
a.as_ptr(),
limbs_a as u64,
@@ -675,7 +709,7 @@ impl VecZnxOps for Module {
}
}
fn vec_znx_split(&self, b: &mut Vec<VecZnx>, a: &VecZnx, buf: &mut VecZnx) {
fn vec_znx_split<T: VecZnxApi + Infos>(&self, b: &mut Vec<T>, a: &T, buf: &mut T) {
let (n_in, n_out) = (a.n(), b[0].n());
assert!(
@@ -692,16 +726,16 @@ impl VecZnxOps for Module {
b.iter_mut().enumerate().for_each(|(i, bi)| {
if i == 0 {
a.switch_degree(bi);
switch_degree(bi, a);
self.vec_znx_rotate(-1, buf, a);
} else {
buf.switch_degree(bi);
switch_degree(bi, buf);
self.vec_znx_rotate_inplace(-1, buf);
}
})
}
fn vec_znx_merge(&self, b: &mut VecZnx, a: &Vec<VecZnx>) {
fn vec_znx_merge<T: VecZnxApi + Infos>(&self, b: &mut T, a: &Vec<T>) {
let (n_in, n_out) = (b.n(), a[0].n());
assert!(
@@ -717,7 +751,7 @@ impl VecZnxOps for Module {
});
a.iter().enumerate().for_each(|(_, ai)| {
ai.switch_degree(b);
switch_degree(b, ai);
self.vec_znx_rotate_inplace(-1, b);
});

View File

@@ -8,39 +8,39 @@ impl VecZnxBig {
/// Returns a new [VecZnxBig] with the provided data as backing array.
/// User must ensure that data is properly alligned and that
/// the size of data is at least equal to [Module::bytes_of_vec_znx_big].
pub fn from_bytes(limbs: usize, data: &mut [u8]) -> VecZnxBig {
pub fn from_bytes(cols: usize, data: &mut [u8]) -> VecZnxBig {
VecZnxBig(
data.as_mut_ptr() as *mut vec_znx_big::vec_znx_bigcoeff_t,
limbs,
cols,
)
}
pub fn as_vec_znx_dft(&mut self) -> VecZnxDft {
VecZnxDft(self.0 as *mut vec_znx_dft::vec_znx_dft_t, self.1)
}
pub fn limbs(&self) -> usize {
pub fn cols(&self) -> usize {
self.1
}
}
pub trait VecZnxBigOps {
/// Allocates a vector Z[X]/(X^N+1) that stores not normalized values.
fn new_vec_znx_big(&self, limbs: usize) -> VecZnxBig;
fn new_vec_znx_big(&self, cols: usize) -> VecZnxBig;
/// Returns a new [VecZnxBig] with the provided bytes array as backing array.
///
/// # Arguments
///
/// * `limbs`: the number of limbs of the [VecZnxBig].
/// * `cols`: the number of cols of the [VecZnxBig].
/// * `bytes`: a byte array of size at least [Module::bytes_of_vec_znx_big].
///
/// # Panics
/// If `bytes.len()` < [Module::bytes_of_vec_znx_big].
fn new_vec_znx_big_from_bytes(&self, limbs: usize, bytes: &mut [u8]) -> VecZnxBig;
fn new_vec_znx_big_from_bytes(&self, cols: usize, bytes: &mut [u8]) -> VecZnxBig;
/// Returns the minimum number of bytes necessary to allocate
/// a new [VecZnxBig] through [VecZnxBig::from_bytes].
fn bytes_of_vec_znx_big(&self, limbs: usize) -> usize;
fn bytes_of_vec_znx_big(&self, cols: usize) -> usize;
/// b <- b - a
fn vec_znx_big_sub_small_a_inplace<T: VecZnxApi + Infos>(&self, b: &mut VecZnxBig, a: &T);
@@ -89,22 +89,22 @@ pub trait VecZnxBigOps {
}
impl VecZnxBigOps for Module {
fn new_vec_znx_big(&self, limbs: usize) -> VecZnxBig {
unsafe { VecZnxBig(vec_znx_big::new_vec_znx_big(self.0, limbs as u64), limbs) }
fn new_vec_znx_big(&self, cols: usize) -> VecZnxBig {
unsafe { VecZnxBig(vec_znx_big::new_vec_znx_big(self.0, cols as u64), cols) }
}
fn new_vec_znx_big_from_bytes(&self, limbs: usize, bytes: &mut [u8]) -> VecZnxBig {
fn new_vec_znx_big_from_bytes(&self, cols: usize, bytes: &mut [u8]) -> VecZnxBig {
assert!(
bytes.len() >= <Module as VecZnxBigOps>::bytes_of_vec_znx_big(self, limbs),
bytes.len() >= <Module as VecZnxBigOps>::bytes_of_vec_znx_big(self, cols),
"invalid bytes: bytes.len()={} < bytes_of_vec_znx_dft={}",
bytes.len(),
<Module as VecZnxBigOps>::bytes_of_vec_znx_big(self, limbs)
<Module as VecZnxBigOps>::bytes_of_vec_znx_big(self, cols)
);
VecZnxBig::from_bytes(limbs, bytes)
VecZnxBig::from_bytes(cols, bytes)
}
fn bytes_of_vec_znx_big(&self, limbs: usize) -> usize {
unsafe { vec_znx_big::bytes_of_vec_znx_big(self.0, limbs as u64) as usize }
fn bytes_of_vec_znx_big(&self, cols: usize) -> usize {
unsafe { vec_znx_big::bytes_of_vec_znx_big(self.0, cols as u64) as usize }
}
fn vec_znx_big_sub_small_a_inplace<T: VecZnxApi + Infos>(&self, b: &mut VecZnxBig, a: &T) {
@@ -112,12 +112,12 @@ impl VecZnxBigOps for Module {
vec_znx_big::vec_znx_big_sub_small_a(
self.0,
b.0,
b.limbs() as u64,
b.cols() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.0,
b.limbs() as u64,
b.cols() as u64,
)
}
}
@@ -132,12 +132,12 @@ impl VecZnxBigOps for Module {
vec_znx_big::vec_znx_big_sub_small_a(
self.0,
c.0,
c.limbs() as u64,
c.cols() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.0,
b.limbs() as u64,
b.cols() as u64,
)
}
}
@@ -147,11 +147,11 @@ impl VecZnxBigOps for Module {
vec_znx_big::vec_znx_big_add_small(
self.0,
c.0,
c.limbs() as u64,
c.cols() as u64,
b.0,
b.limbs() as u64,
b.cols() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
)
}
@@ -162,11 +162,11 @@ impl VecZnxBigOps for Module {
vec_znx_big::vec_znx_big_add_small(
self.0,
b.0,
b.limbs() as u64,
b.cols() as u64,
b.0,
b.limbs() as u64,
b.cols() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
)
}
@@ -194,10 +194,10 @@ impl VecZnxBigOps for Module {
self.0,
log_base2k as u64,
b.as_mut_ptr(),
b.limbs() as u64,
b.cols() as u64,
b.n() as u64,
a.0,
a.limbs() as u64,
a.cols() as u64,
tmp_bytes.as_mut_ptr(),
)
}
@@ -228,7 +228,7 @@ impl VecZnxBigOps for Module {
self.0,
log_base2k as u64,
res.as_mut_ptr(),
res.limbs() as u64,
res.cols() as u64,
res.n() as u64,
a.0,
a_range_begin as u64,
@@ -245,9 +245,9 @@ impl VecZnxBigOps for Module {
self.0,
gal_el,
b.0,
b.limbs() as u64,
b.cols() as u64,
a.0,
a.limbs() as u64,
a.cols() as u64,
);
}
}
@@ -258,9 +258,9 @@ impl VecZnxBigOps for Module {
self.0,
gal_el,
a.0,
a.limbs() as u64,
a.cols() as u64,
a.0,
a.limbs() as u64,
a.cols() as u64,
);
}
}

View File

@@ -1,7 +1,7 @@
use crate::ffi::vec_znx_big;
use crate::ffi::vec_znx_dft;
use crate::ffi::vec_znx_dft::bytes_of_vec_znx_dft;
use crate::{Infos, Module, VecZnx, VecZnxApi, VecZnxBig};
use crate::{Infos, Module, VecZnxApi, VecZnxBig};
pub struct VecZnxDft(pub *mut vec_znx_dft::vec_znx_dft_t, pub usize);
@@ -9,8 +9,8 @@ impl VecZnxDft {
/// Returns a new [VecZnxDft] with the provided data as backing array.
/// User must ensure that data is properly alligned and that
/// the size of data is at least equal to [Module::bytes_of_vec_znx_dft].
pub fn from_bytes(limbs: usize, data: &mut [u8]) -> VecZnxDft {
VecZnxDft(data.as_mut_ptr() as *mut vec_znx_dft::vec_znx_dft_t, limbs)
pub fn from_bytes(cols: usize, data: &mut [u8]) -> VecZnxDft {
VecZnxDft(data.as_mut_ptr() as *mut vec_znx_dft::vec_znx_dft_t, cols)
}
/// Cast a [VecZnxDft] into a [VecZnxBig].
@@ -19,36 +19,36 @@ impl VecZnxDft {
pub fn as_vec_znx_big(&mut self) -> VecZnxBig {
VecZnxBig(self.0 as *mut vec_znx_big::vec_znx_bigcoeff_t, self.1)
}
pub fn limbs(&self) -> usize {
pub fn cols(&self) -> usize {
self.1
}
}
pub trait VecZnxDftOps {
/// Allocates a vector Z[X]/(X^N+1) that stores normalized in the DFT space.
fn new_vec_znx_dft(&self, limbs: usize) -> VecZnxDft;
fn new_vec_znx_dft(&self, cols: usize) -> VecZnxDft;
/// Returns a new [VecZnxDft] with the provided bytes array as backing array.
///
/// # Arguments
///
/// * `limbs`: the number of limbs of the [VecZnxDft].
/// * `cols`: the number of cols of the [VecZnxDft].
/// * `bytes`: a byte array of size at least [Module::bytes_of_vec_znx_dft].
///
/// # Panics
/// If `bytes.len()` < [Module::bytes_of_vec_znx_dft].
fn new_vec_znx_dft_from_bytes(&self, limbs: usize, bytes: &mut [u8]) -> VecZnxDft;
fn new_vec_znx_dft_from_bytes(&self, cols: usize, bytes: &mut [u8]) -> VecZnxDft;
/// Returns a new [VecZnxDft] with the provided bytes array as backing array.
///
/// # Arguments
///
/// * `limbs`: the number of limbs of the [VecZnxDft].
/// * `cols`: the number of cols of the [VecZnxDft].
/// * `bytes`: a byte array of size at least [Module::bytes_of_vec_znx_dft].
///
/// # Panics
/// If `bytes.len()` < [Module::bytes_of_vec_znx_dft].
fn bytes_of_vec_znx_dft(&self, limbs: usize) -> usize;
fn bytes_of_vec_znx_dft(&self, cols: usize) -> usize;
/// Returns the minimum number of bytes necessary to allocate
/// a new [VecZnxDft] through [VecZnxDft::from_bytes].
@@ -69,33 +69,33 @@ pub trait VecZnxDftOps {
}
impl VecZnxDftOps for Module {
fn new_vec_znx_dft(&self, limbs: usize) -> VecZnxDft {
unsafe { VecZnxDft(vec_znx_dft::new_vec_znx_dft(self.0, limbs as u64), limbs) }
fn new_vec_znx_dft(&self, cols: usize) -> VecZnxDft {
unsafe { VecZnxDft(vec_znx_dft::new_vec_znx_dft(self.0, cols as u64), cols) }
}
fn new_vec_znx_dft_from_bytes(&self, limbs: usize, bytes: &mut [u8]) -> VecZnxDft {
fn new_vec_znx_dft_from_bytes(&self, cols: usize, bytes: &mut [u8]) -> VecZnxDft {
assert!(
bytes.len() >= <Module as VecZnxDftOps>::bytes_of_vec_znx_dft(self, limbs),
bytes.len() >= <Module as VecZnxDftOps>::bytes_of_vec_znx_dft(self, cols),
"invalid bytes: bytes.len()={} < bytes_of_vec_znx_dft={}",
bytes.len(),
<Module as VecZnxDftOps>::bytes_of_vec_znx_dft(self, limbs)
<Module as VecZnxDftOps>::bytes_of_vec_znx_dft(self, cols)
);
VecZnxDft::from_bytes(limbs, bytes)
VecZnxDft::from_bytes(cols, bytes)
}
fn bytes_of_vec_znx_dft(&self, limbs: usize) -> usize {
unsafe { bytes_of_vec_znx_dft(self.0, limbs as u64) as usize }
fn bytes_of_vec_znx_dft(&self, cols: usize) -> usize {
unsafe { bytes_of_vec_znx_dft(self.0, cols as u64) as usize }
}
fn vec_znx_idft_tmp_a(&self, b: &mut VecZnxBig, a: &mut VecZnxDft, a_limbs: usize) {
assert!(
b.limbs() >= a_limbs,
"invalid c_vector: b_vector.limbs()={} < a_limbs={}",
b.limbs(),
b.cols() >= a_limbs,
"invalid c_vector: b_vector.cols()={} < a_limbs={}",
b.cols(),
a_limbs
);
unsafe {
vec_znx_dft::vec_znx_idft_tmp_a(self.0, b.0, b.limbs() as u64, a.0, a_limbs as u64)
vec_znx_dft::vec_znx_idft_tmp_a(self.0, b.0, b.cols() as u64, a.0, a_limbs as u64)
}
}
@@ -106,21 +106,21 @@ impl VecZnxDftOps for Module {
/// b <- DFT(a)
///
/// # Panics
/// If b.limbs < a_limbs
fn vec_znx_dft<T: VecZnxApi + Infos>(&self, b: &mut VecZnxDft, a: &T, a_limbs: usize) {
/// If b.cols < a_cols
fn vec_znx_dft<T: VecZnxApi + Infos>(&self, b: &mut VecZnxDft, a: &T, a_cols: usize) {
assert!(
b.limbs() >= a_limbs,
"invalid a_limbs: b.limbs()={} < a_limbs={}",
b.limbs(),
a_limbs
b.cols() >= a_cols,
"invalid a_cols: b.cols()={} < a_cols={}",
b.cols(),
a_cols
);
unsafe {
vec_znx_dft::vec_znx_dft(
self.0,
b.0,
b.limbs() as u64,
b.cols() as u64,
a.as_ptr(),
a_limbs as u64,
a_cols as u64,
a.n() as u64,
)
}
@@ -131,20 +131,20 @@ impl VecZnxDftOps for Module {
&self,
b: &mut VecZnxBig,
a: &mut VecZnxDft,
a_limbs: usize,
a_cols: usize,
tmp_bytes: &mut [u8],
) {
assert!(
b.limbs() >= a_limbs,
"invalid c_vector: b.limbs()={} < a_limbs={}",
b.limbs(),
a_limbs
b.cols() >= a_cols,
"invalid c_vector: b.cols()={} < a_cols={}",
b.cols(),
a_cols
);
assert!(
a.limbs() >= a_limbs,
"invalid c_vector: a.limbs()={} < a_limbs={}",
a.limbs(),
a_limbs
a.cols() >= a_cols,
"invalid c_vector: a.cols()={} < a_cols={}",
a.cols(),
a_cols
);
assert!(
tmp_bytes.len() <= <Module as VecZnxDftOps>::vec_znx_idft_tmp_bytes(self),
@@ -156,9 +156,9 @@ impl VecZnxDftOps for Module {
vec_znx_dft::vec_znx_idft(
self.0,
b.0,
a.limbs() as u64,
a.cols() as u64,
a.0,
a_limbs as u64,
a_cols as u64,
tmp_bytes.as_mut_ptr(),
)
}

View File

@@ -1,5 +1,5 @@
use crate::ffi::vmp;
use crate::{Infos, Module, VecZnx, VecZnxApi, VecZnxDft};
use crate::{Infos, Module, VecZnxApi, VecZnxDft};
/// Vector Matrix Product Prepared Matrix: a vector of [VecZnx],
/// stored as a 3D matrix in the DFT domain in a single contiguous array.
@@ -15,7 +15,7 @@ pub struct VmpPMat {
pub data: *mut vmp::vmp_pmat_t,
/// The number of [VecZnxDft].
pub rows: usize,
/// The number of limbs in each [VecZnxDft].
/// The number of cols in each [VecZnxDft].
pub cols: usize,
/// The ring degree of each [VecZnxDft].
pub n: usize,
@@ -86,7 +86,7 @@ pub trait VmpPMatOps {
/// # Arguments
///
/// * `rows`: number of rows (number of [VecZnxDft]).
/// * `cols`: number of cols (number of limbs of each [VecZnxDft]).
/// * `cols`: number of cols (number of cols of each [VecZnxDft]).
fn new_vmp_pmat(&self, rows: usize, cols: usize) -> VmpPMat;
/// Returns the number of bytes needed as scratch space for [VmpPMatOps::vmp_prepare_contiguous].
@@ -153,15 +153,17 @@ pub trait VmpPMatOps {
/// vecznx.push(module.new_vec_znx(cols));
/// });
///
/// let slices: Vec<&[i64]> = vecznx.iter().map(|v| v.data.as_slice()).collect();
///
/// let mut buf: Vec<u8> = vec![u8::default(); module.vmp_prepare_tmp_bytes(rows, cols)];
///
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
/// module.vmp_prepare_dblptr(&mut vmp_pmat, &vecznx, &mut buf);
/// module.vmp_prepare_dblptr(&mut vmp_pmat, &slices, &mut buf);
///
/// vmp_pmat.free();
/// module.free();
/// ```
fn vmp_prepare_dblptr<T: VecZnxApi + Infos>(&self, b: &mut VmpPMat, a: &Vec<T>, buf: &mut [u8]);
fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &[&[i64]], buf: &mut [u8]);
/// Prepares the ith-row of [VmpPMat] from a vector of [VecZnx].
///
@@ -175,7 +177,7 @@ pub trait VmpPMatOps {
/// The size of buf can be obtained with [VmpPMatOps::vmp_prepare_tmp_bytes].
/// /// # Example
/// ```
/// use base2k::{Module, FFT64, VmpPMat, VmpPMatOps, VecZnx, VecZnxOps, Free};
/// use base2k::{Module, FFT64, VmpPMat, VmpPMatOps, VecZnx, VecZnxApi, VecZnxOps, Free};
/// use std::cmp::min;
///
/// let n: usize = 1024;
@@ -188,31 +190,25 @@ pub trait VmpPMatOps {
/// let mut buf: Vec<u8> = vec![u8::default(); module.vmp_prepare_tmp_bytes(rows, cols)];
///
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
/// module.vmp_prepare_row(&mut vmp_pmat, &vecznx, 0, &mut buf);
/// module.vmp_prepare_row(&mut vmp_pmat, vecznx.raw(), 0, &mut buf);
///
/// vmp_pmat.free();
/// module.free();
/// ```
fn vmp_prepare_row<T: VecZnxApi + Infos>(
&self,
b: &mut VmpPMat,
a: &T,
row_i: usize,
tmp_bytes: &mut [u8],
);
fn vmp_prepare_row(&self, b: &mut VmpPMat, a: &[i64], row_i: usize, tmp_bytes: &mut [u8]);
/// Returns the size of the stratch space necessary for [VmpPMatOps::vmp_apply_dft].
///
/// # Arguments
///
/// * `c_limbs`: number of limbs of the output [VecZnxDft].
/// * `a_limbs`: number of limbs of the input [VecZnx].
/// * `c_cols`: number of cols of the output [VecZnxDft].
/// * `a_cols`: number of cols of the input [VecZnx].
/// * `rows`: number of rows of the input [VmpPMat].
/// * `cols`: number of cols of the input [VmpPMat].
fn vmp_apply_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
c_cols: usize,
a_cols: usize,
rows: usize,
cols: usize,
) -> usize;
@@ -223,8 +219,8 @@ pub trait VmpPMatOps {
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` limbs.
/// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` cols.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
@@ -249,18 +245,18 @@ pub trait VmpPMatOps {
/// let n = 1024;
///
/// let module: Module = Module::new::<FFT64>(n);
/// let limbs: usize = 5;
/// let cols: usize = 5;
///
/// let rows: usize = limbs;
/// let cols: usize = limbs + 1;
/// let c_limbs: usize = cols;
/// let a_limbs: usize = limbs;
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
/// let rows: usize = cols;
/// let cols: usize = cols + 1;
/// let c_cols: usize = cols;
/// let a_cols: usize = cols;
/// let tmp_bytes: usize = module.vmp_apply_dft_tmp_bytes(c_cols, a_cols, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
///
/// let a: VecZnx = module.new_vec_znx(limbs);
/// let a: VecZnx = module.new_vec_znx(cols);
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
/// module.vmp_apply_dft(&mut c_dft, &a, &vmp_pmat, &mut buf);
///
@@ -280,14 +276,14 @@ pub trait VmpPMatOps {
///
/// # Arguments
///
/// * `c_limbs`: number of limbs of the output [VecZnxDft].
/// * `a_limbs`: number of limbs of the input [VecZnxDft].
/// * `c_cols`: number of cols of the output [VecZnxDft].
/// * `a_cols`: number of cols of the input [VecZnxDft].
/// * `rows`: number of rows of the input [VmpPMat].
/// * `cols`: number of cols of the input [VmpPMat].
fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
c_cols: usize,
a_cols: usize,
rows: usize,
cols: usize,
) -> usize;
@@ -299,8 +295,8 @@ pub trait VmpPMatOps {
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` limbs.
/// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` cols.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
@@ -325,18 +321,18 @@ pub trait VmpPMatOps {
/// let n = 1024;
///
/// let module: Module = Module::new::<FFT64>(n);
/// let limbs: usize = 5;
/// let cols: usize = 5;
///
/// let rows: usize = limbs;
/// let cols: usize = limbs + 1;
/// let c_limbs: usize = cols;
/// let a_limbs: usize = limbs;
/// let tmp_bytes: usize = module.vmp_apply_dft_to_dft_tmp_bytes(c_limbs, a_limbs, rows, cols);
/// let rows: usize = cols;
/// let cols: usize = cols + 1;
/// let c_cols: usize = cols;
/// let a_cols: usize = cols;
/// let tmp_bytes: usize = module.vmp_apply_dft_to_dft_tmp_bytes(c_cols, a_cols, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
///
/// let a_dft: VecZnxDft = module.new_vec_znx_dft(limbs);
/// let a_dft: VecZnxDft = module.new_vec_znx_dft(cols);
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
/// module.vmp_apply_dft_to_dft(&mut c_dft, &a_dft, &vmp_pmat, &mut buf);
///
@@ -354,8 +350,8 @@ pub trait VmpPMatOps {
/// where each [crate::Scalar] is a limb of the input [VecZnxDft] (equivalent to an [crate::SvpPPol])
/// and each vector a [VecZnxDft] (row) of the [VmpPMat].
///
/// As such, given an input [VecZnx] of `i` limbs and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` limbs.
/// As such, given an input [VecZnx] of `i` cols and a [VmpPMat] of `i` rows and
/// `j` cols, the output is a [VecZnx] of `j` cols.
///
/// If there is a mismatch between the dimensions the largest valid ones are used.
///
@@ -379,17 +375,17 @@ pub trait VmpPMatOps {
/// let n = 1024;
///
/// let module: Module = Module::new::<FFT64>(n);
/// let limbs: usize = 5;
/// let cols: usize = 5;
///
/// let rows: usize = limbs;
/// let cols: usize = limbs + 1;
/// let tmp_bytes: usize = module.vmp_apply_dft_to_dft_tmp_bytes(limbs, limbs, rows, cols);
/// let rows: usize = cols;
/// let cols: usize = cols + 1;
/// let tmp_bytes: usize = module.vmp_apply_dft_to_dft_tmp_bytes(cols, cols, rows, cols);
///
/// let mut buf: Vec<u8> = vec![0; tmp_bytes];
/// let a: VecZnx = module.new_vec_znx(limbs);
/// let a: VecZnx = module.new_vec_znx(cols);
/// let mut vmp_pmat: VmpPMat = module.new_vmp_pmat(rows, cols);
///
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(limbs);
/// let mut c_dft: VecZnxDft = module.new_vec_znx_dft(cols);
/// module.vmp_apply_dft_to_dft_inplace(&mut c_dft, &vmp_pmat, &mut buf);
///
/// c_dft.free();
@@ -428,12 +424,7 @@ impl VmpPMatOps for Module {
}
}
fn vmp_prepare_dblptr<T: VecZnxApi + Infos>(
&self,
b: &mut VmpPMat,
a: &Vec<T>,
buf: &mut [u8],
) {
fn vmp_prepare_dblptr(&self, b: &mut VmpPMat, a: &[&[i64]], buf: &mut [u8]) {
let ptrs: Vec<*const i64> = a.iter().map(|v| v.as_ptr()).collect();
unsafe {
vmp::vmp_prepare_dblptr(
@@ -447,13 +438,7 @@ impl VmpPMatOps for Module {
}
}
fn vmp_prepare_row<T: VecZnxApi + Infos>(
&self,
b: &mut VmpPMat,
a: &T,
row_i: usize,
buf: &mut [u8],
) {
fn vmp_prepare_row(&self, b: &mut VmpPMat, a: &[i64], row_i: usize, buf: &mut [u8]) {
unsafe {
vmp::vmp_prepare_row(
self.0,
@@ -469,16 +454,16 @@ impl VmpPMatOps for Module {
fn vmp_apply_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
c_cols: usize,
a_cols: usize,
rows: usize,
cols: usize,
) -> usize {
unsafe {
vmp::vmp_apply_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
c_cols as u64,
a_cols as u64,
rows as u64,
cols as u64,
) as usize
@@ -496,9 +481,9 @@ impl VmpPMatOps for Module {
vmp::vmp_apply_dft(
self.0,
c.0,
c.limbs() as u64,
c.cols() as u64,
a.as_ptr(),
a.limbs() as u64,
a.cols() as u64,
a.n() as u64,
b.data(),
b.rows() as u64,
@@ -510,16 +495,16 @@ impl VmpPMatOps for Module {
fn vmp_apply_dft_to_dft_tmp_bytes(
&self,
c_limbs: usize,
a_limbs: usize,
c_cols: usize,
a_cols: usize,
rows: usize,
cols: usize,
) -> usize {
unsafe {
vmp::vmp_apply_dft_to_dft_tmp_bytes(
self.0,
c_limbs as u64,
a_limbs as u64,
c_cols as u64,
a_cols as u64,
rows as u64,
cols as u64,
) as usize
@@ -531,9 +516,9 @@ impl VmpPMatOps for Module {
vmp::vmp_apply_dft_to_dft(
self.0,
c.0,
c.limbs() as u64,
c.cols() as u64,
a.0,
a.limbs() as u64,
a.cols() as u64,
b.data(),
b.rows() as u64,
b.cols() as u64,
@@ -547,9 +532,9 @@ impl VmpPMatOps for Module {
vmp::vmp_apply_dft_to_dft(
self.0,
b.0,
b.limbs() as u64,
b.cols() as u64,
b.0,
b.limbs() as u64,
b.cols() as u64,
a.data(),
a.rows() as u64,
a.cols() as u64,